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ARTICLE INFO ABSTRACT

Ke;{words: A We introduce a new string matching problem called order-preserving matching on numeric
String matcl_ung strings, where a pattern matches a text if the text contains a substring of values whose
Numeric string relative orders coincide with those of the pattern. Order-preserving matching is applicable

Order relation

Multiple pattern matching
KMP algorithm
Aho-Corasick algorithm

to many scenarios such as stock price analysis and musical melody matching in which
the order relations should be matched instead of the strings themselves. Solving order-
preserving matching is closely related to the representation of order relations of a numeric
string. We define the prefix representation and the nearest neighbor representation of the
pattern, both of which lead to efficient algorithms for order-preserving matching. We
present efficient algorithms for single and multiple pattern cases. For the single pattern
case, we give an O (nlogm) time algorithm and optimize it further to obtain O (n+mlogm)
time. For the multiple pattern case, we give an O (nlogm) time algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

String matching is a fundamental problem in computer science and has been extensively studied. Sometimes a string
consists of numeric values instead of characters in an alphabet, and we are interested in some trends in the text rather
than specific patterns. For example, in a stock market, analysts may wonder whether there is a period when the share
price of a company dropped consecutively for 10 days and then went up for the next 5 days. In such cases, the changing
patterns of share prices are more meaningful than the absolute prices themselves. Another example is melody matching
between two musical scores. A musician may be interested in whether her new song has a melody similar to well-known
songs. As many variations are possible in a melody where the relative heights of pitches are preserved but the absolute
pitches can be changed, it would be reasonable to match relative pitches instead of absolute pitches to find similar musical
phrases.

An order-preserving matching can be helpful in both examples, because a pattern is matched with the text if the text
contains a substring of values whose relative orders coincide with those of the pattern. For example, in Fig. 1, pattern
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Fig. 1. Example of pattern and text.

P = (33,42,73,57,63,87,95,79) is matched with text T since the substring (21, 24, 50, 29, 36, 73, 85, 63) in the text has
the same relative orders as the pattern. In both strings, the first characters 33 and 21 are the smallest, the second characters
42 and 24 are the second smallest, the third characters 73 and 50 are the 5-th smallest, and so on. If we regard prices of
shares, or absolute pitches of musical notes, as numeric characters of the strings, both examples above can be modeled as
order-preserving matching.

Solving order-preserving matching is closely related to representations of order relations of a numeric string. If we replace
each character in a numeric string by its rank in the string, then we can obtain a (natural) representation of order relations.
But this natural representation is not amenable to developing efficient algorithms because the rank of a character depends
on the substring in which the rank is computed. Hence, we define the prefix representation of order relations, which leads
to an O(nlogm) time algorithm for order-preserving matching, where n and m are the lengths of the text and the pattern,
respectively. Surprisingly, however, there is an even better representation, called the nearest neighbor representation, with
which we were able to develop an O (n + mlogm) time algorithm.

In this paper, we define a new class of string matching problem, called order-preserving matching, and present efficient
algorithms for single and multiple pattern cases. For the single pattern case, we propose an O (nlogm) algorithm based on
the Knuth-Morris-Pratt (KMP) algorithm [18,20], and optimize it further to obtain O(n 4+ mlogm) time. For the multiple
pattern case, we present an O (nlogm) algorithm based on the Aho-Corasick algorithm [1].

Related work: Norm matching and (8, y)-matching have been studied to search for similar patterns of numeric strings.
In norm matching [8,25,2,28], each text substring and the pattern is matched if the L, distance is less than the predefined
value for some given p. In (8, y)-matching [12,19,16,15,23,24,26], two parameters § and y are given, and two numeric
strings of the same length are matched if the maximum difference of the corresponding characters is at most § and the
total sum of differences is at most y. Several variants were studied to allow for don’t care symbols [17], transposition-
invariant [23] and gaps [13,14,21]. On the other hand, some generalized matching problems such as parameterized match-
ing [10,7], less than matching [6], swapped matching [3,27], overlap matching [5], and function matching [4,9] are studied
extensively where matching relations are defined differently so that some properties of two strings are matched instead of
exact matching of characters. However, none of this prior work addresses the order relations, which we focus on in this paper.

2. Problem formulation
2.1. Notations

Let X denote the set of numbers such that a comparison of two numbers can be done in constant time, and let X*
denote the set of strings over the alphabet X. Let |x| denote the length of a string x. A string x is described by either a
concatenation of characters x[1]-x[2]- --- - x[|x]] or as a sequence of characters (x[1], x[2], ..., x[|x|]) interchangeably. For a
string x, let a substring x[i..j] be (x[i], x[i + 1],...,x[j]) and the prefix x; be x[1..i]. The rank of a character c in string x is
defined as ranky(c) =1+ [{i: x[i] <c for 1 <i < |x|}|. For simplicity, we assume that all the numbers in a string are distinct.
When a number occurs more than once in a string, we can extend our character definition to a pair (character, index) so
that the characters in the string become distinct.

2.2. Natural representation of order relations

For a string x, the natural representation of the order relations can be defined as o (x) = ranky(x[1]) - ranky(x[2]) - --- -
ranky (x[|x|]).
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Function Description

OS-Insert(7, x, i) Insert (x[i],i) to T~

OS-Delete(T, x) Delete all the characters of string x from 7~
0S-Rank(7, c) Compute rank r of character c in 7

OS-Find-Prev-Index(7T, c) Find the index i of the largest character less than ¢
0S-Find-Next-Index(7,c)  Find the index i of the smallest character greater than c

Fig. 2. List of functions on 7 for dynamic order statistics.

Definition 2.1 (Order-preserving matching). Given a text T[1..n] € ¥* and a pattern P[1..m] € X*, T is matched with P at
position i if o (T[i —m + 1..i]) = o (P). Order-preserving matching is the problem of finding all positions of T matched
with P.

For example, let’s consider the two strings P = (33, 42,73,57,63,87,95,79) and T = (11, 15, 33, 21, 24, 50, 29, 36, 73,
85, 63,69, 78, 88,44, 62) shown in Fig. 1. The natural representation of P is o (P) = (1, 2,5, 3,4, 7,8, 6), which is matched
with T[4..11] = (21, 24, 50, 29, 36, 73, 85, 63) at position 11 but is not matched at the other positions of T.

As the rank of a character depends on the substring in which the rank is computed, the string matching algorithms with
O (n+m) time complexity such as KMP, Boyer-Moore [18,20] cannot be applied directly. For example, the rank of T[4] is 3
in T[1..8] but is changed to 1 in T[4..11].

The naive pattern matching algorithm is applicable to order-preserving matching if both the pattern and the text are
converted to natural representations. If we use the order-statistic tree based on the red-black tree [18], computing the rank
of a character in the string x takes O (log|x|), which makes the computation time of the natural representation o (x) be
O (|x|log|x|). The naive order-preserving matching algorithm computes o (P) in O(mlogm) time and o (T[i..i + m — 1]) for
each position i € [1.n —m + 1] of text T in O(mlogm) time, and compares them in O(m) time. As n —m + 1 positions are
considered, the total time complexity becomes O((n —m + 1) - (mlogm)) = O (nmlogm). As this time complexity is much
worse than O (n 4+ m) which we can obtain from the exact pattern matching, sophisticated matching techniques need to be
considered for order-preserving matching as discussed in later sections.

3. O(nlogm) algorithm
3.1. Prefix representation

An alternative way of representing order relations is to use the rank of each character in the prefix. Formally, the prefix
representation of order relations can be defined as w(x) = ranky, (x[11) - ranky, (x[2]) - --- - ranky, (x[|x[]). For example, the
prefix representation of P in Fig. 1is u(x)=(1,2,3,3,4,6,7,6).

An advantage of the prefix representation is that w(x)[i] can be computed without looking at characters in x[i 4+ 1..|x|]
ahead of position i. By using the order-statistic tree 7 for dynamic order statistics [18] containing characters of x[1..i — 1],
M (x)[i] can be computed in O (log|x|) time. Moreover, the prefix representation can be updated incrementally by inserting
the next character to 7 or deleting the previous character from 7. Specifically, when 7 contains the characters in x[1..i],
u(x[1..i + 1])[i + 1] can be computed if x[i + 1] is inserted to 7, and w(x[2..i])[i — 1] can be computed if x[1] is deleted
from 7.

Note that there is a one-to-one mapping between the natural representation and the prefix representation. The number
of all the distinct natural representations for a string of length n is n! which corresponds to the number of permutations,
and the number of all the distinct prefix representations is n! too, since there are i possible values for the i-th character
of a prefix representation, which results in 1-2- ... -n =n! cases. For any natural representation of a string, there is a
conversion function which returns the corresponding prefix representation and vice versa.

The prefix representation of P is easily computed by inserting each character P[k] to 7 consecutively as in COMPUTE-
PREFIX-REP. The functions of the order-statistic tree are listed in Fig. 2. We assume that the index i of x is stored with x[i]
in OS-INSERT(T, X, i) to support OS-FIND-PREV-INDEX(7, ¢) and OS-FIND-NEXT-INDEX(7, c) where the index i of the largest
(smallest) character less than (greater than) c is retrieved.

COMPUTE-PREFIX-REP(P)

m <« |P|
T« ¢
OS-INSERT(T, P, 1)
w(P)[1] « 1
fork < 2tom
OS-INSERT(T, P, k)
M (P)[k] < OS-RANK(T, P[k])
return (1 (P)

OO U B WN =
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The time complexity of COMPUTE-PREFIX-REP is O (mlogm) as each of OS-INSERT and OS-RANK takes O (logm) time and
there are O (m) such operations.

3.2. KMP failure function

The KMP-style failure function ;v of order-preserving matching is well-defined under our prefix representation:
max{k: w(P[1..k])=u(P[q—k+1..q]) for1 <k <gq} ifg>1

ﬂ[q]:{o ifg=1

Intuitively, 7 means that the longest proper prefix w(P[1..k]) of P is matched with w(P[q — k + 1..q]) which is the
prefix representation of the suffix of P[1..q] with length k. For example, the failure function of P in Fig. 1 is w[1..m] =
(0,1,2,1,2,3,3,1). As shown in Fig. 3, w[6] = 3 implies that the longest prefix of w(P[1..8]) that is matched with the
prefix representation of any suffix of P[1..6] = (33,42,63,57,63,87) is w(P[1..x[6]]) = (1,2, 3).

The construction algorithm of 7 will be given in Section 3.4.

3.3. Text search

The failure function 7 can accelerate order-preserving matching by filtering mismatched positions as in the KMP algo-
rithm. Let’s assume that @ (P)[1..q] is matched with w(T[i —q..i — 1])[1..q] but a mismatch is found between w(P)[q + 1]
and u(T[i—q..i]))[q+1]. w[q] means that u(P)[1..7r[q]] is already matched with w(T[i —m[q]..i —1])[1..7[q]] and matching
can be continued at P[mr[q] + 1] comparing w(P)[m[q] + 1] with w(T[i — 7 [q]..i])[7r[q] + 1]. Since P[1..7r[q]] is the longest
prefix whose order is matched with the suffix of T[i — q..i — 1], the positions from i —q to i — 7w[q] — 1 can be skipped
without any comparisons as in the KMP algorithm. Fig. 3 shows how 7 can filter mismatched positions. When w(P)[1..6]
is matched with w(T[1..6]) but w(P)[7] is different from w(T[1..7])[7], we can skip the positions from 1 to 3 of P and
continue by comparing w(P)[4] with w(T[4..7])[4].

KMP-ORDER-MATCHER describes the order-preserving matching algorithm assuming that w(P) and m are efficiently com-
puted. In KMP-ORDER-MATCHER, for each index i of T, g is maintained as the length of the longest prefix of P where
M1(P)[1..q] is matched with u(T)[i — q..i — 1]. At that time, the order-statistic tree 7 contains all the characters of
T[i —q..i — 1]. If the rank of T[i] in 7 is not matched with that of P[q + 1], q is reduced to mw[q] by deleting all the
characters T[i — q..i — w[q] — 1] from 7. If P[q+ 1] and T[i] have the same rank, i.e., £ (P)[1..q + 1] = u(T)[i — q..i], the
length of the matched pattern g is increased by 1. When q reaches m, the relative order of T[i —m — 1..i] matches the one
of P.

KMP-ORDER-MATCHER(T, P)
1 n <« |T|,m <« |P|

2  (P) < COoMPUTE-PREFIX-REP(P)

3 1 < KMP-CoMPUTE-FAILURE-FUNCTION(P, ((P))
4 T <« ¢

5 q<«0

6 fori < 1ton

7 OS-INSERT(T, T, i)

8 r < OS-RaNk(T, T[i])

9 while ¢ > 0 and r # u(P)[q + 1]
10 OS-DELETE(T, T[i —q..i — w[q] — 1])
1 q < mlql
12 r < OS-RANK(T, T[i])
13 q<—q+1
14 ifg=m
15 print “pattern occurs at position” i
16 OS-DELETE(T, T[i —q..i — mw[q] — 1])
17 q < mlql

KMP-ORDER-MATCHER is different from the original KMP algorithm used for exact pattern matching in that it matches
order relations instead of characters. For each position i of T, the prefix representation w(T[i — q..i])[q + 1] of T[i] is
computed using the order-statistic tree 7. If w(T[i —q..i])[q + 1] does not match w(P)[q + 1], q is reduced to m[q] so that
P implicitly shifts right by q — 7 [q].

Another subtle difference is that we do not check whether r = ;(P)[q + 1] before increasing g by 1 in line 13 (cf. [18,20])
because it should be satisfied automatically. From the condition of the while loop in line 9, g =0 or r = u(P)[q + 1] in
line 13, and if g =0, w(P)[1] =1 for any pattern and it matches any text of length 1.
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T |1]15[33]21]24]50[29]36]73|85]63]69] 7988 ]44]62]

P [33]42]73]57]63]87]95]79]

ey [1]2]3]3]4[6[7]6]
wrnsp [1]2 33 a o Il ]
\—'—I
[6]=3

W(T[4..11]) {123 4T6[7]6]
shift: 6-n[6] —
[8]=1

W(T[11..16]) fi]2]s]4]1]2]

shift: 8-n[8]

Fig. 3. Example of text search.

index 1 23 45 6 7 8
P [33]42]73]57]63]87]95] 9]
«» DGR
n 01 2 1 2 3 2
u(P14..7) Lifofsfal [ [ [ ]
u(P) [1]2]3 0 4]6]7]6]
‘—'—/
3]=2
2. 7) BT TTT]
shift: 3-n[3]
u(P) [il2[8]s]4]6]7]6]
n[7]€3

Fig. 4. Example of computing failure function.

The time required in KMP-ORDER-MATCHER, except for the computation of the prefix representation of P and the con-
struction of the failure function s, can be analyzed as follows. Each OS-INSERT, OS-RANK is done in O(logm) time while
OS-DELETE takes O (logm) time per character deletion. The number of calls to OS-INSERT is n, and the number of deletions is
at most n, which makes the total time of deletions O (nlogm). In the same way, the number of calls to OS-RANK is bounded
by 2n, n for new characters, and the other n for the computation of rank after reducing g, and thus the total cost of OS-RANK
calls is also O(nlogm). To sum up, the time for KMP-ORDER-MATCHER can be bounded by O (nlogm) except for the external
functions.

3.4. Construction of KMP failure function

The construction of failure function 7 can be done similarly to the text matching phase of the KMP algorithm, where
each element r[q] is computed by using the previous values 7 [1..q — 1].

KMP-CoMPUTE-FAILURE-FUNCTION describes the construction algorithm of 7. It first tries to compute 7[q] starting from
the match of w(P[1..7[q — 1]]) and w(P[q — 7w[q — 1]..q — 1]). If w(P[1..w[q — 1]+ 1D[x[q — 1]+ 1] = u(Plq — 7[q —
11..qD)[w (g — 1]+ 1], set w[q] = [q — 1] + 1. Otherwise, it tries another match for 7 [ [1..q — 1]], and repeats until 7r[q] is
computed.

Fig. 4 shows an example of computing the failure function of P in Fig. 1 in which 7 [7] is being computed. Starting
from q = [6] = 3, KMP-ORDER-MATCHER tries to match w(P[4..8])[4] with @(P)[4] but it fails. Then, q is decreased to
q=m[3]=2 and it tries to match w(P[5..8])[3] with ©(P)[3] and it succeeds. 7 [7] is assigned to 7 [3] + 1, and the next
iteration is started with g = 7 [7].
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KMP-CoMPUTE-FAILURE-FUNCTION(P, (P))

1 m <« |P]
2 T« ¢

3  OS-INSErT(T, P, 1)

4 k<0

5 7w[1] < 0

6 forqg<«2tom

7 OS-INSERT(T, P, q)

8 r < OS-RaNK(T, P[q])

9 while k > 0 and r # u(P)[k + 1]
10 OS-DELETE(T, P[q — k..q — w[k] — 1])
11 k <« m[k]
12 r < OS-RANK(T, P[q])
13 k<~ k+1
14 wlq] < k

15 return

The time complexity of KMP-CoMPUTE-FAILURE-FUNCTION can be analyzed in a similar way to KMP-ORDER-MATCHER, by
replacing the length of T with the length of P, which results in O (mlogm) time.

3.5. Correctness and time complexity

The correctness of our matching algorithm is due to the failure function being defined the same way as the original KMP
algorithm. From the analysis of Sections 3.3 and 3.4, it is clear that our algorithm does not miss any matching position.

The total time complexity is O (nlogm), with O (mlogm) to compute the prefix representation and failure function and
O(nlogm) for text search. Compared with O(n) time of the exact pattern matching, our algorithm has the overhead of
0 (logm) factor, which is optimized in Section 4.

3.6. Remark on the good/bad character heuristics

Variants of the Boyer-Moore algorithm [11,22,29] may be designed for order-preserving matching in which case the pre-
fix representation should be replaced by the suffix representation to facilitate accessing the pattern from right to left during
matching. The good suffix heuristic [11] is well-defined with the suffix representation, but the bad character heuristic [11]
is not applicable since the character itself has nothing to do with order relations. As the performance of the Boyer-Moore
algorithm is significantly dependent on the bad character heuristic, we cannot expect that the gain of Boyer-Moore variants
for order-preserving matching is comparable to that of the original Boyer-Moore algorithm for the exact matching. Moreover,
some practical algorithms such as the Horspool [22] and the Sunday algorithms [29] cannot be applied to order-preserving
matching because they employ only the bad character heuristic for filtering mismatched positions.

4. 0(n+ mlogm) algorithm
4.1. Nearest neighbor representation

The text search of the previous algorithm can be optimized further to remove the O (logm) overhead of computing rank
functions. In the text search phase of the O (nlogm) algorithm, the rank of each character T[i] in T[i —q — 1..i] is computed
to check whether it is matched with w(P)[q + 1] when we know that w(P)[1..q] is matched with w(T[i —q + 1..i]). If we
can do it directly without computing u(P)[g + 1], the overhead of the operations on 7 can be removed.

The main idea is to check whether the order of each character in the text matches that of the corresponding character
in the pattern by comparing the characters themselves without computing rank values explicitly. When we need to check
if a character x[i] of string x has a specific rank value r in prefix x;, we can do it by checking x[j] < x[i] < x[k] where x[j]
and x[k] are characters having rank values nearest to r.

The nearest neighbor representation of the order relations can be defined as follows. For a string x, let v, (x)[1..|x|] and
vp(¥)[1..]x|] be the nearest neighbor representations of x where v, (x)[i] is the index of the largest character of x;_; less

than x[i] and v,(x)[i] is the index of the smallest character of x;_; greater than x[i]. Let vy, (x)[i] = —oo if there is no
character less than x[i] in x;_1 and let v, (x)[i] = oo if there is no character greater than x[i] in xj_1. Let x[—o0] = —o0 and
Xx[oo] = 0.

The advantage of the nearest neighbor representation is that we can check whether each text character is matched
with the corresponding pattern character in constant time without computing its rank. Fig. 5 shows the nearest neighbor
representation of the order relations of P in Fig. 1. Suppose that p(P)[1..i—1] = u(T[1..i—1]) for 1 <i <m. If T[vy(P)[i]] <
T[i] < T[va(P)[i]], then w(P[1..i]) = u(T[1..i]). For example, w(T[1])[1] must be matched with w(P)[1] since T[v,(P)[1]] <
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i 1 2 3 4 5 6 7 8
w(P)[i] 1 2 3 3 4 6 7 6
m[i] 0 1 2 1 2 3 3 1
vp(P)[i] —00 1 2 2 4 3 6 3
vn(P)[i] [ee) o) [ee) 3 3 [ee) [ee) 6

Fig. 5. Example of the nearest neighbor representation of the pattern P.

¢ < T[vp(P)[1]] for any character c, which coincides with the fact that the rank in the text of size 1 is always 1. For the
second character, «(P)[2] =2 and T[2] should be larger than T[1] to have w(T[1..2])[2] = 2, which is represented by
Vvp(P)[11 =1 and v,;(P)[1] = co. In this way, for each character, we can decide whether the order of T[i] in u(T[1..i]) is
matched with that of P[i] in w(P[1..i]) by checking T[v,(P)[i]] < T[i] < T[va(P)[i]].

CoMPUTE-NEAREST-NEIGHBOR-REP describes the construction of the nearest neighbor representation of the string P,
where 7 contains the characters of Py_q in each step of the loop. We assume that OS-FIND-PREV-INDEX(7,c) (and
OS-FIND-NEXT-INDEX(7, ¢)) returns the index i of the largest (smallest) character less than (greater than) c, and returns
—o0 (00) if there is no such character.

COMPUTE-NEAREST-NEIGHBOR-REP(P)
m <« |P|
T < ¢
OS-INSERT(T, P, 1)
(p(P)[1], va(P)[1]) < (—00, 00)
fork < 2tom
OS-INSERT(T, P, k)
Vp (P)[k] <= OS-FIND-PREV-INDEX (T, P[k])
Vn(P)[k] <= OS-FIND-NEXT-INDEX(7T, P[k])
return (v, (P), vy(P))

O oo WN =

The time complexity of COMPUTE-NEAREST-NEIGHBOR-REP is O (mlogm) since it has m iterations of the loop and there are
3 function calls on the order-statistic tree 7 taking O (logm) time in each iteration.

4.2. Text search

With the nearest neighbor representation of pattern P and the failure function 7, we can simplify the text search so
that it does not involve 7 at all. For each character T[i], we can check w(P)[q + 1] = u(T[i —q..i1)[q + 1] by comparing
T[i] with the characters in T[i — g..i] whose indexes correspond to v,(P)[q + 1] and v,(P)[q + 1] in P. Specifically, if
Tli—q+vpy(P)[q+1]1 =11 < T[i] < T[i — q+ va(P)[q + 1] — 1], then w(P)[q+ 1] = u(T[i —q..i])[q + 1] must be satisfied
since the relative order of T[i] in T[i — q..i] is the same as that of P[q+ 1] in P[1..q + 1].

To illustrate this, let us return to the text matching example in Fig. 3. When @ (P)[1..6] is matched with w(T[1..6]), we
can check if w(T[1..7])[7] is matched with w(P)[7] by checking if T[7 — 6+ vp(P)[7] —1] < T[7] < T[7 — 6 4+ vu(P)[7] — 1],
which can be done in constant time. As T[6] = 50, T[oo] = oo but T[7] =29, T[7] should have a rank lower than w(P)[7],
thus @(T[1..7]) cannot be matched with w(P)[1..7].

KMP-ORDER-MATCHER2 describes the text search algorithm using the nearest neighbor representation. The algorithm is
essentially equivalent to the previous one but simpler since no rank function has to be calculated explicitly.

KMP-ORDER-MATCHER2(T, P)

1 n<« |T|,m <« |P|
2 (vp(P),vp(P)) < COMPUTE-NEAREST-NEIGHBOR-REP(P)
3 7 < KMP-COMPUTE-FAILURE-FUNCTION2(P, vy (P), vy (P))
4 qg<«0

5 fori«< 1ton
6 (1, j2) < (vp(P)Ig + 11, va(P)Ig + 11)

7 while ¢ >0 and (T[i]<T[i—q+j1 —1] or T[i]>T[i —q+ j2 — 1])
8

9

q < mlq]

(J1, J2) < (vp(P)[g + 1], va(P)[g + 1])
10 q<q+1
11 ifg=m
12 print “pattern occurs at position” i

13 q < mlq]
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The time complexity of KMP-ORDER-MATCHER2 except for the precomputation of the prefix representation and the failure
function is O (n) because only one scan of the text is required in the for loop as in the KMP algorithm.

4.3. Construction of KMP failure function

The construction of the failure function 7 is an extension of KMP-COMPUTE-FAILURE-FUNCTION in Section 3.4 where
the rank function on 7 is replaced by a comparison of characters using v,(P) and v,(P) as in KMP-ORDER-MATCHER2.
KMP-CoMPUTE-FAILURE-FUNCTION2 describes the construction of the KMP failure function from the nearest neighbor repre-
sentation of pattern P.

KMP-CoMPUTE-FAILURE-FUNCTION2(P, vy (P), v (P))
1 m <« |P|
2 k<0
3 w[1] <« 0
4 forq <« 2tom

5 (J1,J2) < Wp(P)[k+ 11, va(P)[k + 11)

6 while k > 0 and (P[q] < P[i —k+ j1 — 1] or P[q] > P[i —k+ j» —1])
7 k < m[k]

8 (J1, J2) < (p(P)[k+ 1], vo(P)[k + 1])

9 k<~—k+1

10 wlq] < k

11 return

The time complexity of KMP-CoMPUTE-FAILURE-FUNCTION2 is O (m) from the linear scan of the pattern, similarly to KMP-
ORDER-MATCHER2.

4.4. Correctness and time complexity

The correctness of our optimized algorithm is derived from that of the previous O (nlogm) algorithm since the difference
of the text search is only on rank comparison logic and each comparison result is the same as the previous one. The same
failure function m is applied and the order-statistic tree 7 is only used to compute the nearest neighbor representation
of P.

The time complexity of the overall algorithm is O(n + mlogm): O(mlogm) time for the computation of the nearest
neighbor representation of the pattern, O(m) time for the construction of 7 function, and O(n) time for text search.
O(n+mlogm) is almost linear to the text length n when n is much larger than m, which is a typical case in pattern
matching problems. The only non-linear factor logm comes from computing the representation of order relations.

4.5. Generalized order-preserving matching

A generalization of order-preserving matching is possible with some practical applications if we consider only the orders
of the last k characters for a given k < m. For example, in the stock market scenario of finding a period when a share price
of a company dropped consecutively for 10 days and then went up for the next 5 days, it is sufficient to compare each share
price with the share price of the day before, which corresponds to k = 1. Our solution is easily applicable to this generalized
problem if the order-statistic tree 7 is maintained to keep only the last k inserted characters. The time complexity of the
0 (nlogm) algorithm that uses prefix representation becomes O (nlogk), and that of the O (n + mlogm) algorithm that uses
nearest neighbor representation becomes O (n + mlogk), since the number of characters in 7 is bounded to k. Both time
complexities are reduced to O(n) if k is a constant number.

4.6. Remark on the alphabet size

We have no restrictions on the numbers in X, insofar as a comparison of two numbers can be done in constant time. In
the case of X' ={1,2,..., U}, however, the order-statistic tree in COMPUTE-NEAREST-NEIGHBOR-REP can be replaced by a van
Emde Boas tree [30] or y-fast trie [31] which takes O (U) space and requires O (loglogU) time per operation.

5. 0 (nlogm) algorithm for multiple patterns

In this section, we consider a generalization of order-preserving matching for multiple patterns.

Definition 5.1 (Order-preserving matching for multiple patterns). Given a text T[1..n] € X* and a set of patterns P =
{P1, Py, ..., Py} where P; € X* for all 1 <i < w, order-preserving matching for multiple patterns is the problem of finding
all positions of T matched with any pattern in P.
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P={23,35, 15, 53,47}
P,={66,71,57,79,84,94} .. @ »,
P,={43, 51, 62, 73}

¢¢¢¢¢
_____

o
o

o

Fig. 6. Example of AC automaton and failure function.

We propose a variant of the Aho-Corasick algorithm [1] for the multiple pattern case whose time complexity is
0 (nlogm) where m is the sum of the lengths of the patterns.

5.1. Prefix representation of the Aho-Corasick automaton

From the prefix representation of the given patterns, an Aho-Corasick automaton can be defined to match order relations.
The Aho-Corasick automaton consists of the following components.

. Q: a finite set of states where qo € Q is the initial state.

g:Q x Ny — Q U {fail}: a forward transition function. Ny, is the set of integers in [1..m].

7 :Q — Q: a failure function.

d: Q — Z: the length of the prefix represented by each state q.

. P:Q — P: a representative pattern of each state g which has the prefix represented by q. If there are more than one
such patterns, we use the pattern with the smallest index.

. out : Q — P U{¢}: the output pattern of each state q. If ¢ does not match any pattern, out[q] = ¢, otherwise out[q] = P;

for the longest pattern P; such that the prefix representation of P; is matched with that of any suffix of P[q][1..d[q]].

DA W N

[*)]

Given the set of patterns, an Aho-Corasick automaton of the prefix representations is constructed from a trie in which
each node represents a prefix of the prefix representation of some pattern. The nodes of the trie are the states of the
automaton and the root is the initial state qg, representing the empty prefix. Each node q is an accepting state if out[q] # ¢,
which means that g corresponds to the prefix representation of the pattern out[q]. The forward transition function g is
defined so that g[q;, o] =q; when q; corresponds to w(Py)[1..d[q;]] and q; corresponds to w(Py)[1..d[q;]+ 1] for some
pattern Py where o = w(Py)[d[q;]]. The trie can be constructed in O (m) time once the prefix representations of the patterns
are given.

Fig. 6 shows an example of an Aho-Corasick automaton with three patterns Py = {23, 35, 15, 53, 47}, P, = {66, 71,57, 79,
84,93}, P3 ={43,51,62,73}. The automaton is constructed from the prefix representations w(P1) = (1,2,1,4,4), u(P3) =
(1,2,1,4,5,6) and u(P3) = (1,2, 3,4) regardless of the pattern characters. For example, g5 represents the prefix (1, 2, 1, 4),
which matches with @ (P1) and w(P3) even though P1[1..4] and P,[1..4] have different characters.

Compared to the original Aho-Corasick algorithm, we have two additional values d[q] and P[q] for each state g. Both
of them are recorded to maintain the order-statistic tree per pattern during the construction of the failure function sr. The
details are described in the following sections.

5.2. Aho-Corasick failure function

The failure function 7 can be defined so that 7 [q;] = q; if and only if the prefix represented by q; (i.e. w(P[q;DI[1..d[q;]11)
is the prefix representation of the longest proper suffix of P[q;] (i.e. u(P[q;][k..d[g;]]) for some k). For example, for gg in
Fig. 6 with the prefix (1,2,1,4,5) of u(P2), w[qs] = q4 because P;[3..5] is the longest proper suffix of P, whose prefix
representation (1, 2, 3) is the prefix of some pattern. Here, P[q4] = P3 and u(P[q4])[1..3] = (1, 2, 3) which is matched with

w(P2[3..5]).
5.3. Text search

A variant of the Aho-Corasick algorithm can be designed for the multiple pattern matching of order relations as in
AC-ORDER-MATCHER-MULTIPLE. Assuming that the prefix representations of all the patterns and the failure function are
available, it scans the text and follows the Aho-Corasick automaton until there is no matched forward transition. Then, it
follows the failure function until a successful forward transition is found. In the initial state qq, it never fails to follow the
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forward transition because any character can be matched at the first character. Whenever it reaches one of the accepting
states, it outputs the position of the text and the matched pattern.

The order-statistic tree 7 is maintained to compute each rank value adaptively. For every forward transition, T[i] is
inserted to 7, and for every backward transition 7[q;] = q;, the oldest d[g;] — d[q;] characters are deleted from 7. The
rank of T[i] should be calculated again for each backward transition after 7 is properly updated. For example, when
AC-ORDER-MATCHER-MULTIPLE reaches state g3 of Fig. 6 after reading the first three characters from the text (20, 30, 10, 15),
T contains {20, 30, 10}, which is the prefix of the text represented by gs3. As there is no forward transition from g3 that
matches the rank 2 of the next character 15, the state is changed to q; by following the failure transition. The oldest
d[g3] —d[q1] = 2 characters are deleted from 7 so that it contains {10} at the next step. The state is then changed to g, by
following the forward transition 2 and inserting 15 to 7 (which is rank 2 in {10, 15}).

AC-ORDER-MATCHER-MULTIPLE(T, P)

1 n<|T|,w <~ |P|
fori < 1tow

3 (P;) <— COMPUTE-PREFIX-REP(P;)

4 (m,out) < COMPUTE-AC-FAILURE-FUNCTION(P)
5 T« ¢

6 g < qo
7

8

9

\S)

fori < 1ton
OS-INSERT(T, T, i)
r < OS-RaNKk(7, T[i])

10 while g[q,r] = fail

11 OS-DELETE(T, T[i —d[q]..i —d[m[q]] — 1])
12 q < 1|[q]

13 r < OS-RANK(T, T[i])

14 q < glg,r]

15 if out[q] # ¢

16 print “pattern” out[q] “occurs at position” i

The time complexity of AC-ORDER-MATCHER-MULTIPLE is O (nlogm) (except for the preprocessing of the patterns) because
it does n insertions in 7 and thus at most n deletions can take place. Checking g[gq,r] in line 10 takes O (logm) time as
well. As each operation takes O (logm) time and there are O (n) operations, the total time is O (nlogm).

5.4. Construction of Aho-Corasick failure function

CoMPUTE-AC-FAILURE-FUNCTION shows the construction algorithm of the Aho-Corasick failure function. As in the original
Aho-Corasick algorithm, it computes the failure function in the breadth first order of the automaton.

The main difference from the original Aho-Corasick algorithm is that we maintain multiple order-statistic trees simulta-
neously (one per pattern) because the rank value of a character depends on the pattern in which the rank is calculated. Let
T (P;) denote the order-statistic tree for the pattern P;, and assume that a representative pattern P[q] is recorded for each
node g such that q is reachable by some prefix of the prefix representation of P[q].

We maintain each order-statistic tree 7 (P[q]) of P[q] so that it contains the characters of the longest proper suffix
of P[q][1..d[q]] whose prefix representation is a prefix of the prefix representation of some pattern. Consider a forward
transition g[q;, o] = q; such that m[q;] is available but 7[q;] is to be computed. If P[q;] = P[q;], 7 (Plgi:]) = T (P[qg;])
and 7 (P[q;j]) already contains the characters of P[q;]. It can be updated by inserting P[q;][d[q;]] and deleting some
characters from 7 (P[q;]). However, if P[q;] # P[q;], we should initialize 7 (P[q;]) by inserting characters of the suffix
of P[q;][1..d[q;] — 1] so that it has the same number of characters as 7 (P[q;]). 7 (P[q;]) can then be updated as in the
other case. In both cases, the rank of P[q;][d[q;]] in T (P[q;]) is computed again to find the correct forward transition
starting from m[q;].

For instance, let’s consider node g5 in Fig. 6. P[qs] = P1 and 7 (P1) has {15,53} since d[m[q5]] = 2. When m[q7] is
computed, it inserts 47 to 7 (P1), which has rank 2 in {15,53,47}, and tries to follow the rank 2 from m[qs5] = q2. As
there is no forward transition of q; with label 2, it follows the failure function w[q2] = q; and deletes 15 from 7 (Py).
Similarly, there is no forward transition of the rank 1 of 47 in {53, 47} from ¢, it reaches qo. Finally, it follows the forward
transition of gq; by the rank 1 of 47 in {47} and 7 [q7] = ¢q1. On the other hand, when m[qs] is computed, P[qg] = P, and
P[qs] # P[q7]. The last d[m[qgs]] characters of P,[1..d[qs5]] are inserted to 7 (P3), and 7 (P2) becomes {57,79}. Then, the
next character 84 of P[qg] is inserted to 7 (P3), which is rank 3 of {57, 79, 84}, and it follows the rank 3 from g, which
results in 7 [qg] = qa.
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ComPUTE-AC-FAILURE-FUNCTION(T, P)

1 m[qol < qo
2 for each P; e P
TPi) < ¢
4 out[q;] < P; for the last state q; of P;
5 for each q; € Q (BFS order)
6 for each « such that g[q;, o] # fail
7
8

w

q;j < glgi, o], ¢ < P[q;]ldIq;]]
if P[q;i] # Plq;]

9 for k < 1 to d[m[q;i]]
10 OS-INSerRT(T (P[q;1), Plg;1, digi] — dlm[qi]l + k)
11 OS-INserT(T (Plq;]), Plg;l, dlg;D
12 r < OS-RANK(T (P[g;]). c)
13 dp < qi, qn < 7[qi]
14 while glqp, r] = fail
15 OS-DELETE(T (Plq;]), Plg;1li — dlgp] + 1..i —d[gn]])
16 r < 0S-RANK(T (P[g;]), )
17 qp < qn, qn < 7(qn]
18 7lq;] < glqn, ]
19 if out[gj]l=¢
20 out[q;] < out[m[q;]]

21 return (7T, out)

The time complexity of COMPUTE-AC-FAILURE-FUNCTION can be analyzed as follows. The number of all forward transitions
is at most m and there are at most m insert operations on 7 because each character of a pattern can be inserted either in
line 10 or in line 11, but not in both. The number of deleted characters cannot exceed the number of inserted characters
and the number of rank computations is also bounded by m. As the number of operations is bounded by O (m) and each
takes O (logm), the total time complexity is O (mlogm).

5.5. Correctness and time complexity

The correctness of our algorithm can be easily derived from the correctness of the original Aho-Corasick algorithm and
our version for the single pattern case.

The total time complexity is O (nlogm): O(mlogm) to compute the prefix representation and failure function, and
O (nlogm) for text search. Compared with O (nlog|X|) time of the exact pattern matching where X is the alphabet, our
algorithm has a comparable time complexity since | X'| for numeric strings can be as large as m.

Note that we cannot remove logm factor from the above time complexity as in the single pattern case since O (logm)
time has to be spent at each state to find the forward transition to follow even with the nearest neighbor representation.

6. Conclusion

We have introduced order-preserving matching and defined the prefix representation and the nearest neighbor representation
of order relations of a numeric string. By using these representations, we developed an O(n 4+ mlogm) algorithm for sin-
gle pattern matching and an O (nlogm) algorithm for multiple pattern matching. We believe that our work opens a new
direction in string matching over numeric strings, with many practical applications.
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