
Citation: Park, S.; Park, J.; Kim, Y.;

Sim, J.S. Order-Preserving Multiple

Pattern Matching in Parallel. Appl.

Sci. 2023, 13, 5142. https://doi.org/

10.3390/app13085142

Academic Editor: Richard (Chunhui)

Yang

Received: 9 March 2023

Revised: 30 March 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Order-Preserving Multiple Pattern Matching in Parallel
Somin Park 1, Jinhyeok Park 2, Youngho Kim 1 and Jeong Seop Sim 1,*

1 Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea;
smpark95@inha.edu (S.P.); yhkim85@inha.ac.kr (Y.K.)

2 System Team, Mobile Experience, Samsung Electronics Co., Ltd., Suwon 16677, Republic of Korea;
jh1015.park@samsung.com

* Correspondence: jssim@inha.ac.kr; Tel.: +82-32-860-7455

Abstract: The order-preserving multiple pattern matching problem is to find all substrings of T
whose relative orders are the same for any pattern in a set of patterns. Various sequential algorithms
have been studied for the order-preserving multiple pattern matching problems. In this paper, we
propose two parallel algorithms, each of which uses Aho–Corasick automata and fingerprint tables,
respectively. We also present experimental results of comparing the execution times of each parallel
algorithm on various types of time-series data.

Keywords: string matching; order-preserving multiple pattern matching; parallel algorithms;
time-series data analysis

1. Introduction

Two strings x, y (|x| = |y|) from an integer alphabet are order-isomorphic if the
relative orders of characters are the same. For example, given two strings x = (17, 30, 10)
and y = (4, 9, 1), they are order-isomorphic because their relative orders of characters are
the same as (2, 3, 1). Given text T(|T| = n) and pattern P(|P| = m), finding all substrings of
T, which are order-isomorphic to P, is called the order-preserving pattern matching (OPPM
for short) problem [1–5]. Given text T(|T| = n) and a set of patterns P = {P1, . . . , Pk},
the order-preserving multiple pattern matching (OPMPM for short) problem is to find
all substrings of T that are order-isomorphic to any Pa(1 ≤ a ≤ k) in P [1–5]. The order-
preserving pattern matching problem and order-preserving multiple pattern matching
problem can be used to analyze various time-series data such as stock price indices, music
melodies, and biomedical data [1–5].

Most existing OPMPM algorithms are performed in two phases: a preprocessing
phase and a search phase. Let m, m, and M denote the shortest pattern length, the longest
pattern length, and the sum of the lengths of all patterns in P, respectively. Kim et al. [1]
proposed an algorithm that performs the preprocessing phase in O(M log m) time and
the search phase in O(n log m) time using Aho–Corasick automata [6]. Han et al. [7]
proposed two algorithms for the order-preserving multiple pattern matching problem. In
the first algorithm, the preprocessing and search phases run in O(kmq + M log m) time
and O((n/m) log M) time, on average, and in the second algorithm, the preprocessing and
search phases run in O(M log m) time and O(n) time, on average. Park et al. [8] proposed
an algorithm that improved the space complexity of the first algorithm proposed in [7]
from O(q! + k + M) to O(k + M) using fingerprint tables. Park et al. [9] parallelized the
second algorithm proposed in [7]. The preprocessing phase runs in O(m) time using O(M)
threads and the search phase runs in O(m) time, on average, using O(n) threads in [9].

In this paper, we present two parallel algorithms for the OPMPM problem. First, we
parallelize the algorithm proposed in [1]. The preprocessing phase of the first algorithm
runs in O(m) time using O(M) threads and the search phase runs in O(m log m) time using
O(n/m) threads. Second, we parallelize the algorithm proposed in [8]. The preprocessing

Appl. Sci. 2023, 13, 5142. https://doi.org/10.3390/app13085142 https://www.mdpi.com/journal/applsci

Appl. Sci. 2023, 13, 5142 2 of 10

phase of the second algorithm runs in O(m) time using O(M) threads and the search
phase runs in O(M) time using O(n) threads. Then, we present experimental results that
compare the execution times of each parallel algorithm for various types of time-series data.
The experimental results showed that for randomly generated strings, when n = 100,000,
m = 9, and k = 100, the execution time of the first parallel algorithm was approximately
2.12 times faster than the sequential algorithm, and the second parallel algorithm was
approximately 1.6 times faster than the sequential algorithm. For all time-series data used
in our experiments, the execution time of our second parallel algorithm was comparable to
that of a fast parallel algorithm proposed in [9].

This paper is organized as follows. In Section 2, we introduce the definitions of terms
and related studies. In Section 3, we explain our parallel algorithms for the OPMPM
problem. In Section 4, the execution times of parallel algorithms are compared through
experiments. In Section 5, we conclude.

2. Related Works

Given string x, the length of x is denoted by |x| and the i-th character of x (1 ≤ i ≤ |x|)
is denoted by x[i]. The substring from x[i] to x[j] is denoted by x[i..j] (1 ≤ i ≤ j ≤ |x|).
x[1..i] is called a prefix of x and x[i..|x|] is called a suffix of x for 1 ≤ i ≤ |x|. For convenience,
we assume that all the characters in the string are different. Given two strings x, y (|x| = |y|),
if x[i] < x[j]⇔ y[i] < y[j](1 ≤ i, j ≤ |x|) is satisfied, and x and y are order-isomorphic and
denoted by x ≈ y [1,4,10].

Let x′ be the string constructed by sorting all the characters of x in ascending order.
Then, the position table POSx of x is defined as follows:

POSx[i] = j(x′[i] = x[j], 1 ≤ i ≤ |x|).

That is, POSx[i] is the index of the i-th smallest character in x. Given two strings x, y
(|x| = |y|), for all i(1 ≤ i < n), if y[POSx[i]] ≤ y[POSx[i + 1]] is satisfied, x ≈ y [8]. A
prefix table µx of string x is defined as follows:

µx[i] = |{j : x[j] < x[i], 1 ≤ j < i}|+ 1.

That is, µx[i] represents the number of characters that are smaller than x[i] in x[1..i]. If the
prefix tables of two strings x and y are the same, that is, µx = µy, x ≈ y [1]. Note that
when there exist the same characters in the given string, order-isomorphism can still be
determined using the extended prefix representation proposed in [2]. Table 1 presents the
prefix table µx and position table POSx when x = (23, 29, 20, 57, 59).

Table 1. Prefix table and position table of x = (23, 29, 20, 57, 59).

x 23 29 20 57 59
µx[i] 1 2 1 4 5

POSx[i] 3 1 2 4 5

In [7], an OPMPM algorithm was proposed using fingerprints of q-grams. The finger-
print converts a q-gram (a string of length q) into an integer within the range of [1, q!] using
the factorial number system [11,12]. The fingerprints are used to find candidate substrings
of text T that may be order-isomorphic to pattern P. Given a q-gram x, fingerprint f (x) is
defined as follows [3,7]:

f (x) = ∑
q
k=1[(µx[k]− 1)× (k− 1)!] + 1.

For example, if q-gram x = (8, 10, 6), f (x) = 2.
In [1], the Aho–Corasick automaton [6] is used to solve the order-preserving multiple

pattern matching problem. In the preprocessing phase, the Aho–Corasick automaton is
created in O(M log m) time using a set of prefix tables of patterns. In each Step i(1 ≤ i ≤ n)
of the search phase, the state for T[i] is computed and Pa(1 ≤ a ≤ k) is searched in the

Appl. Sci. 2023, 13, 5142 3 of 10

automaton using the transition function, the failure function, and the output function of
the automaton. Figure 1 shows the Aho–Corasick automaton when P1 = (17, 25, 15, 30),
P2 = (30, 44, 25, 40), and P3 = (40, 50, 61).

Figure 1. Example of the Aho–Corasick automaton for OPMPM.

Let P̃a(1 ≤ a ≤ k) be the prefix of length m for each pattern Pa and let P̃ =
{

P̃1, P̃2, . . . , P̃k
}

.
Park et al. [8] proposed an OPMPM algorithm that generates the position table POSPa for
each Pa(1 ≤ a ≤ k) and the fingerprint table FPa that stores the rightmost q-gram’s
fingerprint of P̃a(1 ≤ a ≤ k) in the preprocessing phase, to find candidate patterns that
may be order-isomorphic to substrings of T. In the search phase, all substrings of T, which
are order-isomorphic to any Pa(1 ≤ a ≤ k), are searched using FPa and POSPa .

3. Parallel Algorithms for the OPMPM Problem

In this section, we propose two parallel algorithms for the OPMPM problem. The
first algorithm uses the Aho–Corasick automaton, while the second algorithm utilizes the
position tables and fingerprint tables.

3.1. Parallel OPMPM Algorithm Using the Aho–Corasick Automaton

Our parallel algorithm for the OPMPM problem using the Aho–Corasick automaton
consists of the following steps: In the preprocessing phase, we create prefix tables using
O(M) threads in O(m) time. That is, the prefix table of each pattern is calculated in parallel
by assigning |Pa| threads for each pattern Pa(1 ≤ a ≤ k). In the prefix table µPa of pattern Pa,
each thread t(1 ≤ t ≤ |Pa|) linearly searches Pa[1..t− 1] to calculate µPa [t]. See Algorithm 1.
Thus, a set of prefix tables for all patterns can be calculated in O(m) time using O(M)
threads. To create an automaton using µPa , the existing algorithm [1] method is employed.

Algorithm 1 Preprocessing phase (parallel calculation of prefix tables for a pattern set).
Input: A set of strings {P1, P2, . . . , Pk}
Output: A set of prefix tables

{
µP1 , µP2 , . . . , µPk

}
1 parallel for a← 1 to k do
2 parallel for t← 1 to |Pa| do
3 µPa [t]← 1
4 for i← 1 to t− 1 do
5 if Pa[i] < Pa[t] then
6 µPa [t]← µPa [t]+1

In the search phase, T is divided into b blocks and each block is searched in parallel
using b threads (Figure 2). Thread t(1 ≤ t ≤ b) searches each block of T for the location
of the substring that is order-isomorphic to Pa using the automaton created in the prepro-
cessing phase. See Algorithm 2. Since the substring of T that is order-isomorphic to Pa
can occur across two adjacent blocks, all threads except the last one set the block size to

Appl. Sci. 2023, 13, 5142 4 of 10

dn/be+ m− 1 (Figure 2). Since the insertion, deletion, and rank calculation operations in
the order-statistics tree require O(log m) time during the search phase, they are conducted
in O((n/b + m) log m) time. If we set b = dn/me, the search phase can be conducted in
O(m log m) time. Thus, this parallel algorithm can be solved as an OPMPM problem in
O(M + m log m) time using O(max(M, dn/me)) threads.

Figure 2. Search phase of the parallel OPMPM algorithm using the Aho–Corasick automaton.

Algorithm 2 Search phase.
Input: Aho–Corasick automaton, string T
Output: Positions i of substrings of T which is order-isomorphic to Pa
1 qs ← q0, OST τ, int r
2 parallel for t← 1 to b do
3 for i← 1 to dn/be+ m− 1 do
4 if (t− 1)dn/be+ i > n then
5 break
6 τ.insert(T[(t− 1)dn/be+ i)])
7 r ← τ.rank(T[(t− 1)dn/be+ i])
8 while g(qs, r) = f ail
9 τ.delete(T[i− d(qs)..i− d(π(qs))− 1])
10 qs ← π(qs)
11 r ← τ.rank(T[(t− 1)dn/be+ i])
12 qs ← g(qs, r)
13 if Pa ∈ out(qs) and i− |Pa|+ 1 ≤ tdn/be then
14 print (i− |Pa|+ 1, a)

3.2. Parallel OPMPM Algorithm Using the Fingerprint Table

The algorithm that solves the OPMPM problem using a fingerprint table in parallel is
as follows: In the preprocessing phase, position table POSPa and fingerprint table FPa are
created in parallel for each pattern of Pa(1 ≤ a ≤ k). The POSPa calculation is performed in
parallel using |Pa| threads. Each thread t(1 ≤ t ≤ |Pa|) linearly searches Pa to calculate the
order r of Pa[t]. By the definition of POSPa , it satisfies POSPa [r] = t, and the position tables
for all patterns can be calculated in parallel in O(m) time using O(M) threads. FPa is created
in parallel using q threads (Algorithm 3). Each thread t(1 ≤ t ≤ q) calculates the fingerprint
of P̃a[m− q + 1..m] in parallel. Here, atomic operations are used to prevent multiple threads
from accessing FPa concurrently (Line 8 in Algorithm 3). Thus, the fingerprint table can be
calculated in O(q) time using O(kq) threads, and the preprocessing phase is conducted in
O(m) time using O(M) threads.

In the search phase, all substrings of T are checked in parallel using n−m + 1 threads
(Algorithm 4). Each thread i(1 ≤ i ≤ n−m + 1) first calculates f (T[i + m− q..i + m− 1]).
f (T[i + m− q..i + m− 1]) and each of FPa(1 ≤ a ≤ k) are sequentially compared, and if
they are the same, it is verified whether Pa and T[i..i + |Pa| − 1] are order-isomorphic using
POSPa (from Lines 2 to 5 in Algorithm 4) [13]. If Pa ≈ T[i..i + |Pa| − 1], then (i, a) is printed.
In the worst case, it verifies whether all substrings of T are order-isomorphic to all patterns.
Thus, the search phase can be performed in O(M) time using O(n) threads. This parallel
algorithm can be solved as an OPMPM problem in O(m + M) time using O(max(M, n))
threads.

Appl. Sci. 2023, 13, 5142 5 of 10

Algorithm 3 Parallel calculation of the fingerprint table. FP
Input: A set of strings {P1, P2, . . . , Pk},, int m, int q
Output: FP1, FP2, . . . , FPk
1 parallel for a← 1 to k do
2 parallel for t← 1 to q do
3 FPa ← 1
4 c← 0
5 for i← 1 to t− 1 do
6 if Pa[m− q + i] < Pa[m− q + t] then
7 c← c + 1
8 atomicAdd(FPa ← FPa + c× (t− 1)!)

Algorithm 4 The search phase of the algorithm using a fingerprint table.
Input: A string T, FP1, FP2, . . . , FPk, int m
Output: Positions i of substrings of T which is order-isomorphic to Pa
1 parallel for i← 1 to n−m + 1 do
2 for a← 1 to k do
3 if f (T[i + m− q..i + m− 1]) = FPa then
4 if Pa ≈ T[i..i + |Pa| − 1] then
5 print (i, a)

4. Experimental Results

The experiment was conducted on the following environment: Windows 10 (64-bit)
operating system, AMD Ryzen9 3950X CPU, 64 GB RAM, NVIDIA GeForce RTX 3080 Ti
GPU, C++ and CUDA programming language, and Visual Studio 2019 (CUDA SDK 11.0).

The algorithms experimented with in the present paper are denoted as follows: The
OPMPM algorithm using the Aho–Corasick automaton proposed in [1] is denoted by
AC, and the OPMPM algorithm using the fingerprint table proposed in [8] is denoted
by FT. The parallel OPMPM algorithm proposed in [9] is denoted by pKR, the parallel
OPMPM algorithm using the Aho–Corasick automaton proposed in this paper is denoted
by pAC, and the parallel OPMPM algorithm using the fingerprint table is denoted by pFT,
respectively.

The data used in the experiment are randomly generated strings and two types of
time-series data: the Dow Jones Index and electrocardiogram data.

• Randomly generated strings: Texts and patterns consisting of ∑ =
{

1, 2, . . . , 230} were
randomly generated. Text T was generated by increasing length n from 10,000 by
10,000 to 100,000. A set of patterns P was generated by increasing the number of
patterns k from 100 by 100 to 1000 and increasing the pattern length m from 5 by 1 to
15.

• Dow Jones Index: Texts and patterns were extracted at random for each experiment
from the daily closing price of the Dow Jones Industrial Average between 2 May 1885
and 12 April 2019 [14]. The text length n was increased from 1000 by 1000 to 10,000.
The number of patterns k and their length m were set to the same values used for the
randomly generated strings.

• Electrocardiogram data: The electrocardiogram (ECG) data used in the experiment
were obtained from the MIT-BIH ECG biosignal database provided by Physionet [15].
An electrocardiogram records the electrical impulses from the heart. Texts were
randomly extracted from the total records, while patterns were extracted evenly from
abnormal symptom data and normal data. It should be noted that the texts and
patterns were extracted from electrocardiogram data of different individuals. The
text length n and the number of patterns k were set equal to those of the randomly
generated strings, and the pattern length m increased from 10 by 1 to 15 during the
generation process.

Appl. Sci. 2023, 13, 5142 6 of 10

The parameter setup of the algorithm and measurement of execution time were
conducted as follows: In FT and pFT, q was set to 5. In each of the parallel algorithms, pAC
employed 1000 threads, and pKR and pFT employed n threads. The execution time of each
algorithm was the mean of 100 execution times, which was measured in milliseconds (ms)
and rounded to three decimal places. The execution time of parallel algorithms includes
the execution time of the cudaMemcpy() function that copies data between host memory
and device (GPU) memory.

Experiment (1). Comparison of execution times of AC and pAC, and FT and pFT
for randomly generated strings: Figure 3 shows the execution times of AC and pAC for
randomly generated strings according to n when m = 9 and k = 100. When n = 10,000, pAC
was slower than AC due to the additional execution time required by the cudaMemcpy()
function in pAC. Most of the execution time for pAC was spent on the cudaMemcpy()
function. However, for n ≥ 20,000, pAC performed faster than AC. When n = 100,000,
m = 9, and k = 100, the execution time of AC was around 41.22 ms and that of pAC was
around 19.49 ms, indicating that pAC was approximately 2.12 times faster than AC. The
execution time of pAC increased as n increased due to the limitation of the number of
available GPU cores. Figure 4 shows the execution times of AC and pAC for randomly
generated strings according to k when n = 100,000 and m = 9. In this case, pAC was faster
than AC in all cases.

Figure 3. Comparison of execution times of AC and pAC varying n for randomly generated strings
when m = 9 and k = 100.

Figure 4. Comparison of execution times of AC and pAC varying k for randomly generated strings
when n = 100,000 and m = 9.

Appl. Sci. 2023, 13, 5142 7 of 10

Figure 5 shows the execution times of FT and pFT for randomly generated strings
according to n when m = 9 and k = 100. pFT was faster than FT in all cases. For instance,
when n = 100,000, m = 9, and k = 100, the execution time of FT was around 8.6 ms, while
that of pFT was around 5.39 ms, indicating that pFT was approximately 1.6 times faster
than FT. However, as with pAC, the execution time of pFT also increased as n increased
due to the limitation of the number of available GPU cores. Figure 6 shows the execution
times of FT and pFT for randomly generated strings according to k when n = 100,000 and
m = 9. In this case, as in the previous case, pFT was faster than FT in all cases.

Figure 5. Comparison of execution times of FT and pFT according to n for randomly generated
strings when m = 9 and k = 100.

Figure 6. Comparison of execution times of FT and pFT according to k for randomly generated
strings when n = 100,000 and m = 9.

Experiment (2). Comparison of execution times of pKR, pAC, and pFT for randomly
generated strings: Table 2 presents the execution times of pKR, pAC, and pFT for ran-
domly generated strings with varying parameter settings. In all cases, pKR and pFT
performed faster than pAC, and pKR and pFT exhibited comparable execution times.
When n = 100,000, m = 9, and k = 1000, the execution times of pKR and pFT were
approximately 1.98 and 2.03 times faster, respectively, than those of pAC.

Table 2a presents the execution times of pKR, pAC, and pFT according to m when
n = 100,000 and k = 1000. As the length of patterns m increased, the creation time of the
Aho–Corasick automaton increased, leading to an increase in the total execution time of
pAC. The length of patterns m did not significantly affect the execution times of pFT and

Appl. Sci. 2023, 13, 5142 8 of 10

pKR. Table 2b presents the execution times of pKR, pAC, and pFT according to k when
n = 100,000 and m = 9. The execution times of all algorithms increased as k increased.

Table 2. Comparison of execution times of pAC, pKR, and pFT for random strings.

(a) Comparison of execution times varying m when n = 100,000, k = 1000

Execution times of the algorithms (unit: ms)

m pAC pKR pFT

6 41.31 21.58 22.62
9 44.83 22.64 21.98
12 49.07 22.18 22.51
15 52.49 22.16 22.52

(b) Comparison of execution times varying k when n = 100,000, m = 9

Execution times of the algorithms (unit: ms)

k pAC pKR pFT

100 19.35 2.22 2.24
500 31.07 11.25 11.47

1000 44.83 22.64 21.98

Experiment (3). Comparison of execution times of pKR, pAC, and pFT for Dow Jones
Index data: Table 3 presents the execution times of pKR, pAC, and pFT according to the
parameters for Dow Jones Index data. In all conditions, pKR and pFT performed faster than
pAC, and pKR and pFT exhibited comparable execution times. When n = 10,000, m = 9,
and k = 1000, the execution times of pKR and pFT were around 5.61 times and 5.71 times
faster than that of pAC. Overall, it showed a similar trend to that of Experiment 2.

Table 3. Comparison of execution times of pAC, pKR, and pFT for Dow Jones Index data.

(a) Comparison of execution times varying m when n = 10,000, k = 1000

Execution times of the algorithms (unit: ms)

m pAC pKR pFT

6 9.58 2.29 2.55
9 12.84 2.29 2.25
12 16.35 2.22 2.25
15 20.33 2.34 2.45

(b) Comparison of execution times varying k when n = 10,000, m = 9

Execution times of the algorithms (unit: ms)

k pAC pKR pFT

100 5.03 0.49 0.47
500 8.52 1.35 1.38

1000 12.84 2.29 2.25

Experiment (4). Comparison of execution times of pKR, pAC, and pFT for ECG data:
Table 4 presents the execution times of pKR, pAC, and pFT according to the parameters for
electrocardiogram data. In all cases, pKR and pFT performed faster than pAC, and pKR
and pFT exhibited comparable execution times. When n = 100,000, m = 10, and k = 1000,
the execution times of pKR and pFT were around 2.13 times and 2.16 times faster than that
of pAC. Overall, it showed a similar result to that of Experiments 2 and 3.

Appl. Sci. 2023, 13, 5142 9 of 10

Table 4. Comparison of execution times of pAC, pKR, and pFT for ECG data.

(a) Comparison of execution times varying m when n = 100,000, k = 1000

Execution times of the algorithms (unit: ms)

m pAC pKR pFT

10 41.18 19.32 19.08
12 42.6 18.68 19.03
15 44.83 18.82 18.31

(b) Comparison of execution times varying k when n = 100,000, m = 10

Execution times of the algorithms (unit: ms)

k pAC pKR pFT

100 18.57 2.32 2.29
500 28.23 9.89 9.46

1000 41.18 19.32 19.08

5. Conclusions

In this paper, a parallel OPMPM algorithm using the Aho–Corasick automaton and
a parallel OPMPM algorithm using a fingerprint table were proposed. In addition, com-
parison experiments were conducted for randomly generated strings, Dow Jones Index
data, and electrocardiogram data to evaluate the performance of the proposed parallel
algorithms. The experimental results showed that the execution times of the algorithms
had a similar trend regardless of the data type when data-related parameters such as the
length of the text, lengths of the patterns, and the number of patterns, as well as algorithm-
related parameters such as the q-gram length, were kept the same. This suggests that the
performance of the algorithms is dependent on these parameters rather than the specific
characteristics of the data type. The performance of the verification of order-isomorphism
may vary depending on the order representation method of strings used [16]. Therefore,
further studies are necessary to compare the execution times and number of verifications
required for different-order representation methods.

Author Contributions: S.P. and J.P. designed and analyzed the algorithms. S.P. implemented and
experimented with the algorithms, and wrote the draft of the paper. Y.K. and J.S.S. reviewed and
revised the paper. J.S.S. analyzed the algorithm, provided algorithmic support, and was the project
manager. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-00155915,
Artificial Intelligence Convergence Innovation Human Resources Development (Inha University)),
and by INHA UNIVERSITY Research Grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare they have no conflicts of interest.

References
1. Kim, J.; Eades, P.; Fleischer, R.; Hong, S.H.; Iliopoulos, C.S.; Park, K.; Puglisi, S.J.; Tokuyama, T. Order-preserving matching. Theor.

Comput. Sci. 2014, 525, 68–79. [CrossRef]
2. Kim, J.; Amir, A.; Na, J.C.; Park, K.; Sim, J.S. On representations of ternary order relations in numeric strings. Math. Comput. Sci.

2017, 11, 127–136. [CrossRef]
3. Cho, S.; Na, J.C.; Park, K.; Sim, J.S. A fast algorithm for order-preserving pattern matching. Inf. Process. Lett. 2015, 115, 397–402.

[CrossRef]

Appl. Sci. 2023, 13, 5142 10 of 10

4. Kim, Y.; Kim, Y.; Sim, J.S. An improved order-preserving pattern matching algorithm using fingerprints. Mathematics 2022,
10, 1954. [CrossRef]

5. Na, J.C.; Lee, I. A simple heuristic for order-preserving matching. IEICE Trans. Inf. Syst. 2019, 102, 502–504. [CrossRef]
6. Aho, A.V.; Corasick, M.J. Efficient string matching: An aid to bibliographic search. Commun. ACM 1975, 18, 333–340. [CrossRef]
7. Han, M.; Kang, M.; Cho, S.; Gu, G.; Sim, J.S.; Park, K. Fast multiple order-preserving matching algorithms. In Proceedings of the

International Workshop on Combinatorial Algorithms, Verona, Italy, 5–7 October 2015; pp. 248–259.
8. Park, J.; Kim, Y.; Sim, J.S. A space-efficient hashing-based algorithm for order-preserving multiple pattern matching problem.

KIISE Trans. Comput. Pract. 2018, 24, 399–404. [CrossRef]
9. Park, K.B.; Kim, Y.; Sim, J.S. Parallel implementation of the order-preserving multiple pattern matching algorithm using the

Karp-Rabin algorithm. J. KIISE 2021, 48, 249–256. [CrossRef]
10. Kubica, M.; Kulczyński, T.; Radoszewski, J.; Rytter, W.; Waleń, T. A linear time algorithm for consecutive permutation pattern

matching. Inf. Process. Lett. 2013, 113, 430–433. [CrossRef]
11. Knuth, D. The Art of Computer Programming, Seminumerical Algorithms; Addison-Wesley: Boston, MA, USA, 1997; Volume 2.
12. Mareš, M.; Straka, M. Linear-time ranking of permutations. In Proceedings of the Algorithms–ESA 2007: 15th Annual European

Symposium, Eilat, Israel, 8–10 October 2007; pp. 187–193.
13. Chhabra, T.; Tarhio, J. A filtration method for order-preserving matching. Inf. Process. Lett. 2016, 116, 71–74. [CrossRef]
14. Williamson, S. Daily Closing Values of the DJA in the United States, 1885 to Present, Measuring Worth. Available online:

https://www.measuringworth.com/datasets/DJA/index.php (accessed on 17 December 2021).
15. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.;

Stanley, H.E. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, e215–e220. Available online: http://circ.ahajournals.org/content/101/23/e215 (accessed on 20 September
2022). [CrossRef] [PubMed]

16. Park, S.; Kim, Y.; Sim, J.S. Comparison of order-isomophism verification times of two strings according to their representations.
In Proceedings of the Korean Institute of Next Generation Computing Spring Conference; Gwangju, Republic of Korea, 1–13 May
2021; Korean Institute of Next Generation Computing: Seoul, Republic of Korea, 2021; pp. 350–353.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

