
Journal of Discrete Algorithms 17 (2012) 67–73
Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

The substring inclusion constraint longest common subsequence problem
can be solved in quadratic time ✩

Muhammad Rashed Alam, M. Sohel Rahman ∗,1

A�EDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 November 2011
Received in revised form 16 October 2012
Accepted 30 November 2012
Available online 6 December 2012

Keywords:
Algorithms
Longest common subsequence
Dynamic programming

In this paper, we study some variants of the Constrained Longest Common Subsequence
(CLCS) problem, namely, the substring inclusion CLCS (Substring-IC-CLCS) problem and a
generalized version thereof. In the Substring-IC-CLCS problem, we are to find a longest
common subsequence (LCS) of two given strings containing a third constraint string
(given) as a substring. Previous solution to this problem runs in cubic time, i.e, O (nmk)

time, where n,m and k are the length of the 3 input strings. In this paper, we present
simple O (nm) time algorithms to solve the Substring-IC-CLCS problem. We also study the
Generalized Substring-IC-LCS problem where we are given two strings of length n and m
respectively and an ordered list of p strings and the goal is to find an LCS containing
each of them as a substring in the order they appear in the list. We present an O (nmp)

algorithm for this generalized version of the problem.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is one of the classic and well-studied problems in computer science
with extensive practical applications. The constraint LCS (CLCS) problem, where the computed LCS must contain a given third
string as a subsequence, was introduced by Tsai [6] and later studied by a number of researchers [5,2,1,3]. This problem finds
motivation from bioinformatics. Chen and Chao [2] recently introduced and studied several variants of the CLCS problem.
In this paper, we are interested in one of the variants proposed in [2], where, given two strings X = x1, x2, . . . , xm and Y =
y1, y2, . . . , yn and a third constraint string S = s1, s2, . . . , sk , we are to find a longest common subsequence C = c1, c2, . . . , c�

such that S is a substring of C . In what follows, we will be referring to this problem as the Substring-IC-LCS problem. Chen
and Chao [2] presented an O (nmk) algorithm for this problem. We on the other hand present two improved algorithms
both of which run in O (nm) time.

We also study the generalized version of this problem, where we are given two strings X , Y (as before) and an ordered
list of constraint strings S = {S1, S2, . . . , S p} (as opposed to a single constraint string) and we are to find a longest common
subsequence C of X and Y containing each of the strings of S as a substring in the sequence they appear in the list.
This problem was also handled by Chen and Chao [2] and they gave an algorithm with O (n2 × ∏p

r=1 kr) time where kr is
the length of the string Sr and we assume that n > m. We on the other hand present an O (n2 p) algorithm for the same
problem.

✩ Part of this research work was carried out under the research project titled “Next Generation Algorithms on Sequences” funded by Ministry of Education,
Government of the People’s Republic of Bangladesh.

* Corresponding author.
E-mail addresses: rashed.muhammad@yahoo.com (M.R. Alam), msrahman@cse.buet.ac.bd (M. Sohel Rahman).

1 Partially supported by a Commonwealth Fellowship and an ACU Titular Fellowship.
1570-8667/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jda.2012.11.004

http://dx.doi.org/10.1016/j.jda.2012.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:rashed.muhammad@yahoo.com
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.jda.2012.11.004

68 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73
The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts. Section 3 presents a
simple quadratic time algorithm to solve the Substring-IC-LCS problem. In Section 4, we present our main dynamic pro-
gramming algorithm to solve the same problem. In Section 5, we extend the algorithm of Section 4 to solve the generalized
version of the problem. We briefly conclude in Section 6.

2. Preliminaries

Given a string, X = x1, x2, . . . , xm , we use xi to denote the i-th letter in X . We use Xi...i′ , i′ � i to denote the substring
xi xi+1xi+2 . . . xi′ . On the other hand, Xi′...i = xi′ , xi′−1, xi′−2, . . . , xi denotes the reverse string of Xi...i′ , where i′ > i. Given
another string S = s1, s2, . . . , sk , we say that S occurs in the substring Xi...i′ if and only if Xi...i′ contains the string S as a
sequence such that xi = s1 and xi′ = sk . We use “.” as the string concatenation operator. For example, we use X .Y to denote
the concatenation of X and Y . The problems we study in this paper are formally defined below.

Problem 1 (Substring-IC-LCS Problem). Suppose we are given two strings X = x1, x2, . . . , xm and Y = y1, y2, . . . , yn and a
constraint string S = s1, s2, . . . , sk . We are to find a longest common subsequence C = c1, c2, . . . , c� such that S is a substring
of C .

Problem 2 (Generalized Substring-IC-LCS Problem). Suppose we are given two strings X , Y and a ordered list of constraint
strings S = 〈S1, S2, . . . , S p〉. We are to find a longest common subsequence C of X and Y containing each of the strings of
S as a substring in the order it appears in the list.

Example 1. Suppose, X = aatgcctaggc, Y = cgatctggac, and S = gtac. Then, an LCS of X and Y is atctggc. And, given the
constraint string S , a Substring-IC-LCS of X and Y is C = gtac.

Example 2. Suppose, X = f abcf gbda and Y = f abgcf bgda. Now, consider an ordered list of two strings S = 〈abc,bda〉.
Then, a generalized Substring-IC-LCS of X and Y , given S is C = f abcf bda. Note that we have C2...4 = abc and C6...8 = bda.

Example 3. Again, suppose X = dabdcf edbgcef and Y = dabcdeg f e. Also assume that S = 〈abc,bce〉 is an ordered list of
strings. Then, a generalized Substring-IC-LCS will be C = dabceg f e. Clearly, C2...4 = abc and C3...5 = bce. Notably, we have
overlapped occurrences of abc and bce in this example.

Given two strings X and Y of length m and n, respectively, for all 1 � i � m, 1 � j � n, we use LCS[i, j] to denote
the length of an LCS of X1...i and Y1... j . On the other hand, RevLCS[i, j] denotes the length of an LCS of Xi...m and Y j...n .
Given i < i′ and j < j′ , we further use LCS(Xi...i′ , Y j... j′) to denote a longest common subsequence of Xi...i′ and Y j... j′ and
RevLCS(Xi′...i, Y j′... j) to denote a longest common subsequence of the reverse strings Xi′...i and Y j′... j .

Now, suppose that S occurs in X . Then, we say S X [i′] = i if and only if S occurs in Xi...i′ and there exists no i1,
i < i1 < i′ such that S occurs in Xi1...i′ and no i2, i < i2 < i′ such that S occurs in Xi...i2 . In other words, S X [i′] keeps track
of the occurrences of S in X that ends at the xi′ and starts at xi such that no other occurrence of S starts (ends) at xi1 (xi2)

such that i < i1 < i′ (i < i2 < i′). If there is no occurrence of string S ending at Position i′ , then we set S X [i′] = 0.

Example 4. Suppose X = D AB E ABC and S = ABC . Then S occurs in the range X2...7 and X5...7. However we have S X [7] = 5
(and not 2).

Now, suppose C is an LCS of X and Y such that S is a substring of C . Then we say that C is a Substring-IC-LCS of X and
Y given a constraint string S . We use StrLCS[i, j] to denote the length of a Substring-IC-LCS of X1...i and Y1... j containing
the substring S .

To handle the Generalized Substring-IC-LCS Problem, we need to extend some of the above notations and definitions. In
this version of the problem, we are given a constraint ordered list S = 〈S1, S2, . . . , S p〉 instead of a single constraint string
S . For each string Sr , 1 � r � p in S , kr denotes the length of string Sr . We extend the notion of S X [i′] when we have a list
S instead of a single constraint pattern S . In particular, we use S X [r, i′] to denote S X [i′] for the constraint pattern Sr ∈ S .

Given two strings A = a1 . . .ak1 and B = b1 . . .bk2 , we say that A and B overlap when we have Ai...k1 = B1... j for some
1 � i � k1 and 1 � j � k2. Note that the length of the overlap is k1 − i + 1 = j − 1 + 1. In this case, the merged pattern of the
above two overlapping strings is the string a1a2 . . .aiai+1 . . .ak1 b j+1 . . .bk2 = a1a2 . . .ai−1b1b2 . . .b jb j+1 . . .bk2 . In the context
of the merged pattern of A and B above, the substring b j+1 . . .bk2 is said to be the non-overlapping pattern. Note that, for
this notion the order of A and B is important.

Now, in the list S , we may have overlaps between the consecutive strings Sr−1, Sr , for all 2 � r � p. We use Zr to denote
the merged pattern and NOVr to denote the non-overlapping pattern of strings Sr−1 and Sr , we have NOV�r to denote the
length of NOVr . The example below explains the above notions.

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73 69
Example 5. Assume that S1 = ABC D and S2 = C D E F G . Then their merged pattern Z2 = ABC D E F G , non-overlapping pat-
tern NOV2 = E F G , which has length NOV�2 = 3.

Finally, we use NOV X [r, i] to keep track the occurrence of NOVr in X . Notably, since Sr contains NOVr as a suffix, S X [r, i]
is non-zero if, and only if, NOV X [r, i] is non-zero. Formally speaking, for i2 � i1 � i, if Sr−1 occurs at Xi2...i1 and Zr occurs
at Xi2...i , then we have NOV X [r, i] = i1 + 1; otherwise NOV X [r, i] = 0.

3. A Simple algorithm for Substring-IC-LCS

If we want to include the string S to a common subsequence C of X and Y , then for some position i, we must have
Ci...i+k−1 = S . Suppose that S occurs only at Xi...i′ and Y j... j′ . Then we can do the following to get a desired Substring-IC-LCS:

1. Compute LCS(X1...i−1, Y1... j−1). Let the length of the computed LCS is �1.
2. Compute LCS(Xi′+1...m, Y j′+1...n). Let the length of the computed LCS is �2.
3. Return LCS(X1...i−1, Y1... j−1).S.LCS(Xi′+1...m, Y j′+1...n) as a Substring-IC-LCS and �1 + |S| + �2 as the length.

Now we need to consider the general case when there are more than one pair of (i, i′) ((j, j′)) such that S occurs at
Xi...i′ (Y j... j′). From the above idea, we get the following algorithm for computing Substring-IC-LCS for the general case as
follows.

1. Compute S X [i] for 1 � i � m.
2. Compute SY [i] for 1 � i � n.
3. For each pair (i, j) such that S X [i] �= 0 and SY [j] �= 0 compute LCS(X1...S X [i]−1, Y1...SY [j]−1) and LCS(Xi+1...m, Y j+1...n).

Suppose the length of LCS(X1...S X [i]−1, Y1...SY [j]−1) is �1 and the length of LCS(Xi+1...m, Y j+1...n) is �2. Return
LCS(X1...S X [i]−1, Y1...SY [i]−1).S.LCS(Xi+1...m, Y j+1...n) such that �1 + �2 is maximum. Also, return �1 + |S| + �2 as the
length.

Clearly, LCS(Xi+1...m, Y j+1...n) is equal to RevLCS(Xm...i+1, Yn... j+1). The algorithm is formally presented in Algorithm Find-
Substring-IC-LCS. The running time analysis is simple. Let us assume w.t.l.o.g that n > m. Then the computation of S X [i] and
SY [j] takes O (n2) time. Computation of table LCS[i, j] and RevLCS[i, j] takes O (n2) time. Finally, the computation of the
Substring-IC-LCS length (see Steps 37 to 46) takes O (n2) time. Thus in total, the algorithm takes O (n2) time.

Find-Substring-IC-LCS
1: for i ← 1 to m do
2: S X [i] ← 0
3: end for
4: for j ← 1 to n do
5: SY [j] ← 0
6: end for
7: for i′ ← 1 to m do
8: if s1 = xi′ then
9: p ← 1
10: for i ← i′ to m do
11: if sp = xi then
12: p ← p + 1
13: if p = k then
14: S X [i] ← i′
15: break
16: end if
17: end if
18: end for
19: end if

20: end for
21: for j′ ← 1 to n do
22: if s1 = y j′ then
23: p ← 1
24: for j ← j′ to n do
25: if sp = y j then
26: p ← p + 1
27: if p = k then
28: SY [j] ← j′

70 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73
29: break
30: end if
31: end if
32: end for
33: end if

34: end for
35: compute LCS of X, Y
36: compute RevLCS of X, Y
37: for i ← 1 to m do
38: for j ← 1 to n do
39: if S X [i] �= 0 and SY [j] �= 0 then
40: d = LCS[S X [i] − 1, SY [j] − 1] + k + RevLCS[i + 1, j + 1]
41: if maxStrLCS > d then
42: maxStrLCS = d
43: end if
44: end if
45: end for

46: end for
Very recently, we came across a paper [4], that also solves the Substring-IC-LCS problem in O (n2) time. The algorithm

of [4] is almost identical to our above algorithm. The only notable difference between the two algorithms is that while
computing each of the occurrences of S , we keep the unique position while the algorithm in [4] keeps multiple positions
which is redundant.

4. Our main result: a dynamic programming algorithm

In this section, we present a dynamic programming formulation to directly compute the Substring-IC-LCS. In a later
section, we will discuss how this DP formulation can be extended to solve the generalized version of the problem. Property
1 shows the characterization of the structure of a solution to the Substring-IC-LCS problem.

Property 1. If C1...� is an LCS of X1...m and Y1...n including S as a substring such that S = C�′−k+1...�′ for some k � �′ � �, then C1...�

is a concatenation of the following two substrings, for some 0 � i � m and 0 � j � n:

1. The prefix C1...�′ : C1...�′ is an LCS of X1...i and Y1... j including Sas the suffix C�′−k+1...�′ , and
2. The suffix C�′+1...�: C�′+1...� is an LCS of Xi+1...m and Y j+1...n.

A Dynamic programming formulation for the Substr-IC-LCS problem is given below.

LCS[i, j] =
⎧⎨
⎩

0 if (i = 0 or j = 0),

LCS[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(LCS[i − 1, j], LCS[i, j − 1]) if (i, j > 0) and xi �= y j .

(1)

t =
⎧⎨
⎩

−∞ if (i = 0 or j = 0),

StrLCS[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(StrLCS[i − 1, j], StrLCS[i, j − 1]) if (i, j > 0) and xi �= y j.

(2)

StrLCS[i, j] =
{

t if S X [i] = 0 or SY [j] = 0,

max(t, LCS[S X [i] − 1, SY [j] − 1] + k) if S X [i] �= 0 and SY [j] �= 0.
(3)

As is evident, here, Eq. (1) basically computes the normal LCS. It is required by Eq. (3). Here, as usual, LCS[i, j] stores
the length of LCS(X1...i, Y1... j). Actual Substring-IC-LCS computation is done by Eqs. (2) and (3). Here, StrLCS[i, j] stores the
length of the Substring-IC-LCS of X1...i and Y1... j . We use t for intermediate computation. Note that, if the length of the
Substring-IC-LCS of X[1 . . . i] and Y [1 . . . j] is 0, we store −∞ in StrLCS[i, j].

Now, note that, when i = 0 or j = 0 there is no Substring-IC-LCS with respect to S . Also, if S X [i′] = 0 or S X [j′] = 0 for
1 � i′ � i, 1 � j′ � j, then we cannot have any Substring-IC-LCS with respect to S for X[1 . . . i′] and Y [1 . . . j′] for 1 � i′ � i,
1 � j′ � j. To handle this situation, when i = 0 or j = 0, we assume that the length of Substring-IC-LCS with respect to S
is −∞, where ∞ is conceptually a very very large value with respect to the values used in our computation. We further
assume that any addition to −∞ still results in −∞. Now we prove the correctness of our DP formulation. We first report
the following observation.

Observation 1. Suppose, S X [i] �= 0 and SY [j] �= 0. Then the followings hold true.

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73 71
1. If S X [i′] = 0 or SY [j′] = 0 for all 1 � i′ < i,1 � j′ < j, then StrLCS[i′, j′] = −∞ and StrLCS[i, j] = LCS[S X [i] − 1, SY [j] −
1] + k.

2. For all i′ > i or j′ > j, StrLCS[i′, j′] > 0

Lemma 1. Eqs. (1) to (3) correctly compute Substring-IC-LCS.

Proof. We prove the correctness based on a case by case analysis. We consider the computation of StrLCS[i, j], i.e., the
Substring-IC-LCS of X[1 . . . i] and Y [1 . . . j] with respect to the constraint pattern S .

Case 1: S X [i] = 0 or SY [j] = 0.
From Eq. (3), it is clear that in this case, StrLCS[i, j] = t . We now have two subcases.

Case 1.a: For all 1 � i′ � i,1 � j′ � j we have S X [i′] = 0 or SY [j′] = 0.
We need to show that, in this case, StrLCS[i, j] = −∞. From Eqs. (2) and (3), it is easy to see that StrLCS[i, j] can
get some value other than −∞ if and only if the condition of S X [i] �= 0 and SY [j] �= 0 holds in Eq. (3). Hence,
clearly, StrLCS[i, j] = −∞ in this case.
Case 1.b: There exists i′ < i, j′ < j such that S X [i′] �= 0 and SY [j′] �= 0.
Let us assume for some i′ < i, j′ < j, S X [i′] �= 0 and SY [j′] �= 0 and for all 1 � i′′ < i′ and 1 � j′′ < j′ , S X [i′′] = 0
and SY [j′′] = 0. Then, by Observation 1, we have StrLCS[i′, j′] = LCS[S X [i] − 1, SY [j] − 1] + k. Hence we must have
StrLCS[i, j] > 0. Now from Eqs. (2) and (3) it is easy to verify that StrLCS[i, j] will get the correct value.

Case 2: S X [i] �= 0 and SY [j] �= 0.
From Eq. (3), it is clear that in this case, StrLCS[i, j] = max(t, LCS[S X [i] − 1, SY [j] − 1] + k). We now have two subcases.

Case 2.a: For all 1 � i′ < i,1 � j′ < j we have S X [i′] = 0 or SY [j′] = 0.
We need to show that, in this case, t = −∞ and StrLCS[i, j] = LCS[S X [i] − 1, SY [j] − 1] + k. From Eqs. (2) and (3),
it is easy to see that StrLCS[i′, j′] can get some value other than −∞ if and only if the condition of S X [i′] �= 0 and
SY [j′] �= 0 holds in Eq. (3). Hence, clearly, t = −∞ and StrLCS[i, j] = LCS[S X [i] − 1, SY [j] − 1] + k.
Case 2.b: There exists i′ < i, j′ < j such that S X [i′] �= 0 and SY [j′] �= 0.
Let us assume that S X [i′] �= 0 and SY [j′] �= 0 for some i′ < i, j′ < j. Then, by Observation 1, for all i′ � i′′ < i,
j′ � j′′ < j we have a value StrLCS[i′′, j′′] > 0. Hence from Eq. (2), t > 0 and from Eq. (3), StrLCS[i, j] =
max(t, LC S[S X [i] − 1, SY [j] − 1] + k), which is correct. �

The algorithm is formally presented in Algorithm Alt-Find-Substring-IC-CLCS. The running time analysis is simple. Let us
assume w.t.l.o.g that n > m. Then the computation of S X [i] and SY [j] for all 1 � i � m and 1 � j � n takes O (n2) time.
Computation of the table LCS[i, j] for all 1 � i � m and 1 � j � n takes O (n2) time. Finally, computation of the Substring-
IC-LCS length in Steps 42 to 53 takes O (n2) time. Thus in total, the algorithm takes O (n2) time.

Alt-Find-Substring-IC-CLCS
1: for i ← 1 to m do
2: S X [i] ← 0
3: end for
4: for j ← 1 to n do
5: SY [j] ← 0
6: end for
7: for i′ ← 1 to m do
8: if s1 = xi′ then
9: p ← 1
10: for i ← i′ to m do
11: if sp = xi then
12: p ← p + 1
13: if p = k then
14: S X [i] ← i′
15: break
16: end if
17: end if
18: end for
19: end if

20: end for
21: for j′ ← 1 to n do
22: if s1 = y j′ then
23: p ← 1
24: for j ← j′ to n do
25: if sp = y j then

72 M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73
26: p ← p + 1
27: if p = k then
28: SY [j] ← j′
29: break
30: end if
31: end if
32: end for
33: end if

34: end for
35: compute LCS of X, Y
36: for i ← 1 to m do
37: StrLCS[i,0] ← −∞

38: end for
39: for j ← 1 to n do
40: StrLCS[0, j] ← −∞

41: end for
42: for i ← 1 to m do
43: for j ← 1 to n do
44: if xi = y j then
45: t ← StrLCS[i − 1, j − 1] + 1
46: else
47: t ← max(StrLCS[i − 1, j], StrLCS[i, j − 1])
48: end if
49: if S X [i] �= 0 and SY [j] �= 0 then
50: StrLCS[i, j] ← max(t, LCS[Sx[i] − 1, S y[j] − 1] + k)

51: else
52: StrLCS[i, j] ← t
53: end if
54: end for

55: end for

5. Algorithm for generalized Substring-IC-LCS

In this section we consider the Generalized Substring-IC-LCS problem. In particular, we will extend the DP formulation
of the Substring-IC-LCS problem from Section 4 to solve the generalized version of the problem. In what follows we will
be using the notations S X [r, i] and Zr extensively. Recall from Section 2 that S X [r, i] basically extends the notion of S X [i]
when we are considering a list S of constraint pattern instead of a single one. On the other hand, Zr denotes the merged
pattern of strings Sr−1 and Sr . Now we are ready to state Property 2 that shows the characterization of the structure of a
solution to the Generalized Substring-IC-LCS problem.

Property 2. If C1...� is an LCS of X1...m and Y1...n including {S1, S2, . . . Sr} as substrings, in the given order such that Sr = C�′−kr+1...�′
for some kr � �′ � �,then C1...� is a concatenation of the following two substrings, for some 0 � i � m and 0 � j � n:

1. The prefix C1...�′ : C1...�′ is an LCS of X1...i and Y1... j including {S1, S2, . . . Sr−1} as substring and Sr as the suffix C�′−kr+1...�′ , and
2. The suffix C�′+1...�: C�′+1...� is an LCS of Xi+1...m and Y j+1...n.

Below we present a DP formulation for the Generalized Substring-IC-LCS problem. We need to consider following two
cases:

Case 1: For all 1 < r � p string Sr doesn’t overlap with Sr−1.
In this case, this problem is a simple extension of the Substring-IC-LCS problem. So we can adopt the following strategy.
Let StrLCS0[i, j] corresponds to the computation of LCS[i, j]. Then we will compute StrLCS1 considering substring S1
using StrLCS0; then we will compute StrLCS2 using StrLCS1 for substring S2 and so on. Finally continuing in this way we
will compute StrLCSr using StrLCSr−1 for Sr . The dynamic programming formulation is given below.

StrLCS0[i, j] =
⎧⎨
⎩

0 if (i = 0 or j = 0),

StrLCS0[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(StrLCS0[i − 1, j], StrLCS0[i, j − 1]) if (i, j > 0) and xi �= y j .

(4)

t =
⎧⎨
⎩

−∞ if (i = 0 or j = 0),

StrLCSr[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(StrLCS [i − 1, j], StrLCS [i, j − 1]) if (i, j > 0) and x �= y .

(5)
r r i j

M.R. Alam, M. Sohel Rahman / Journal of Discrete Algorithms 17 (2012) 67–73 73
StrLCSr[i, j] =
{

t if S X [r, i] = 0 or SY [r, j] = 0,

max(t, StrLCSr−1[S X [r, i] − 1, SY [r, j] − 1] + kr) if S X [r, i] �= 0 and SY [r, j] �= 0.
(6)

The followings are the boundary conditions: StrLCS0[i,0] = StrLCS0[0, j] = 0 and StrLCSr[i,0] = StrLCSr[0, j] = −∞. In
Eq. (5), t is used for intermediate computation.
Case 2: For some 1 < r � p string Sr overlaps with Sr−1.
If for some 1 < r � p, Sr−1 and Sr overlaps then we will compute NOV�r , NOV X [r, i] and NOVY [r, j] for all 1 � i � m
and 1 � j � n. For all 1 � i � m and 1 � j � n, while computing Substring-IC-LCS for string Sr , we need to consider the
merged pattern Zr . The complete dynamic programming formulation for the problem is given below.

StrLCS0[i, j] =
⎧⎨
⎩

0 if (i = 0 or j = 0),

StrLCS0[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(StrLCS0[i − 1, j], StrLCS0[i, j − 1]) if (i, j > 0) and xi �= y j .

(7)

t =
⎧⎨
⎩

−∞ if (i = 0 or j = 0),

StrLCSr[i − 1, j − 1] + 1 if (i, j > 0) and xi = y j,

max(StrLCSr[i − 1, j], StrLCSr[i, j − 1]) if (i, j > 0) and xi �= y j .

(8)

t′ =
{

t if NOV X [r, i] = 0 or NOVY [r, j] = 0,

max(t, StrLCSr−1[NOV X [r, i] − 1,NOVY [r, j] − 1] + NOV�r) if NOV X [r, i] �= 0 and NOVY [r, j] �= 0.
(9)

StrLCSr[i, j] =
{

t′ if S X [r, i] = 0 or SY [r, j] = 0,

max(t′, StrLCSr−1[S X [r, i] − 1, SY [r, j] − 1] + kr) if S X [r, i] �= 0 and SY [r, j] �= 0.
(10)

The boundary conditions are as follows: StrLCS0[i,0] = StrLCS0[0, j] = 0 and StrLCSr[i,0] = StrLCSr[0, j] = −∞. In Eqs. (8)
and (9), t and t′ , respectively, are used for intermediate computation.

The analysis is simple and follows readily from previous analysis. For all 1 � r � p, at each step, the computation of S X [r, i],
SY [r, j], NOV X [r, i], NOVY [r, j] and StrLCSr[i, j] takes O (n2) time. Thus the computation time is O (n2 p) in total.

6. Conclusion

In this paper, we have studied some variants of the CLCS problem, namely, the Substring-IC-LCS and generalized
Substring-IC-LCS problems. We have presented two O (n2) time algorithms for solving the Substring-IC-LCS problem, im-
proving the previously known O (n2k) time algorithm. Clearly this is a significant (from cubic to quadratic) improvement. An
intriguing finding is that the algorithm is completely independent of the length of the constraint string. We have also pre-
sented an algorithm for the generalized Substring-IC-LCS in O (n2 p) time where we are given an ordered list of p constraint
patterns and we want to find an LCS String containing all of them as substring in the given order.

References

[1] A.N. Arslan, O. Eğecioğlu, Algorithms for the constraint longest common subsequence problems, International Journal of Foundations of Computer
Science 16 (6) (2005) 1099–1109.

[2] Y.C. Chen, K.M. Chao, On the generalized constraint longest common subsequence problems, Journal of Combinatorial Optimization 21 (3) (2011) 383–
392.

[3] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constraint longest common subsequence problems, Information Pro-
cessing Letters 90 (4) (2004) 175–179.

[4] S. Deorowicz, Quadratic-time algorithm for the string constrained LCS problem, Information Processing Letters 112 (11) (2012) 423–426.
[5] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS and constrained LCS problems, Information Processing Letters 106 (1) (2008) 13–18.
[6] Y.T. Tsai, The constraint longest common subsequence problem, Information Processing Letters 88 (4) (2003) 173–176.

	The substring inclusion constraint longest common subsequence problem can be solved in quadratic time
	1 Introduction
	2 Preliminaries
	3 A Simple algorithm for Substring-IC-LCS
	4 Our main result: a dynamic programming algorithm
	5 Algorithm for generalized Substring-IC-LCS
	6 Conclusion
	References

