
Efficient Algorithms for the Order Preserving
Pattern Matching Problem

Simone Faro1(B) and M. Oğuzhan Külekci2

1 Department of Mathematics and Computer Science,
Università di Catania, Catania, Italy

faro@dmi.unict.it
2 Informatics Institute, Istanbul Technical University, Istanbul, Turkey

kulekci@itu.edu.tr

Abstract. Given a pattern x of length m and a text y of length n, both
over an ordered alphabet, the order-preserving pattern matching problem
consists in finding all substrings of the text with the same relative order
as the pattern. The OPPM, which might be viewed as an approximate
variant of the well known exact pattern matching problem, has gained
attention in recent years. This interesting problem finds applications in a
lot of fields as from time series analysis, like share prices on stock markets
or weather data analysis, to musical melody matching. In this paper we
present two new filtering approaches which turn out to be much more
effective in practice than the previously presented methods by reducing
the number of false positives up to 99 %. From our experimental results
it turns out that our proposed solutions are up to 2 times faster than the
previous solutions.

Keywords: Approximate text analysis · Experimental algorithms ·
Filtering algorithms · Text processing

1 Introduction

Given a pattern x of length m and a text y of length n, both over a common
alphabet Σ, the exact string matching problem consists in finding all occurrences
of the string x in y. The order-preserving pattern matching problem [2,3,8,9]
(OPPM in short) is an approximate variant of the exact pattern matching prob-
lem which has gained attention in recent years. In this variant the characters
of x and y are drawn from an ordered alphabet Σ with a total order relation
defined on it. The task of the problem is to find all substrings of the text with
the same relative order as the pattern.

For instance the relative order of the sequence x = 〈6, 5, 8, 4, 7〉 is the sequence
〈3, 1, 0, 4, 2〉 since 6 has rank 3, 5 as rank 1, and so on. Thus x occurs in the string
y = 〈8, 11, 10, 16, 15, 20, 13, 17, 14, 18, 20, 18, 25, 17, 20, 25, 26〉 at position 3, since
x and the subsequence 〈16, 15, 20, 13, 17〉 share the same relative order. An other
occurrence of x in y is at position 10 (see Fig. 1).

A preliminary version of this paper appeared in a technical report [8].

c© Springer International Publishing Switzerland 2016
R. Dondi et al. (Eds.): AAIM 2016, LNCS 9778, pp. 185–196, 2016.
DOI: 10.1007/978-3-319-41168-2 16

186 S. Faro and M.O. Külekci

y = 8 11 10 16 15 20 13 17 14 18 20 18 25 17 24 25 26

x = 6 5 8 4 7

Fig. 1. Example of a pattern x of length 5 over an integer alphabet with two order
preserving occurrences in a text y of length 17, at positions 3 and 10.

The OPPM problem finds applications in the fields where we are interested
in finding patterns affected by relative orders, not by their absolute values. For
example, it can be applied to time series analysis like share prices on stock
markets, weather data or to musical melody matching of two musical scores.

In the last few years some solutions have been proposed for the order-
preserving pattern matching problem. The first solution was presented by Kubica
et al. [12] in 2013. They proposed a O(n+m log m) solution over generic ordered
alphabets based on the Knuth-Morris-Pratt algorithm [11] and a O(n+m) solu-
tion in the case of integer alphabets. Some months later Kim et al. [10] pre-
sented a similar solution running in O(n + m log m) time based on the KMP
approach. Although Kim et al. stressed some doubts about the applicability of
the Boyer-Moore approach [2] to order-preserving matching problem, in 2013
Cho et al. [7] presented a method for deciding the order-isomorphism between
two sequences showing that the Boyer-Moore approach can be applied also to
the order-preserving variant of the pattern matching problem. In addition in [1]
the authors showed that the Aho-Corasik approach can be applied to the OPPM
problem for searching a set of patterns.

Chhabra and Tarhio in 2014 presented a new practical solution [5,6] based on
filtration. Their algorithm translates the input sequences in two binary sequences
and then use any standard exact pattern matching algorithm as a filtration
procedure. In particular in their approach a sequence s is translated in a binary
sequence β of length |s| − 1 according to the following position

β[i] =
{

1 if s[i] ≥ s[i + 1]
0 otherwise (1)

for each 0 ≤ i < |s|−1. This translation is unique for a given sequence s and can
be performed on line on the text, requiring constant time for each text character.

Thus when a candidate occurrence is found during the filtration phase
an additional verification procedure is run in order to check for the order-
isomorphism of the candidate substring and the pattern. Despite its quadratic
time complexity, this approach turns out to be simpler and more effective in
practice than earlier solutions. It is important to notice that any algorithm for
exact string matching can be used as a filtration method. The authors also proved

Efficient Algorithms for the Order Preserving Pattern Matching Problem 187

that if the underlying filtration algorithm is sublinear and the text is translated
on line, the complexity of the algorithm is sublinear on average. Experiments
conducted in [5] show that the approach is faster than the algorithm by Cho et al.

In 2015 other efficient filtration algorithms have been presented. Specifically,
in [3] the authors presented an efficient solution which combines the Skip-Search
approach for searching and a multiple hash function technique for reducing the
number of false positives during each bucket inspection. Additionally, in [4] the
authors proposed two filtration online solutions based on SSE and AVX instruc-
tions, respectively. It turns out from experimental results conducted in [3] and
in [4] that such solutions are faster than the previous algorithms in most cases.

In this paper we present two new families of filtering approaches which turn
out to be much more effective in practice than the previously presented methods.
While the technique proposed by Chhabra and Tarhio translates the input strings
in binary sequences, our methods work on sequences over larger alphabets in
order to speed up the searching process and reduce the number of false positives.
From our experimental results it turns out that our proposed solutions are up to
2 times faster than the previous solutions reducing the number of false positives
up to 99 % under suitable conditions.

The paper is organized as follows. In Sect. 2 we give preliminary notions and
definitions relative to the order-preserving pattern matching problem. Then we
present our new solutions in Sect. 3 and evaluate their performances against the
previous algorithms in Sect. 4.

2 Notions and Basic Definitions

A string x over an ordered alphabet Σ, of size σ, is defined as a sequence of
elements in Σ. We shall assume that a total order relation “≤” is defined on it.

By |x| we denote the length of a string x. We refer to the i-th element in
x as x[i] and use the notation x[i .. j] to denote the subsequence of x from the
element at position i to the element at position j (including the extremes), where
0 ≤ i ≤ j < |x|. We say that two (nonnull) sequences x, y over Σ are order-
isomorphic if the relative order of their elements is the same. More formally:

Definition 1 (Order-isomorphism). Two nonnull sequences x, y of the same
length, over a totally ordered alphabet (Σ,≤), are said to be order-isomorphic,
and we write x ≈ y, if the following condition holds

x[i] ≤ x[j] ⇐⇒ y[i] ≤ y[j], for 0 ≤ i, j < |x|.
From a computational point of view, it is convenient to characterize the order

of a sequence by means of two functions: the rank and the equality functions.

Definition 2 (Rank function). Let x be a nonnull sequence over a totally
ordered alphabet (Σ,≤). The rank function of x is the bijection from
{0, 1, . . . , |x| − 1} onto itself defined, for 0 ≤ i < |x|, by

rkx(i) =
∣∣{k : x[k] < x[i] or (x[k] = x[i] and k < i)}∣∣.

The following property is a trivial consequence of the Definition 2.

188 S. Faro and M.O. Külekci

Corollary 1. Let x be a non-null sequence drawn over a totally ordered alphabet
(Σ,≤). Then we have x[rk−1

x (i)] ≤ x[rk−1
x (i + 1)], for 0 ≤ i < |x| − 1. �

Given any non-null sequence x, we shall refer to the corresponding non-null
sequence 〈rk−1

x (0), rk−1
x (1), . . . , rk−1

x (|x| − 1)〉 as the relative order of x (see
Example 1). From Corollary 1, it follows that the relative order of x can be
computed in time proportional to the time required to (stably) sort x.

The rank function alone allows one to characterize order-isomorphic
sequences only when characters are pairwise distinct. To handle the more general
case in which multiple occurrences of the same character are permitted, we also
need the equality function, which is defined next.

Definition 3 (Equality function). Let x be a sequence of length m ≥ 2 over
a totally ordered alphabet (Σ,≤). The equality function of x is the binary map
eqx : {0, 1, . . . ,m − 2} → {0, 1} where, for 0 ≤ i ≤ m − 2,

eqx(i) =
{

1 if x[rk−1
x (i)] = x[rk−1

x (i + 1)]
0 otherwise.

Lemma 1. For any two sequences x and y of the same length m ≥ 2, over a
totally ordered alphabet, x ≈ y if and only if rkx = rky and eqx = eqy. �
Example 1. Let x = 〈6, 3, 8, 3, 10, 7, 10〉, y = 〈2, 1, 4, 1, 5, 3, 5〉, and let also
z = 〈6, 3, 8, 4, 9, 7, 10〉. They have the same rank function 〈2, 0, 4, 1, 5, 3, 6〉 and,
therefore, the same relative order 〈1, 3, 0, 5, 2, 4, 6〉. However, x and y are order-
isomorphic, whereas x and z (as well as y and z) are not. Notice that we have
eqx = eqy = 〈1, 0, 0, 0, 0, 1〉 and eqz = 〈0, 0, 0, 0, 0, 0〉.

Thus in order to establish whether two given sequences of the same length m
are order-isomorphic, it is enough to compute their rank and equality functions.
The cost of the test is dominated by the cost O(m log m) of sorting the sequences.

Lemma 2. Let x and y be two sequences of the same length m ≥ 2, over a
totally ordered alphabet. Then x ≈ y if and only if the following conditions hold:

(i) y[rk−1
x (i)] ≤ y[rk−1

x (i + 1)], for 0 ≤ i < m − 1
(ii) y[rk−1

x (i)] = y[rk−1
x (i + 1)] if and only if eqx(i) = 1, for 0 ≤ i < m − 1. �

Based on Lemma 2, the procedure Order-Isomorphic verifies correctly
whether a sequence y is order-isomorphic to a sequence x of the same length
as y. It receives as input the functions rkx and eqx and the sequence y, and
returns true if x ≈ y, false otherwise. A mismatch occurs when one of the three
conditions of lines 2, 3, or 4 holds. Notice that the time complexity of the pro-
cedure Order-Isomorphic is linear in the size of its input sequence y.

Definition 4 (Order-preserving pattern matching). Let x and y be two
sequences of length m and n, respectively, with n > m, both over an ordered
alphabet (Σ,≤). The order-preserving pattern matching problem consists in
finding all positions i, with 0 ≤ i ≤ n − m, such that y[i .. i + m − 1] ≈ x.

If y[i .. i + m − 1] ≈ x, we say that x has an order-preserving occurrence in y
at position i.

Efficient Algorithms for the Order Preserving Pattern Matching Problem 189

3 New Efficient Filter Based Algorithms

In this section we present two new general approaches for the OPPM problem.
Both of them are based on a filtration technique, as in [5], but we use information
extracted from groups of integers in the input string, as in [7], in order to make
the filtration phase more effective in terms of efficiency and accuracy.

In our approaches we make use of the following definition of q-neighborhood
of an element in an integer string.

Definition 5 (q-neighborhood). Given a string x of length m, we define the
q-neighborhood of the element x[i], with 0 ≤ i < m − q, as the sequence of q + 1
elements from position i to i+q in x, i.e. the sequence 〈x[i], x[i+1], . . . , x[i+q]〉.

The accuracy of a filtration method is a value indicating how many false
positives are detected during the filtration phase, i.e. the number of candidate
occurrences detected by the filtration algorithm which are not real occurrences
of the pattern. The efficiency is instead related with the time complexity of the
procedure we use for managing grams and with the time efficiency of the overall
searching algorithm.

When using q-grams, a great accuracy translates in involving greater values
of q. However, in this context, the value of q represents a trade-off between
the computational time required for computing the q-grams for each window of
the text and the computational time needed for checking false positive candidate
occurrences. The larger is the value of q, the more time is needed to compute
each q-gram. On the other hand, the larger is the value of q, the smaller is the
number of false positives the algorithm finds along the text during the filtration.

3.1 The Neighborhood Ranking Approach

Given a string x of length m, we can compute the relative position of the ele-
ment x[i] compared with the element x[j] by querying the inequality x[i] ≥ x[j].
For brevity we will write in symbol βx(i, j) to indicate the boolean value result-
ing from the above inequality, extending the formal definition given in Eq. (1).
Formally we have

βx(i, j) =
{

1 if x[i] ≥ x[j]
0 otherwise (2)

It is easy to observe that if βx(i, j) = 1 we have that rk−1
x (i) ≥ rk−1

x (j) (x[j]
precedes x[i] in the ordering of the elements of x), otherwise rk−1

x (i) < rk−1
x (j).

The neighborhood ranking (nr) approach associates each position i of the
string x (where 0 ≤ i < m − q) with the sequence of the relative positions
between x[i] and x[i+ j], for j = 1, . . . , q. In other words we compute the binary
sequence 〈βx(i, i+1), βx(i, i+2), . . . , βx(i, i+q)〉 of length q indicating the relative
positions of the element x[i] compared with other values in its q-neighborhood.
Of course, we do not include in the sequence the relative position of β(i, i), since
it doesn’t give any additional information.

190 S. Faro and M.O. Külekci

Neighborhood Ranking Example nr seq. χ3
x[i]

x[i] ≤ x[i + 1], x[i + 2], x[i + 3] 〈0, 0, 0〉 0

x[i + 3] ≤ x[i] ≤ x[i + 1], x[i + 2] 〈0, 0, 1〉 1

x[i + 2] ≤ x[i] ≤ x[i + 1], x[i + 3] 〈0, 1, 0〉 2

x[i + 2], x[i + 3] ≤ x[i] ≤ x[i + 1] 〈0, 1, 1〉 3

x[i + 1] ≤ x[i] ≤ x[i + 2], x[i + 3] 〈1, 0, 0〉 4

x[i + 1], x[i + 3] ≤ x[i] ≤ x[i + 2] 〈1, 0, 1〉 5

x[i + 1], x[i + 2] ≤ x[i] ≤ x[i + 3] 〈1, 1, 0〉 6

x[i + 1], x[i + 2], x[i + 3] ≤ x[i] 〈1, 1, 1〉 7

Fig. 2. The 23 possible 3-neighborhood ranking sequences associated with element x[i],
and their corresponding nr value. In the leftmost column we show the ranking position
of x[i] compared with other elements in its neighborhood 〈x[i], x[i+1], x[i+2], x[i+3]〉.

Since there are 2q possible configurations of a binary sequence of length q
the string x is converted in a sequence χq

x of length m − q, where each element
χq
x[i], for 0 ≤ i < m − q, is a value such that 0 ≤ χq

x[i] < 2q (Fig. 2).
More formally we have the following definition

Definition 6 (q-NR sequence). Given a string x of length m and an integer
q < m, the q-nr sequence associated with x is a numeric sequence χq

x of length
m − q over the alphabet {0, . . . , 2q} where

χq
x[i] =

q∑
j=1

(
βx(i, i + j) × 2q−j

)
, for all 0 ≤ i < m − q

Example 2. Let x = 〈5, 6, 3, 8, 10, 7, 1, 9, 10, 8〉 be a sequence of length 10. The
4-neighborhood of the element x[2] is the subsequence 〈3, 8, 10, 7, 1〉. Observe
that x[2] is greater than x[6] and less than all other values in its 4-neighborhood.
Thus the ranking sequence associated with the element of position 2 is 〈0, 0, 0, 1〉
which translates in a nr value equal to 1. In a similar way we can observe
that the nr sequence associated with the element of position 3 is 〈0, 1, 1, 0〉
which translates in a nr value equal to 6. The whole 4-nr sequence of length 6
associated to x is χ4

x = 〈4, 8, 1, 6, 15, 8〉.
The following Lemma 3 and Corollary 2 prove that the nr approach can be

used to filter a text y in order to search for all order preserving occurrences of a
pattern x, i.e. {i | x ≈ y[i . . . i + m − 1]} ⊆ {i | χq

x = χq
y[i . . . i + m − k]}.

Lemma 3. Let x and y be two sequences of length m and let χq
x and χq

y the
q-ranking sequences associated to x and y, respectively. If x ≈ y then χq

x = χq
y.

Efficient Algorithms for the Order Preserving Pattern Matching Problem 191

Proof. Let rk be the rank function associated to x and suppose by hypothesis
that x ≈ y. Then the following statements hold

1. by Definition 2 we have x[rk−1
x (i)] ≤ x[rk−1

x (i + 1)], for 0 ≤ i < m − 1;
2. by hypothesis and Definition 1, y[rk−1

x (i)] ≤ y[rk−1
x (i + 1)], for

0 ≤ i < m − 1;
3. then by 1 and 2, x[i] ≤ x[j] iff y[i] ≤ y[j], for 0 ≤ i, j < m − 1;
4. the previous statement implies that x[i] ≥ x[i + j] iff y[i] ≥ y[i + j]

for 0 ≤ i < m − q and 1 ≤ j < q;
5. by statement 4 we have that βx(i, i + j) = βy(i, j + j)

for 0 ≤ i < m − q and 1 ≤ j < q;
6. finally, by statement 5 and Definition 6, χq

x[i] = χq
y[i], for 0 ≤ i < m − q.

This last statement proves the thesis. �

The following corollary proves that the nr approach can be used as a filtering.
It trivially follows from Lemma3.

Corollary 2. Let x and y be two sequences of length m and n, respectively.
Let χq

x and χq
y the q-ranking sequences associated to x and y, respectively. If

x ≈ y[j . . . j + m − 1] then χq
x[i] = χq

y[j + i], for 0 ≤ i < m − q. �

Figure 4 (on the left) shows the procedure for computing the nr value asso-
ciated with the element of the string x at position i. The time complexity of the
procedure is O(q). Thus, given a pattern x of length m, a text y of length n and
an integer value q < m, we can solve the OPPM problem by searching χq

y for all
occurrences of χq

x, using any algorithm for the exact string matching problem.
During the preprocessing phase we compute the sequence χq

x and the functions
rkx and eqx. When an occurrence of χq

x is found at position i the verification
procedure Order-Isomorphic(inv-rk, eq, y[i . . . i + m − 1]) (shown in Fig. 3) is
run in order to check if x ≈ y[i . . . i + m − 1].

Since in the worst case the algorithm finds a candidate occurrence at each
text position and each verification costs O(m), the worst case time complexity
of the algorithm is O(nm), while the filtration phase can be performed with a
O(nq) worst case time complexity. However, following the same analysis of [5], we
easily prove that verification time approaches zero when the length of the pattern
grows, so that the filtration time dominates. Thus if the filtration algorithm is
sublinear, the total algorithm is sublinear.

3.2 The Neighborhood Ordering Approach

The neighborhood ranking approach described in the previous subsection gives
partial information about the relative ordering of the elements in the neighbor-
hood of an element in x. The binary sequence used to represent each element x[i]
is not enough to describe the full ordering information of a set of q +1 elements.

The q-neighborhood ordering (no) approach, which we describe in this
section, associates each element of x with a binary sequence which completely

192 S. Faro and M.O. Külekci

describes the ordering disposition of the elements in the q-neighborhood of x[i].
The number of comparisons we need to order a sequence of q + 1 elements is
between q (the best case) and q(q + 1)/2 (the worst case). In this latter case
it is enough to compare the element x[j], where i ≤ j < i + q, with each ele-
ment x[h], where j < h ≤ i + q. Thus each element of position i in x, with
0 ≤ i < m − q, is associated with a binary sequence of length q(q + 1)/2 which
completely describes the relative order of the subsequence x[i, . . . , i + q]. Since
there are (q +1)! possible permutations of a set of q +1 elements, the string x is
converted in a sequence ϕq

x of length m − q, where each element ϕq
x[i] is a value

such that 0 ≤ ϕq
x[i] < q(q +1)/2. More formally we have the following definition

Definition 7 (q-NO sequence). Given a string x of length m and an integer
q < m, the q-no sequence associated with x is a numeric sequence ϕq

x of length
m − q over the alphabet {0, . . . , q(q + 1)/2} where

ϕq
x[i] =

q∑
k=1

(
χk
x[i + q − k] × 2(k)(k−1)/2

)
, for all 0 ≤ i < m − q (3)

Thus the q-no value associated to x[i] is the combination of q different nr
sequences χq

x[i], χq−1
x [i + 1], . . . , χ1

x[i + q − 1].
For instance the 4-no value associated to x[i] is computed as

ϕ4
x[i] = χ4

x[i] × 26 + χ3
x[i + 1] × 22 + χ2

x[i + 2] × 2 + χ1
x[i + 3]

Neighborhood Ordering Example NO seq. ϕ4
x[i]

〈x[i], x[i + 1], x[i + 2]〉 〈0, 0, 0〉 0

〈x[i], x[i + 2], x[i + 1]〉 〈0, 0, 1〉 1

〈x[i + 2], x[i], x[i + 1]〉 〈0, 1, 1〉 3

〈x[i + 1], x[i], x[i + 2]〉 〈1, 0, 0〉 4

〈x[i + 1], x[i + 2], x[i]〉 〈1, 1, 0〉 6

〈x[i + 2], x[i + 1], x[i]〉 〈1, 1, 1〉 7

Fig. 3. The 3! possible ordering of the sequence 〈x[i], x[i + 1], x[i + 2]〉 and the corre-
sponding binary sequence 〈βx(i, i + 1), βx(i, i + 2), βx(i + 1, i + 2)〉.

Example 3. As in Example 2, let x = 〈5, 6, 3, 8, 10, 7, 1, 9, 10, 8〉 be a sequence of
length 10. The 3-neighborhood of the element x[3] is the subsequence 〈8, 10, 7, 1〉.
The no sequence of length 6 associated with the element of position 2 is therefore
〈0, 1, 1, 1, 1, 1〉 which translates in a no value equal to ϕx[3] = 31. In a similar
way we can observe that the nr sequence associated with the element of position
2 is 〈0, 0, 0, 0, 1, 1〉 which translates in a no value equal to ϕ4

x[2] = 3. The whole
sequence of length 7 associated to x is ϕ4

x = 〈20, 32, 3, 31, 60, 32, 3〉.

Efficient Algorithms for the Order Preserving Pattern Matching Problem 193

Compute-NR-Value(x, i, q)
1. δ ← 0
2. for j ← 1 to q do
3. δ = (δ � 1) + βx(i, i + j)
4. return δ

Compute-NO-Value(x, i, q)
5. δ ← 0
6. for k ← q downto 1 do
7. for j ← 1 to k do
8. δ = (δ � 1) + βx(i + q − k, i + q − k + j)
9. return δ

Fig. 4. The two functions which compute the q-neighborhood ranking value (on the
left) and the q-neighborhood ranking value (on the right).

The following Lemma 4 and Corollary 3 prove that the no approach can be
used to filter a text y in order to search for all order preserving occurrences of a
pattern x. In other words they prove that {i | x ≈ y[i . . . i + m − 1]} ⊆ {i | ϕq

x =
ϕq
y[i . . . i + m − k]}. The proof easily follows from Definition 7 and Lemma 3.

Lemma 4. Let x and y be two sequences of length m and let ϕq
x and ϕq

y the
q-ranking sequences associated to x and y, respectively. If x ≈ y then ϕq

x = ϕq
y.

The following corollary proves that the nr approach can be used as a filtering.
It trivially follows from Lemma4.

Corollary 3. Let x and y be two sequences of length m and n, respectively.
Let χq

x and χq
y the q-ranking sequences associated to x and y, respectively. If

x ≈ y[j . . . j + m − 1] then χq
x[i] = χq

y[j + i], for 0 ≤ i < m − q. �

Figure 4 (on the right) shows the procedure used for computing the no value
associated with the element of the string x at position i. The time complexity of
the procedure is O(q2). Thus, given a pattern x of length m, a text y of length
n and an integer value q < m, we can solve the OPPM problem by searching
ϕq
y for all occurrences of ϕq

x, using any algorithm for the exact string matching
problem. During the preprocessing phase we compute the sequence ϕq

x and the
functions rkx and eqx. When an occurrence of ϕq

x is found at position i the
verification procedure Oder-Isomorphic(inv-rk, eq, y[i . . . i + m − 1]) is run in
order to check if x ≈ y[i . . . i+m−1]. Also in this case, if the filtration algorithm
is sublinear on average, the no approach has a sublinear behavior on average.

4 Experimental Evaluations

In this section we present experimental results in order to evaluate the perfor-
mances of our new filter based algorithms presented in this paper. In particular
we tested our filter approaches against three algorithms: the filter approach of
Chhabra and Tarhio [5]; the SkSop(k, q) algorithm [3], using k hash functions
and q-grams. We implemented it using 1 ≤ k ≤ 5 and 3 ≤ q ≤ 8; the algorithm
based on SSE instructions presented in [4].

According to the experimental evaluations conducted in [5] and in [4] in our
experimental evaluation we use in all cases the sbndm2 algorithm [9]. In our

194 S. Faro and M.O. Külekci

dataset we use the following names to identify the tested algorithms: Fct to
identify the sbndm2 based algorithm by Chhabra and Jorma Tarhio [5]; Nrq to
identify the sbndm2 algorithm based on the nr approach (Sect. 3.1); and Noq:
to identify the sbndm2 algorithm based on the no approach (Sect. 3.2).

We evaluated our filter based solutions in terms of efficiency, i.e. the running
times. In particular for the Fct algorithm we will report the average running
times, in milliseconds. Instead, for all other algorithms in the set, we will report
the speed up of the running times obtained when compared with the time used
by the Fct algorithm. In the case of the SkSop(k, q) algorithm we reported only
the best speed-up among all different implementations, indicating in brackets
the best values of k and q.

We tested our solutions on sequences of short integer values (each element is
an integer in the range [0 . . . 256]), long integer values (where each element is an
integer in the range [0 . . . 10.000]) and floating point values (each element is a
floating point in the range [0.0 . . . 10000.99]). However we don’t observe sensible
differences in the results, thus in the following tables we report for brevity the
results obtained on short integer sequences. All texts have 1 million of elements.
In particular we tested our algorithm on two sequences: a Rand-δ sequence of
random integer values varying around a fixed mean equal to 100 with a variability
of δ; a Period-δ sequence of random integer values varying around a periodic
function with a period of 10 elements with a variability of δ.

Table 1. Experimental results on a Rand-δ short integer sequence.

δ m Fct SkSop SSE Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 44.29 1.27(5,4) 1.45 1.16 1.28 1.25 1.25 1.24 1.89 1.71 1.11
12 28.39 1.37(4,5) 1.38 1.16 1.37 1.37 1.33 1.19 1.64 2.00 1.64
16 20.65 1.52(4,5) 1.23 1.15 1.30 1.43 1.34 1.14 1.42 2.01 1.83

5 20 16.29 1.58(4,5) 1.12 1.15 1.30 1.45 1.41 1.14 1.39 2.00 1.93
24 13.64 1.63(5,4) 1.05 1.16 1.29 1.42 1.44 1.12 1.34 1.91 2.01
28 11.48 1.62(5,4) 0.99 1.16 1.28 1.44 1.45 1.11 1.31 1.88 1.96
32 10.34 1.60(5,4) 0.83 1.18 1.30 1.40 1.46 1.12 1.30 1.83 2.05

8 42.34 1.22(3,4) 1.68 1.13 1.27 1.25 1.26 1.22 1.92 1.68 1.08
12 27.93 1.40(4,5) 1.44 1.17 1.40 1.37 1.32 1.21 1.71 2.04 1.63
16 20.05 1.46(4,5) 1.32 1.15 1.32 1.41 1.33 1.15 1.48 2.04 1.81

20 20 15.85 1.51(4,5) 1.21 1.15 1.29 1.42 1.37 1.11 1.38 2.00 1.90
24 13.31 1.55(5,6) 1.12 1.17 1.31 1.47 1.42 1.12 1.36 1.99 2.02
28 11.38 1.58(5,6) 1.01 1.17 1.31 1.42 1.45 1.09 1.35 1.94 2.07
32 9.96 1.58(3,7) 0.97 1.16 1.29 1.45 1.46 1.09 1.29 1.87 2.09

8 42.62 1.19(3,4) 1.91 1.16 1.28 1.28 1.25 1.25 1.94 1.70 1.09
12 28.35 1.39(4,5) 1.82 1.19 1.41 1.39 1.36 1.21 1.75 2.06 1.65
16 20.37 1.43(4,5) 1.63 1.18 1.32 1.44 1.37 1.17 1.49 2.09 1.83

40 20 16.12 1.52(5,6) 1.45 1.15 1.29 1.46 1.39 1.12 1.39 2.04 1.95
24 13.35 1.57(5,6) 1.21 1.18 1.30 1.46 1.44 1.13 1.36 1.97 1.99
28 11.60 1.57(5,6) 1.17 1.18 1.32 1.47 1.50 1.14 1.37 1.96 2.06
32 10.06 1.58(5,7) 0.99 1.16 1.29 1.45 1.48 1.10 1.33 1.89 2.07

For each text in the set we randomly select 100 patterns extracted from the
text and compute the average running time over the 100 runs. We also computed

Efficient Algorithms for the Order Preserving Pattern Matching Problem 195

the average number of false positives detected by the algorithms during the
search. All the algorithms have been implemented using the C programming
language and have been compiled on an MacBook Pro using the gcc compiler
Apple LLVM version 5.1 (based on LLVM 3.4svn) with 8 Gb Ram. During the
compilation we use the -O3 optimization option. In the following table running
times are expressed in milliseconds. Best results have been underlined.

Experimental results on Rand-δ numeric sequences have been conducted
with values of δ = 5, 20, and 40 (see Table 1). The results show as the No
approach is the best choice in all cases, achieving a speed up of 2.0 if compared
with the Fct algorithm. Also the Nr approach achieves always a good speed
up which is between 1.15 and 1.50. In addition we can observe that in all cases
the best speed-up achieved by the new algorithms are greater then that achieved
by the SkSop and SSE algorithms. For the sake of completeness we report also
that the gain in number of detected false positives in most cases between 90%
and 100%.

Table 2. Experimental results on a Period-δ short integer sequence.

δ m Fct SkSop SSE Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 41.08 0.83(3,4) 1.10 0.99 1.05 0.88 0.79 0.90 0.88 0.73 0.60
12 36.42 0.88(4,6) 1.03 1.06 1.02 0.94 0.86 0.91 0.81 0.67 0.69
16 34.03 0.90(4,6) 0.97 1.04 0.86 0.78 0.74 1.00 0.77 0.64 0.60

5 20 35.31 0.97(4,7) 0.90 0.98 0.89 0.88 0.84 0.92 0.73 0.60 0.55
24 37.90 1.05(4,7) 0.82 1.34 1.33 1.30 1.18 1.15 0.99 0.82 0.76
28 36.26 1.11(4,7) 0.75 1.17 1.09 1.10 1.04 0.97 0.78 0.64 0.56
32 35.38 1.16(4,8) 0.69 1.10 1.15 1.05 0.95 0.94 0.82 0.65 0.59

8 42.35 0.93(3,4) 1.12 0.98 1.18 0.91 0.81 0.89 1.02 0.83 0.68
12 39.09 0.97(4,5) 1.05 1.11 1.14 1.06 0.98 1.00 1.02 0.88 0.93
16 34.25 1.05(4,6) 1.01 1.11 1.01 1.02 1.01 1.08 0.96 0.87 0.87

20 20 35.41 1.11(4,6) 0.96 1.10 1.09 1.21 1.21 1.07 0.97 0.89 0.89
24 35.15 1.18(3,7) 0.89 1.31 1.51 1.67 1.60 1.14 1.15 1.10 1.18
28 32.23 1.24(3,7) 0.81 1.23 1.40 1.56 1.36 1.07 1.04 1.08 1.15
32 30.34 1.36(3,7) 0.75 1.43 1.60 1.53 1.43 1.22 1.19 1.11 1.07

8 45.07 1.10(3,4) 1.15 0.93 1.18 0.94 0.81 0.89 1.12 0.91 0.78
12 37.91 1.14(4,5) 1.08 1.08 1.12 1.03 0.93 1.03 1.13 1.03 1.08
16 32.41 1.19(4,5) 1.04 1.11 1.04 1.06 1.13 1.07 1.07 1.02 1.10

40 20 28.63 1.22(4,6) 1.00 1.05 1.09 1.24 1.35 1.08 1.04 1.04 1.15
24 27.25 1.28(4,6) 0.97 1.18 1.39 1.59 1.53 1.10 1.12 1.14 1.40
28 24.91 1.32(4,6) 0.95 1.20 1.51 1.67 1.41 1.05 1.17 1.30 1.50
32 23.63 1.38(4,6) 0.91 1.39 1.63 1.55 1.31 1.20 1.27 1.41 1.41

Experimental results on Period-δ problem have been conducted on a peri-
odic sequence with a period equal to 10 and with δ = 5, 20 and 40 (see Table 2).
The results show as the Nr approach is the best choice in most of the cases,
achieving a speed up of 1.3 in suitable conditions. However in some cases the
Fct algorithm turns out to be the best choice especially on short patterns. The
No approach is always less efficient of the Fct algorithm. When the size of δ
increases the performances of the No approach get better achieving a speed up

196 S. Faro and M.O. Külekci

of 1.4 in the best cases. However the nr approach turns out to be always the
best solutions with a speed up close to 1.7 for long patterns. Also in these cases
the best speed-up achieved by the new algorithms are greater then that achieved
by the SkSop and SSE algorithms.

References

1. Belazzougui, D., Pierrot, A., Raffinot, M., Vialette, S.: Single and multiple con-
secutive permutation motif search. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
Algorithms and Computation. LNCS, vol. 8283, pp. 66–77. Springer, Heidelberg
(2013)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

3. Cantone, D., Faro, S., Külekci, M.O.: An efficient skip-search approach to the
order-preserving pattern matching problem. In: Holub and Zdárek [10], pp. 22–35

4. Chhabra, T., Külekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving
matching. In: Holub and Zdárek [10], pp. 36–46

5. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 307–314.
Springer, Heidelberg (2014)

6. Chhabra, T., Tarhio, J.: A filtration method for order-preserving matching. Inf.
Process. Lett. 116(2), 71–74 (2016)

7. Cho, S., Na, J.C., Park, K., Sim, J.S.: Fast order-preserving pattern matching. In:
Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 295–305.
Springer, Heidelberg (2013)

8. Faro, S., Külekci, M.O.: Efficient algorithms for the order preserving pattern match-
ing problem. CoRR abs/1501.04001 (2015). http://arxiv.org/abs/1501.04001

9. Holub, J., Durian, B.: Talk: fast variants of bit parallel approach to suffix automata.
In: International Stringology Research Workshop (2005). http://www.cri.haifa.ac.
il/events/2005/string/presentations/Holub.pdf

10. Kim, J., Eades, P., Fleischer, R., Hong, S., Iliopoulos, C.S., Park, K., Puglisi, S.J.,
Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014)

11. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(1), 323–350 (1977)

12. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

http://arxiv.org/abs/1501.04001
http://www.cri.haifa.ac.il/events/2005/string/presentations/Holub.pdf
http://www.cri.haifa.ac.il/events/2005/string/presentations/Holub.pdf

	Efficient Algorithms for the Order Preserving Pattern Matching Problem
	1 Introduction
	2 Notions and Basic Definitions
	3 New Efficient Filter Based Algorithms
	3.1 The Neighborhood Ranking Approach
	3.2 The Neighborhood Ordering Approach

	4 Experimental Evaluations
	References

