Journal of Discrete Algorithms 17 (2012) 67-73

Contents lists available at SciVerse ScienceDirect “ JouRNAL OF
ALGOmTHMS

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

The substring inclusion constraint longest common subsequence problem
can be solved in quadratic time ™

Muhammad Rashed Alam, M. Sohel Rahman *:!

ACEDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh

ARTICLE INFO ABSTRACT
Artif{e history: In this paper, we study some variants of the Constrained Longest Common Subsequence
Received 11 November 2011 (CLCS) problem, namely, the substring inclusion CLCS (Substring-IC-CLCS) problem and a

Received in revised form 16 October 2012
Accepted 30 November 2012
Available online 6 December 2012

generalized version thereof. In the Substring-IC-CLCS problem, we are to find a longest
common subsequence (LCS) of two given strings containing a third constraint string
(given) as a substring. Previous solution to this problem runs in cubic time, i.e, O (nmk)

Keywords: time, where n,m and k are the length of the 3 input strings. In this paper, we present
Algorithms simple O (nm) time algorithms to solve the Substring-IC-CLCS problem. We also study the
Longest common subsequence Generalized Substring-IC-LCS problem where we are given two strings of length n and m
Dynamic programming respectively and an ordered list of p strings and the goal is to find an LCS containing

each of them as a substring in the order they appear in the list. We present an O (nmp)
algorithm for this generalized version of the problem.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is one of the classic and well-studied problems in computer science
with extensive practical applications. The constraint LCS (CLCS) problem, where the computed LCS must contain a given third
string as a subsequence, was introduced by Tsai [6] and later studied by a number of researchers [5,2,1,3]. This problem finds
motivation from bioinformatics. Chen and Chao [2] recently introduced and studied several variants of the CLCS problem.
In this paper, we are interested in one of the variants proposed in [2], where, given two strings X =x1,X2,...,Xn and Y =
¥Y1,¥2, ..., yn and a third constraint string S =sq, s2, ..., Sk, we are to find a longest common subsequence C =c1,¢32,...,C¢
such that S is a substring of C. In what follows, we will be referring to this problem as the Substring-IC-LCS problem. Chen
and Chao [2] presented an O (nmk) algorithm for this problem. We on the other hand present two improved algorithms
both of which run in O (nm) time.

We also study the generalized version of this problem, where we are given two strings X, Y (as before) and an ordered
list of constraint strings S ={S1, S2,..., Sp} (as opposed to a single constraint string) and we are to find a longest common
subsequence C of X and Y containing each of the strings of S as a substring in the sequence they appear in the list.
This problem was also handled by Chen and Chao [2] and they gave an algorithm with O (n? x]_[f_’=l k) time where k; is
the length of the string S, and we assume that n > m. We on the other hand present an O (n®p) algorithm for the same
problem.

* Part of this research work was carried out under the research project titled “Next Generation Algorithms on Sequences” funded by Ministry of Education,
Government of the People’s Republic of Bangladesh.
* Corresponding author.
E-mail addresses: rashed.muhammad@yahoo.com (M.R. Alam), msrahman@cse.buet.ac.bd (M. Sohel Rahman).
1 Partially supported by a Commonwealth Fellowship and an ACU Titular Fellowship.

1570-8667/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jda.2012.11.004

http://dx.doi.org/10.1016/j.jda.2012.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:rashed.muhammad@yahoo.com
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.jda.2012.11.004

68 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73

The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts. Section 3 presents a
simple quadratic time algorithm to solve the Substring-IC-LCS problem. In Section 4, we present our main dynamic pro-
gramming algorithm to solve the same problem. In Section 5, we extend the algorithm of Section 4 to solve the generalized
version of the problem. We briefly conclude in Section 6.

2. Preliminaries

Given a string, X = x1,X2,...,Xm, We use x; to denote the i-th letter in X. We use X;_j, i’ > i to denote the substring
XiXi+1Xit2 ... Xy. On the other hand, Xy _; = Xy, Xy_1,Xy_2,...,X; denotes the reverse string of X; ;, where i’ > i. Given
another string S = s1, S, ..., Sk, we say that S occurs in the substring X; j if and only if X; ; contains the string S as a

“wn

sequence such that x; =s; and xj = s;. We use “.” as the string concatenation operator. For example, we use X.Y to denote
the concatenation of X and Y. The problems we study in this paper are formally defined below.

Problem 1 (Substring-IC-LCS Problem). Suppose we are given two strings X = x1,X2,...,Xn and Y = y{,y2,...,yn and a
constraint string S = s, Sy, ..., Sx. We are to find a longest common subsequence C =cq, Ca, ..., c¢ such that S is a substring
of C.

Problem 2 (Generalized Substring-IC-LCS Problem). Suppose we are given two strings X, Y and a ordered list of constraint
strings S = (S1, S2, ..., Sp). We are to find a longest common subsequence C of X and Y containing each of the strings of
S as a substring in the order it appears in the list.

Example 1. Suppose, X = aatgcctaggce, Y = cgatctggac, and S = gtac. Then, an LCS of X and Y is atctggc. And, given the
constraint string S, a Substring-IC-LCS of X and Y is C = gtac.

Example 2. Suppose, X = fabcfgbda and Y = fabgcfbgda. Now, consider an ordered list of two strings S = (abc, bda).
Then, a generalized Substring-IC-LCS of X and Y, given S is C = fabcfbda. Note that we have C,_ 4 =abc and Cg,_g = bda.

Example 3. Again, suppose X = dabdcfedbgcef and Y = dabcdegfe. Also assume that S = (abc, bce) is an ordered list of
strings. Then, a generalized Substring-IC-LCS will be C = dabcegfe. Clearly, C5. 4 = abc and Cs_5 = bce. Notably, we have
overlapped occurrences of abc and bce in this example.

Given two strings X and Y of length m and n, respectively, for all 1 <i<m, 1< j<n, we use LCS[i, j] to denote
the length of an LCS of X;_; and Y;_;j. On the other hand, RevL(S[i, j] denotes the length of an LCS of X; ,, and Y; j.
Given i < i’ and j < j’, we further use LCS(X; y,Y; j) to denote a longest common subsequence of X; » and Y; and
RevICS(Xy i, Yj.. j) to denote a longest common subsequence of the reverse strings Xy _; and Yj_ ;.

Now, suppose that S occurs in X. Then, we say Sx[i’] =i if and only if S occurs in X;_ j and there exists no i,
i <iy < i’ such that S occurs in X;, y and no iy, i < i <i’ such that S occurs in X; j,. In other words, Sx[i'] keeps track
of the occurrences of S in X that ends at the x; and starts at x; such that no other occurrence of S starts (ends) at x;;, (x;,)
such that i <iy; <i’ (i <iy <1i’). If there is no occurrence of string S ending at Position i’, then we set Sx[i'] =0.

Example 4. Suppose X = DABEABC and S = ABC. Then S occurs in the range X, 7 and Xs5_7. However we have Sx[7] =5
(and not 2).

Now, suppose C is an LCS of X and Y such that S is a substring of C. Then we say that C is a Substring-IC-LCS of X and
Y given a constraint string S. We use StrLCS[i, j] to denote the length of a Substring-IC-LCS of Xy _; and Y containing
the substring S.

To handle the Generalized Substring-IC-LCS Problem, we need to extend some of the above notations and definitions. In
this version of the problem, we are given a constraint ordered list S = (S1, Sz, ..., Sp) instead of a single constraint string
S. For each string S;, 1 <r < p in S, k; denotes the length of string S.. We extend the notion of Sx[i’] when we have a list
S instead of a single constraint pattern S. In particular, we use Sx[r,i’] to denote Sx[i'] for the constraint pattern S, € S.

Given two strings A=aj...q,, and B=Db...b,, we say that A and B overlap when we have A; j, = By for some
1 <i<ky and 1< j <ky. Note that the length of the overlap is k1 —i+ 1= j — 1+ 1. In this case, the merged pattern of the
above two overlapping strings is the string aiaz ...ai@j41...ax,bjy1... by, =a1az...ai—1b1by...bjbj11...by,. In the context
of the merged pattern of A and B above, the substring bj;1...by, is said to be the non-overlapping pattern. Note that, for
this notion the order of A and B is important.

Now, in the list S, we may have overlaps between the consecutive strings S;_1, S, for all 2 <r < p. We use Z; to denote
the merged pattern and NOV; to denote the non-overlapping pattern of strings Sr_1 and S;, we have NOV¢, to denote the
length of NOV,. The example below explains the above notions.

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73 69

Example 5. Assume that S; = ABCD and S; = CDEFG. Then their merged pattern Z, = ABCDEFG, non-overlapping pat-
tern NOV, = EFG, which has length NOV¢, = 3.

Finally, we use NOVx[r,i] to keep track the occurrence of NOV, in X. Notably, since S, contains NOV; as a suffix, Sx[r, i]
is non-zero if, and only if, NOVx[r, i] is non-zero. Formally speaking, for ip <i1 <1, if S;_1 occurs at X;j, ;, and Z; occurs
at Xj, i, then we have NOVx[r,i] =iy + 1; otherwise NOVx[r,i]=0.

3. A Simple algorithm for Substring-IC-LCS

If we want to include the string S to a common subsequence C of X and Y, then for some position i, we must have
Ci.itk—1 = S. Suppose that S occurs only at X; i and Y;_j. Then we can do the following to get a desired Substring-IC-LCS:

1. Compute LCS(Xq..j—1, Y1...j—1). Let the length of the computed LCS is £1.
2. Compute LCS(Xir41..m, Yj+1..n). Let the length of the computed LCS is £;.
3. Return LCS(X1..i—1, Y1...j—1).S.LCS(Xiy'41..m, Y j/41..n) as a Substring-IC-LCS and ¢1 + |S| + €2 as the length.

Now we need to consider the general case when there are more than one pair of (i,i’) ((j, j’)) such that S occurs at
Xi..ir (Yj..j). From the above idea, we get the following algorithm for computing Substring-IC-LCS for the general case as
follows.

1. Compute Sx[i] for 1 <i<m.

2. Compute Sy[i] for 1 <i<n.

3. For each pair (i, j) such that Sx[i]# 0 and Sy[j]# 0 compute LCS(X1. sy[ij-1, Y1..5y[j]-1) and LCS(Xit1..m, Yjt+1..n)-
Suppose the length of LCS(Xi..syfil—1, Y1..syrj1-1) is €1 and the length of LCS(Xit1.m,Yjt1.n) is £€2. Return
LCS(X1..sx1i1-15 Y1..Sy[i1-1)-S.LCS(Xi1..m, Yj+1..n) such that £1 4 £ is maximum. Also, return £; + |S| + €2 as the
length.

Clearly, LCS(Xit+1..m, Yj+1..n) is equal to ReVLCS(Xpm. i1, Yn...j+1). The algorithm is formally presented in Algorithm Find-
Substring-IC-LCS. The running time analysis is simple. Let us assume w.t.l.o.g that n > m. Then the computation of Sx[i] and
Sy[j] takes O(n?) time. Computation of table LCS[i, j] and RevLCS[i, j] takes O(n?) time. Finally, the computation of the
Substring-IC-LCS length (see Steps 37 to 46) takes O (n?) time. Thus in total, the algorithm takes O (n?) time.

Find-Substring-IC-LCS
1: for i < 1 to m do
2. Sxli]<«0
3: end for
4: for j < 1ton do
5: Sy[j]<0
6: end for
7: for i’ <1 to m do
8 if s = x; then
9

p<«1
10: for i < i’ to m do
11: if s, =x; then
12: p<p+1
13: if p =k then
14: Sxli] <1
15: break
16: end if
17: end if
18: end for
19: end if
20: end for

21: for j/ <1 to n do
22: if s = Yy then

23: p<1

24: for j < j to n do
25: if s, = y; then
26: p<p+1

27: if p =k then

28: Syljl < Jj'

70 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73

29: break
30: end if
31: end if

32: end for

33: end if

34: end for

35: compute LCS of X, Y

36: compute RevLCS of X, Y

37: for i < 1 to m do

38: for j<«1tondo

39: if Sx[i]# 0 and Sy[j] # 0 then

40: d=LCS[Sx[i]—1,Sy[j1—1]14+k+ RevLCS[i + 1, j + 1]
41: if maxStrLCS > d then

42: maxStrLCS =d

43: end if

44: end if

45: end for

46: end for

Very recently, we came across a paper [4], that also solves the Substring-IC-LCS problem in O (n?) time. The algorithm
of [4] is almost identical to our above algorithm. The only notable difference between the two algorithms is that while

computing each of the occurrences of S, we keep the unique position while the algorithm in [4] keeps multiple positions
which is redundant.

4. Our main result: a dynamic programming algorithm

In this section, we present a dynamic programming formulation to directly compute the Substring-IC-LCS. In a later
section, we will discuss how this DP formulation can be extended to solve the generalized version of the problem. Property
1 shows the characterization of the structure of a solution to the Substring-IC-LCS problem.

Property 1. If C1__ is an LCS of X1, and Y1, including S as a substring such that S = Cyr_y11. ¢ for some k < €' < £, then Cq_
is a concatenation of the following two substrings, for some 0 <i <mand 0 < j<n:

1. The prefix C1_p: C1._p isan LCS of Xy ; and Y1 j including Sas the suffix Cyr_i41. ¢, and
2. The suffix Cp1q. ¢: Cpry1..0 isan LCS of Xiyq..m and Yjy1. n.

A Dynamic programming formulation for the Substr-IC-LCS problem is given below.

0 ifi=0o0rj=0),
LCS[i, jl=3 LCS[i—1,j—1]+1 if i, j > 0)and x; = y |, (1)
max(LCS[i — 1, j1, LCS[i, j — 11) if (i, j > 0) and x; # ;.
—00 if(i=00rj=0),
t= 4 StrlCS[i — 1, j — 1]+ 1 if i, j > 0) and x; =y, (2)

max(StrLCS[i — 1, j1, StrLCS[i, j — 1]) if (i, j > 0) and x; # y ;.

ot if Sx[i]=0o0r Sy[j]=0,
StrLCS[l’]]_{max(t,LCS[Sx[i]—1,Sy[j]—1]+k) if Sx[i] # 0 and Sy[j] 0. 3)

As is evident, here, Eq. (1) basically computes the normal LCS. It is required by Eq. (3). Here, as usual, LCS[i, j] stores
the length of LCS(X1.., Y1...j). Actual Substring-IC-LCS computation is done by Egs. (2) and (3). Here, StrLCS[i, j] stores the
length of the Substring-IC-LCS of X; _; and Y _j. We use t for intermediate computation. Note that, if the length of the
Substring-IC-LCS of X[1...i] and Y[1...j] is O, we store —oo in StrLCS[i, j].

Now, note that, when i =0 or j =0 there is no Substring-IC-LCS with respect to S. Also, if Sx[i'] =0 or Sx[j’'] =0 for
1<’ <i, 1< j < j, then we cannot have any Substring-IC-LCS with respect to S for X[1...i'] and Y[1...j'] for 1 <’ <,
1 < j/ < j. To handle this situation, when i =0 or j =0, we assume that the length of Substring-IC-LCS with respect to S
is —oo, where oo is conceptually a very very large value with respect to the values used in our computation. We further

assume that any addition to —oo still results in —oco. Now we prove the correctness of our DP formulation. We first report
the following observation.

Observation 1. Suppose, Sx[i] #0 and Sy[j] # 0. Then the followings hold true.

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73 71

1. If Sx[i']1=0 or Sy[j']=0 for all 1<i’ <i,1< j < j, then StrLCS[i’, j'] = —oo and StrLCS[i, j] = LCS[Sx[i] — 1, Sy[j] —

1] +k.

2. Forall i’ > i or j' > j, StrLCS[i’, j/1 >0

Lemma 1. Egs. (1) to (3) correctly compute Substring-IC-LCS.

Proof. We prove the correctness based on a case by case analysis. We consider the computation of StrLCS[i, j], i.e., the
Substring-IC-LCS of X[1...i] and Y[1...j] with respect to the constraint pattern S.

Case 1: Sx[i]=0 or Sy[j]=0.
From Eq. (3), it is clear that in this case, StrLCS[i, j] =t. We now have two subcases.

Case la: Forall1 <i' <i,1<j < jwehave Sx[i'] =0o0r Sy[j']1=0.

We need to show that, in this case, StrLCS[i, j] = —oc. From Eqgs. (2) and (3), it is easy to see that StrLCS[i, j] can
get some value other than —oo if and only if the condition of Sx[i] 20 and Sy[j] # 0 holds in Eq. (3). Hence,
clearly, StrLCS[i, j] = —oo in this case.

Case 1.b: There exists i’ < i, j’ < j such that Sx[i'] # 0 and Sy[j'] # 0.

Let us assume for some i’ < i, j’ < j, Sx[i'] #0 and Sy[j']#0 and for all 1 <i”" <i’ and 1< j” < j, Sx[i"1=0
and Sy[j”]=0. Then, by Observation 1, we have StrLCS[i’, j'] = LCS[Sx[i] — 1, Sy[j] — 1] + k. Hence we must have
StrLCS[i, j1 > 0. Now from Egs. (2) and (3) it is easy to verify that StrLCS[i, j] will get the correct value.

Case 2: Sx[i] #0and Sy[j]#0.
From Eq. (3), it is clear that in this case, StrLCS[i, j] = max(t, LCS[Sx[i] — 1, Sy[j] — 1] + k). We now have two subcases.

Case 2.a: Forall1 <i' <i,1<j < jwehave Sx[i'] =0or Sy[j']=0.

We need to show that, in this case, t = —oo and StrLCS[i, j] = LCS[Sx[i] — 1, Sy[j] — 1] + k. From Egs. (2) and (3),
it is easy to see that StrLCS[i’, j'] can get some value other than —oo if and only if the condition of Sx[i'] #0 and
Sy[j'1# 0 holds in Eq. (3). Hence, clearly, t = —oo and StrLCS[i, j1=LCS[Sx[i] — 1, Sy[j] — 1] + k.

Case 2.b: There exists i’ < i, j’ < j such that Sx[i'] # 0 and Sy[j'] # 0.

Let us assume that Sx[i’] # 0 and Sy[j'] # 0 for some i’ < i, j’ < j. Then, by Observation 1, for all i’ <i” <1,
i < j” < j we have a value StrLCS[i”,j”] > 0. Hence from Eq. (2), t > 0 and from Eq. (3), StrLCS[i, j] =
max(t, LCS[Sx[i] — 1, Sy[j] — 1] + k), which is correct. O

The algorithm is formally presented in Algorithm Alt-Find-Substring-IC-CLCS. The running time analysis is simple. Let us

assume w.t.lLo.g that n > m. Then the computation of Sx[i] and Sy[j] for all 1 <i<m and 1< j <n takes 0(n?) time.
Computation of the table LCS[i, j] for all 1 <i<m and 1< j<n takes O(n?) time. Finally, computation of the Substring-
IC-LCS length in Steps 42 to 53 takes O (n?) time. Thus in total, the algorithm takes O (n?) time.

Alt-Find-Substring-IC-CLCS

1: for i < 1 to m do

2. Sx[i]<« 0

3: end for

4: for j <1 ton do

5. Sy[j]<0

6: end for

7. for i’ < 1 to m do

8: if s; =x; then

9: p<«1

10: for i < i’ to m do
11: if s, =x; then
12: p<p+1

13: if p =k then
14: Sxli] <1
15: break

16: end if

17: end if

18: end for

19: end if
20: end for
21: for j/ <1 to n do

22: if sy =yj then

23: p<1

24: for j < j' to n do
25: if s, =y; then

72 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73

26: p<p+1
27: if p =k then
28: Syljl < §'
29: break

30: end if

31: end if

32: end for

33: end if

34: end for

35: compute LCS of X, Y
36: for i < 1 to m do
37: StrLCS[i, 0] < —oc0
38: end for

39: for j <1 to n do
40: StrLCS[0, j] < —o0
41: end for

42: for i < 1 to m do
43: for j <« 1ton do

44: if x; = y; then

45: t < StrlCS[i —1,j—1]+1

46: else

47: t < max(StrLCS[i — 1, j1, StrLCS[i, j — 1])
48: end if

49: if Sx[i]# 0 and Sy[j] # 0 then

50: StrLCSTi, j1 <= max(t, LCS[Sx[i1 — 1, Sy[j1—11+k)
51: else

52: StrLCS[i, j] <t

53: end if

54: end for

55: end for

5. Algorithm for generalized Substring-IC-LCS

In this section we consider the Generalized Substring-IC-LCS problem. In particular, we will extend the DP formulation
of the Substring-IC-LCS problem from Section 4 to solve the generalized version of the problem. In what follows we will
be using the notations Sx[r,i] and Z, extensively. Recall from Section 2 that Sx[r,i] basically extends the notion of Sx/[i]
when we are considering a list S of constraint pattern instead of a single one. On the other hand, Z, denotes the merged
pattern of strings S;_1 and S,. Now we are ready to state Property 2 that shows the characterization of the structure of a
solution to the Generalized Substring-IC-LCS problem.

Property 2.1f Cq_ ¢ isan LCS of X1..m and Y1y including {S1, S2, ... Sy} as substrings, in the given order such that Sy = Cy g, 41...¢'
for some k, < ¢/ < ¢,then Cq__y is a concatenation of the following two substrings, for some 0 <i <mand 0 < j < n:

1. The prefix Cy_¢: Cq._ ¢ isan LCS of X1 j and Y1 j including {S1, S2, ... Sr—1} as substring and S, as the suffix Cyr_x,41..¢/, and
2. The suffix Cpr4q. ¢: Corq1..¢ isan LCS of Xjp1. .mand Y ji 1. p.

Below we present a DP formulation for the Generalized Substring-IC-LCS problem. We need to consider following two
cases:

Case 1: Forall 1 <r < p string Sy doesn’t overlap with S;_1.

In this case, this problem is a simple extension of the Substring-IC-LCS problem. So we can adopt the following strategy.
Let StrLCSol[i, j] corresponds to the computation of LCS[i, j]. Then we will compute StrLCS; considering substring Sq
using StrLCSp; then we will compute StrLCS; using StrLCSy for substring S, and so on. Finally continuing in this way we
will compute StrLCS, using StrLCS,_q for S;. The dynamic programming formulation is given below.

0 if(i=0o0rj=0),
StrLCSo[i, j1= { StrLCSoli — 1, j — 1]+ 1 if (i, j > 0) and x; =y, (4)
max(StrLCSoli — 1, j1, StrLCSo[i, j — 11) if (i, j > 0) and x; # y;.
—00 if(i=00rj=0),
t={ StrlCS,[i—1,j—1]1+1 if (i, j > 0) and x; =y, (5)

max(StrLCSy[i — 1, j1, StrLCS;[i, j — 1]) if (i, j > 0) and x; # y ;.

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67-73 73

t if Sx[r,i]=0or Sy[r, j]=0,
SErLCS:[i, j] = . . oxIr 1] vir gl (6)
max(t, StrLCS,—1[Sx[r,i1— 1, Sy[r, j1— 11+ k;) if Sx[r,il]#0and Sy[r, j1#0.

The followings are the boundary conditions: StrLCSg[i, 0] = StrLCSp[0, j1 =0 and StrLCS;[i, 0] = StrLCS;[0, j] = —oo. In
Eq. (5), t is used for intermediate computation.

Case 2: For some 1 < r < p string Sy overlaps with S;_1.

If for some 1 <r < p, Sy—1 and S; overlaps then we will compute NOV¢,, NOVx[r,i] and NOVy|[r, j] forall 1 <i<m
and 1< j<n. Forall 1 <i<m and 1< j<n, while computing Substring-IC-LCS for string S;, we need to consider the
merged pattern Z,. The complete dynamic programming formulation for the problem is given below.

0 if(i=00rj=0),
StrLCSpli, j]1= { StrLCSoli —1,j —1]+1 if (i, j>0)and x; =y, (7)
max(StrLCSoli — 1, j1, StrLCSo[i, j — 11) if (i, j > 0) and x; # y ;.
—00 if(i=00rj=0),
t= 4 StrlCS;[i —1,j —1]1+1 if (i, j > 0) and x; =y, (8)
max(StrLCSy[i — 1, j1, StrLCSy[i, j — 1) if (i, j > 0) and x; # y;.

o { t if NOVx[r,i]=0or NOVy[r, j1=0, 9)
max(t, StrLCS,_1[NOVx[r,i] — 1, NOVy[r, j1— 11+ NOV¥¢,) if NOVx[r,i] ## 0 and NOVy[r, j1 #0.
StrLCS, i, j1 = {t/ . . i Sxlr, 1 =0or Sylr, J1 =0, (10)

max(t’, StrLCS;_1[Sx[r,i] — 1, Sy[r, j1—1]1+k;) if Sx[r,i] 0and Sy[r, j] #0.

The boundary conditions are as follows: StrLCSo[i, 0] = StrLCSp[0, j]1 =0 and StrLCS,[i, 0] = StrLCS,[0, j] = —oc. In Egs. (8)
and (9), t and t’, respectively, are used for intermediate computation.

The analysis is simple and follows readily from previous analysis. For all 1 <r < p, at each step, the computation of Sx[r,i],
Sylr, jl, NOVx[r,i], NOVy([r, j] and StrLCS,[i, j] takes 0 (n?) time. Thus the computation time is O(nzp) in total.

6. Conclusion

In this paper, we have studied some variants of the CLCS problem, namely, the Substring-IC-LCS and generalized
Substring-IC-LCS problems. We have presented two O (n?) time algorithms for solving the Substring-IC-LCS problem, im-
proving the previously known O (n?k) time algorithm. Clearly this is a significant (from cubic to quadratic) improvement. An
intriguing finding is that the algorithm is completely independent of the length of the constraint string. We have also pre-
sented an algorithm for the generalized Substring-IC-LCS in O (n2p) time where we are given an ordered list of p constraint
patterns and we want to find an LCS String containing all of them as substring in the given order.

References

[1] AN. Arslan, O. Egecioglu, Algorithms for the constraint longest common subsequence problems, International Journal of Foundations of Computer
Science 16 (6) (2005) 1099-1109.

[2] Y.C. Chen, K.M. Chao, On the generalized constraint longest common subsequence problems, Journal of Combinatorial Optimization 21 (3) (2011) 383-
392.

[3] EY.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constraint longest common subsequence problems, Information Pro-
cessing Letters 90 (4) (2004) 175-179.

[4] S. Deorowicz, Quadratic-time algorithm for the string constrained LCS problem, Information Processing Letters 112 (11) (2012) 423-426.

[5] CS. lliopoulos, M.S. Rahman, New efficient algorithms for the LCS and constrained LCS problems, Information Processing Letters 106 (1) (2008) 13-18.

[6] Y.T. Tsai, The constraint longest common subsequence problem, Information Processing Letters 88 (4) (2003) 173-176.

	The substring inclusion constraint longest common subsequence problem can be solved in quadratic time
	1 Introduction
	2 Preliminaries
	3 A Simple algorithm for Substring-IC-LCS
	4 Our main result: a dynamic programming algorithm
	5 Algorithm for generalized Substring-IC-LCS
	6 Conclusion
	References

