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 In its classical form, the Monty Hall Problem (MHP) is the following:

 Version 1. (Classic Monty) You are a player on a game show and are shown
 three identical doors. Behind one is a car, behind the other two are goats. Monty Hall,
 the host of the show, asks you to choose one of the doors. You do so, but you do not
 open your chosen door. Monty, who knows where the car is, now opens one of the
 doors. He chooses his door in accordance with the following rules:

 1. Monty always opens a door that conceals a goat.

 2. Monty never opens the door you initially chose.

 3. If Monty can open more than one door without violating rules one and two, then he
 chooses his door randomly.

 After Monty opens his door, he gives you the choice of sticking with your original
 choice or switching to the other unopened door. What should you do to maximize your
 chances of winning the car?

 In the entire annals of mathematics, you would be hard-pressed to find a problem
 that arouses the passions like the MHP. It has a history going back at least to 1959,
 when Martin Gardner introduced a version of it in Scientific American [4, 5]. When
 statistician Fred Moseteller included it in his 1965 anthology of probability problems
 [9], he remarked that it attracted far more mail than any other problem. In his 1968
 book Mathematical Ideas in Biology [18], biologist John Maynard Smith wrote, "This
 should be called the Serbelloni problem since it nearly wrecked a conference on theo
 retical biology at the villa Serbelloni in the summer of 1966." In its modern game show
 format the problem made its first appearance in a 1975 issue of the academic journal
 The American Statistician [16]. Mathematician Steve Selvin presented it as an inter
 esting classroom exercise on conditional probability. Though he presented the correct
 solution, (that there is a big advantage to be gained from switching), he found himself
 strongly challenged by subsequent letters to the editor [17].

 The problem really came into its own when Parade magazine columnist Marilyn vos
 Savant responded to a reader's question regarding it. There followed several rounds of
 angry correspondence, in which readers challenged vos Savant's solution. The chal
 lengers later had to eat crow when it was shown by a Monte Carlo simulation that vos
 Savant was correct, but not before the fracas reached the front page of the New York
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 Times [20]. The whole story is recounted in the books by Rosenhouse and vos Savant
 [13,15].

 In the end, the situation has been best summed up by cognitive scientist Massimo
 Palmatelli-Palmarini who wrote that, "... no other statistical puzzle comes so close
 to fooling all the people all the time... The phenomenon is particularly interesting
 precisely because of its specificity, its reproducibility, and its immunity to higher edu
 cation" [10].

 Why all the confusion?

 The trouble, you see, is that most people argue like this: "Once Monty opens his door
 only two doors remain in play. Since these doors are equally likely to be correct, it
 does not matter whether you switch or stick." We will refer to this as the fifty-fifty
 argument.

 This intuition is supported by a well-known human proclivity. A negative conse
 quence incurred by inaction hurts less than the same negative consequence incurred
 through some definite action. In the context of the MHP, people feel worse when they
 switch and lose than they do after losing by sticking passively with their initial choice.

 There is a large literature in the psychology and cognitive science journals docu
 menting and explaining the difficulty people have with the MHP. Burns and Wieth [3]
 summarized the findings of numerous such studies by writing,

 These previous articles reported 13 studies using standard versions of the MHD,
 and switch rates ranged from 9% to 23% with a mean of 14.5%. This consistency
 is remarkable given that these studies range across large differences in the word
 ing of the problem, different methods of presentation, and different languages
 and cultures.

 (Note that MHD stands for "Monty Hall Dilemma")
 Gilovich, Medvec, and Chen [6] studied people's reactions to losing by switching

 versus their reactions to losing by sticking. They used boxes instead of doors, and
 crafted an experimental situation in which players would lose regardless of their deci
 sion to switch or stick. Their findings?

 Because action tends to depart from the norm more than inaction, the individual
 is likely to feel more personally responsible for an unfortunate action. Thus,
 subjects who switched boxes in our experiment were more likely to experience
 a sense of "I brought this on myself," or "This need not have happened," than
 subjects who decided to keep their initial box.

 It would seem the defenders of sticking can point both to a plausible mathematical
 argument and to certain fine points of human psychology. How can the forces for
 switching fight back?

 Focus on Monty, not the doors There are a variety of elementary methods for solv
 ing the MHP. Working out a tree diagram for the problem, as in FIGURE 1, establishes

 that switching wins with probability |, while sticking wins with probability |. Conse
 quently, we double our chances of winning by switching.

 Monte Carlo simulations are also effective for establishing the correct answer. The
 Monty Hall scenario is readily simulated on a computer. The large advantage to be
 gained from switching quickly becomes apparent by playing the game multiple times.
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 Figure 1
 one

 Probability = ? Probability = \

 Probability tree for the classical MHP when the player initially chooses door

 Such methods, however, do little to clarify why the fifty-fifty argument is incorrect.
 Practical results obtained from a simulation can show you that something is wrong with
 your intuition, but they will not make the correct answer seem natural. The trouble lies
 in the difficulty people have in recognizing what is and is not important in reasoning
 about conditional probability.

 The mantra about focus goes a long way towards pointing people in the right di
 rection. When Monty opens door X, there is a tendency to think, "I have learned that
 door X conceals a goat, but I have learned nothing of relevance about the other two
 doors." This is what we mean by "focusing on the doors." The proper approach in
 volves focusing on Monty, specifically on the precise manner in which he chooses his
 door to open. We should think, "Monty, who makes his decisions according to strict
 rules, chose to open door X. Why this door as opposed to one of the others?"

 Let us assume the player initially chose door one and Monty then opened door two.
 According to the rules, we can be certain that one of the following two scenarios has
 played out:

 1. The car is behind door one. Monty chose door two at random from among doors
 two and three.

 2. The car is behind door three. Since the player initially chose door one, Monty was
 now forced to open door two.

 The second of these scenarios is more likely than the first. Since the car is behind
 the first door one-third of the time, and since Monty then opens door two in one-half
 of those cases, we see that scenario one occurs one-sixth of the time. Scenario two,
 on the other hand, happens whenever the car is behind door three (and the player has
 chosen door one). That happens one-third of the time. Scenario two is twice as likely
 as scenario one.

 Thus, we should think, "I have just witnessed an event that is twice as likely to
 occur when the car is behind door three than it is when the car is behind door one.
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 Consequently, the car is more likely to be behind door three, and I am more likely to
 win the car by switching."

 An exotic selection procedure The general principle here is that anything affecting
 Monty's decision-making process is relevant to updating our probabilities after Monty
 opens his door. To further illuminate this point, let us consider an altered version of
 the problem:

 Version 2. (High-Numbered Monty) As before, we have three identical
 doors concealing one car and two goats. The player chooses a door that remains un
 opened. Monty now opens a door he knows to conceal a goat. This time, however,
 we stipulate that Monty always opens the highest-numbered door available to him
 (keeping in mind that Monty will never open the door the player chose.) Will the
 player gain any advantage by switching doors?

 For reasons of concreteness, we will assume once more that the player initially chooses
 door one.

 Any time door one conceals a goat, Monty has no choice regarding which door to
 open. He can not open door one (since the player chose that door), and he can not open
 the door that conceals the car. This leaves only one door available to him.

 The interesting cases occur when door one conceals the car. Unlike Classic Monty,
 who now chooses randomly, High-Numbered Monty will always open door three when
 he can. It follows that if we see him open door two instead we know for certain that
 the car is behind door three.

 And if High-Numbered Monty opens door three? Since Monty is certain to open
 door three whenever the car is behind door one or door two, we now have no basis for

 deciding between them. It really is a fifty-fifty decision in this case.
 Take this as a cautionary tale. Whether we are playing Classic Monty or High

 Numbered Monty, it is certain that Monty will open a goat-concealing door. In the
 former case the probability that our initial choice concealed the car did not change
 while in the latter case it did. This shows that any proposed solution to the MHP
 failing to pay close attention to Monty's selection procedure is incomplete.

 Monty meets Bayes

 The main point thus far is that the probability that door X conceals the car, given that
 Monty has shown us the goat behind door F, depends on a detailed consideration of
 Monty's selection procedure. More precisely, it depends on the probability that Monty
 will open door Y under the assumption that door X conceals the car. The precise man
 ner in which these probabilities are related is given by Bayes' theorem.

 We denote by Ct the event that the car is behind door /, and by Mj the event that
 Monty opens door j to reveal a goat. Also assume the player initially chooses door
 one, and Monty then opens door two. The probability that the player's door conceals
 the car, given Monty's display, can be found using Bayes' theorem:

 P(Cl)P(M2\Cl)
 V 1 J P(M2)

 Expanding the bottom of this fraction via the law of total probability leads to

 P(d)P(M2|Ci)
 P(CX\M2) =

 P(Cl)P{M2\Cl) + P(C2)P(M2\C2) + P(C3)P(M2\C3)
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 In both of our versions of the MHP we have P(M2|C2) = 0, since it is given that
 Monty will never open the door concealing the car. Also, since we are given that the
 doors are identical, we have

 P(d) = P(C2) = P(C3) = i

 Making these substitutions leads to

 P(M2\CX) P(Cl\M2) =
 P{M2\CX) + P(M2\C3)

 In both versions of the game we have P(M2\C3) = 1. That is, when the player
 chooses door one and the car is behind door three, Monty is certain to open door two.

 In Classic Monty we have P(M2\C\) = \, since Monty chooses at random when
 the car is behind the door initially chosen by the player. In High-Numbered Monty we
 have P(M2\C\) = 0, since Monty is required by his rules to open door three. Plugging
 everything into Bayes' Theorem shows that for Classic Monty we now have

 P{Ci\M2) = T^- = - [Classic],

 while for High-Numbered Monty we have

 p(Cl|M2) = = 2 [High-Numbered]

 These are precisely the answers we obtained in the previous section.
 Let us go one more round:

 Version 3. (Random Monty) As always, assume that the player has initially
 chosen door one and Monty subsequently opened door two to reveal a goat. This time,
 however, you know that Monty chose his door randomly, subject only to the restriction
 that he not open the door the player chose. Should we switch?

 The novelty here lies in the nonzero probability of Monty opening the door con
 cealing the car. Intuitively we would reason as follows: Since Monty opened door two
 after I selected door one, since door two concealed a goat, and since I know Monty
 chose randomly between doors two and three, I conclude that one of two scenarios has
 played out:

 1. The car is behind door one, Monty chose door two randomly.

 2. The car is behind door three, Monty chose door two randomly.

 Since the car is equally likely to be behind doors one and three, these scenarios are
 equally likely to occur. The conclusion is that the remaining doors are equiprobable,
 and therefore there is no advantage to switching.

 Our intuition is confirmed via Bayes' Theorem. We know that Monty will not open
 door one, and we know that door two conceals a goat. We now have

 P(Cl) = P(C2) = P(C3) = ^,
 P(M2\CX) = P(M2\C3) = l

 P(M2\C2) = 0.
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 Bayes' Theorem now says

 P(Cl\M2) = -
 I (I
 3 (5)  1

 2" 3 (D+ 5(0)+ H?)
 The tree diagram in Figure 2 might be helpful for visualizing the situation.

 Monty
 Opens
 Door 2

 Switching loses Switching loses

 Probability = \ Probability = \

 Switching wins

 Probability = \

 Monty
 Opens
 Door 2

 Monty
 Opens
 Door 3

 Game ends  Switching wins

 Probability = \

 Monty
 Opens
 Door 3

 Game ends

 Figure 2 Probability tree for Random Monty when the player initially chooses door one

 Two-player Monty

 Three-door versions of the MHP can become remarkably complex. The following ver
 sion comes from a paper by philosopher Peter Baumann [1, 2]. For the remainder of
 the paper we will refer simply to the probability of door X, thereby avoiding the more
 cumbersome expression, "The probability that door X conceals the car."

 Version 4. (Two-Player Monty) We begin with three identical doors con
 cealing two goats and one car. There are two players in the game. Each player chooses
 one of the doors, but does not open it. Each player knows there is another person in
 the game, but neither knows which door the other player selected. Monty now opens a
 door according to the following procedure.

 1. If both players selected the same door, then everything proceeds as in the classical
 game. Monty opens a goat-concealing door, choosing randomly if he has a choice.

 2. If the players selected different doors, then Monty opens the one remaining door,
 regardless of what is behind it.
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 We assume that both players select their initial doors randomly. If you are one of the
 players and you have just seen Monty open a goat-concealing door, should you switch?

 This will be a fine test of our new-found intuition. For concreteness, suppose that
 Player A initially chose door one, and Monty has now opened the goat-concealing door
 two. What do Monty's actions tell us about Player B's choice? Initially we consider
 it equally likely that Player B chose door one, door two or door three. After seeing

 Monty open door two we reason that one of three scenarios has played out:

 1. Player B chose door three. In this case Monty was forced to open door two, which

 conceals a goat with probability |.
 2. Player B chose door one and door one conceals the car. In this case Monty opens

 door two with probability \. Since door one conceals the car with probability |,
 this scenario occurs with probability |.

 3. Player B chose door one and door three conceals the car (which happens with

 probability |). In this case Monty is again forced to open door two.

 Combining items two and three above shows that Player B chose door one with prob

 ability \ + \ ? \. Item one shows that Player B chose door three with probability |.
 We conclude that the event in which Monty opens the goat-concealing door two after

 Player A chooses door one is | more likely to occur when Player B has chosen door
 three than when he has chosen door one.

 It is a consequence of Bayes' theorem that the probabilities we now assign to
 "Player B chose door three," and "Player B chose door one " must preserve this 4 : 3
 ratio. (A proof of this assertion can be found in the paper by Rosenthal [14].) Conse

 quently, we assign probabilities of | and | respectively.
 To continue the analysis, note that from Player A's perspective there are now four

 possibilities. Player B could have chosen door one or door three, and the car could be
 behind either of those doors. Let us denote these possibilities via ordered pairs of the
 form

 (Player ZTs Door, Location of the Car).

 Thus, the four remaining possibilities are

 (3,1), (3,3), (1,1), (1,3).

 Consider the first two pairs. If Player B chose door three, then Monty was forced
 to open door two. Consequently, we learn nothing regarding the probability of doors

 one and three. Since these two scenarios collectively have a probability of |, and since
 they are equally likely, we now assign the following probabilities:

 P(3,1) = P(3,3) = |.
 The remaining two pairs, however, are not equiprobable. Suppose that Player B

 chose door one, just as Player A did. If the car is behind door one, then Monty chose

 door two randomly, which happens with probability \. If the car is behind door three,
 then Monty was forced to choose door two. It follows that it is twice as likely that the
 car is behind door three than that it is behind door two. Since these scenarios have a

 collective probability of |, we assign the following probabilities:

 P(l,l) = i and P(l,3) = ^.
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 Of the four scenarios, the two in which Player A wins by switching are (1, 3)

 and (3, 3). Since both have probability |, this gives a total probability of winning
 by switching of |. That is our solution.

 The really amusing part is that both players will go through this analysis, and both
 will decide to switch doors. In those scenarios in which the players chose different
 doors, this implies that someone is definitely making the wrong decision. Such are the
 cruelties of probability.

 Two-player Monty has also been discussed by Baumann [1], Levy [7], Rosenhouse
 [13], and Sprenger [19].

 Many doors

 Ready for the final exam?

 Version 5. (Progressive Monty) This time there are n identical doors, con
 cealing one car and n ? 1 goats. The player chooses a door, but does not open it. Monty
 now opens a goat-concealing door, choosing randomly from among his options. The
 player is now given the choice of sticking or switching. The player makes his choice,
 but again does not open his chosen door. Monty opens another goat-concealing door.
 The player is again given the opportunity to stick or switch. This continues until Monty
 has opened n ? 2 doors. The player makes his final selection, and wins whatever is be
 hind his door. What strategy will maximize his chances of winning the car?

 To help us get our bearings, let us try a case study. Suppose we begin with five
 doors. At any stage of the game we represent the probabilities of the doors, based on
 all available knowledge, via an ordered 5-tuple, which we call the probability vector.
 As the game begins, we have probability vector

 (- - - - -\ \5' 5' 5' 5' 5/

 As always, let us assume the player chooses door one and Monty now opens door two.
 Our past experience suggests that the probability of our door does not change, and this
 is confirmed by Bayes' theorem. In the following calculation, the notation C, denotes
 the event where the car is not behind door i.

 We now compute

 P(C,|M2) =  P{Cl)P{M2\Cl)
 P{Cl)P{M2\Cx) + P(d and C2)P{M2\Cl and C2)

 1 /I (I) + 1 (I) 5'

 Since the other doors are identical and since their probabilities must sum to |, we
 now have probability vector

 1 ? 4
 S' ?- 15'

 4 4 \
 15' 15/

 What if we now switch to door three and then see Monty open door five? Known
 probabilities are now
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 P(C3) =. P(C4) = P(C5)

 P(M5|d) = P(M5\C4)

 P(C,) = ^ and P(M5|C3)
 If we use the law of total probability to write

 P(M5) = P(C,)P(Af5|Ci) + P(C3)P(M5|C3) + P(C4)P(M5|C4) = =jj,
 and plug the results into Bayes' Theorem, the result is the probability vector

 (9 n 8 12 \

 The probabilities of all the remaining doors went up.
 What if Monty had opened door one after we switched to door three? The reader

 can supply the details that lead to the vector

 / ^ 1 3 3\

 Notice that the probability of door three went down, from ^ to \. Our chosen door
 actually seems less likely as the result of Monty's actions. A surprising result!

 Things get messy indeed in this version. Plainly we need some guidelines to aid our
 intuition.

 The first principle is simple. Any time Monty chooses not to open a door different
 from your present choice, the probability of that door goes up. In our case study, Monty
 opened door two after we chose door one. The event, "Monty does not open door
 three," is more likely to happen when the car is behind door three than when it is
 elsewhere. Consequently, we will revise upward our probability of door three.

 The second principle is that if the doors different from your present choice are
 equiprobable, then the probability of your choice does not change when Monty opens
 a door. In our case study, after Monty opened door two, we reason that the event,
 "Monty does not open door one," has probability one regardless of the location of the
 car. Consequently, we learn nothing from the occurrence of that event. The calculation
 in our case study confirms this intuition.

 Why, though, does it matter that the other doors are equiprobable? The answer is
 that Monty's failure to open a door is not the only source of information to which we
 have access. The probability of the event, "Monty opens door X," depends in part on
 the probability of the event, "Door X conceals the car." Specifically, the more likely a
 door is to conceal the car, the less likely Monty is to open that door. Once more return
 ing to our case study, we switched to door three at a moment when doors three through
 five were equiprobable and collectively very likely to conceal the car. By opening door
 five, Monty eliminated one element of this collection. This revelation does nothing to
 shake our confidence that the car is more likely to be found among doors three through
 five than it is to be found among any collection of three doors that includes door one.
 Consequently, we will revise upward the probability of our chosen door.

 Why did the probability of door three go down when Monty opened door one? This
 one is harder to explain, but our calculation suggests the proper way to think about
 it. If all four doors had been equiprobable at the moment we switched to door three,

 4
 15
 1
 2
 1
 3'
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 then we would simply be playing Classic Monty on four doors. In that case, our chosen

 door would retain its \ probability after Monty opens a door. The probability vector we
 computed for our present situation is identical to what we would have obtained were
 we playing four-door Classic Monty. The implication is that by eliminating door one,
 Monty has essentially erased the prior history of the game. We are now faced with three
 doors that were equiprobable at the moment we chose among them, and these doors
 were among an ensemble of four doors, just as in four-door Classic Monty. That door
 one had a different probability from the other doors does not distinguish our situation
 in a relevant way.

 This observation leads to our final clue. If we select a door at a moment when

 precisely k doors remain, the probability of that door can never be smaller than |.
 Even if we have been careless in extracting the maximum amount of information from
 Monty's actions, we still know the door was chosen from among k possibilities.

 As a test of our principles, let us go another round with our case study. We left off
 with the player having chosen door three and with probability vector,

 ?13 3
 ?' a ? r s

 Imagine that we now switch to door four.
 If Monty now opens door three then only doors four and five remain in play. We

 would reason that these two doors were equiprobable at the moment we switched to
 door four, but that door four was selected from among three possibilities. We are, in
 effect, playing Classic Monty, and we would expect our updated probability vector to
 be

 0, 0, 0, {, \ 3 3

 The calculation is

 P(C4)P(M3\C4)
 P(C4\M3) =

 P(C4)P(M3\C4) + P(C5)P(M3\C5)

 + (f)(D 3
 And if Monty opens door five instead? Our intuition tells us that both doors should

 see their probabilities go up: door three, because it might have been opened but was
 not; door five, because it was part of an equiprobable ensemble that has decreased in
 size. Bayes' Theorem confirms our intuitions. We compute

 P(C \M = P(C3)P(M5\C3) = 1(1) = 4
 31 5; P(C3)P(M5\C3) + P(C4)P(M5\C4) ?(l) + f(?) V

 and obtain probability vector

 (o, o, * l.o).
 Remarkably, our arguments to this point are already enough to justify the correct

 solution to Progressive Monty. Consider the strategy in which we switch at the last
 minute (SLM). That is, we will stick with our initial choice until only two doors re
 main, and then we will switch. Our initial choice has probability -. Since the other
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 doors are equiprobable, this probability will not change so long as we keep it as our
 choice. At the moment when only two doors remain, the other door will have proba
 bility That is the probability that we win with SLM.

 We also know that there will never be a moment in the game when a door has a
 probability smaller than K Thus, at the moment when only two doors remain it is
 impossible to produce a door with probability greater than This shows that SLM
 is optimal.

 Very nice. A full, rigorous proof that SLM is, in fact, uniquely optimal can be found
 in the book by Rosenhouse [13]. You might also wonder what can be said about other
 strategies. For example, what if we are playing with fifty doors and we are absolutely
 determined to switch exactly seven times during the game? What is our best strategy?
 A consideration of such questions can be found in the paper by Lucas and Rosenhouse
 [8]. Progressive Monty receives further attention in one paper by Paradis, Viader, and

 Bibiloni [11] and another by Rao and Rao [12]. For a variation on the problem, see the
 paper by Zorzi in this issue of the MAGAZINE.

 It would seem that a bit of clear thinking can steer us through even the densest of
 Monty-inspired forests. Once our intuition has been tuned to what is important, it is
 not so difficult to ferret out the correct answer.
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