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1. Introduction

Permutation patterns have been studied vigorously due to their applications in time series data analysis [2,4,7,10–13]. 
Given a text T and a pattern P over a numeric alphabet �, the permutation pattern matching problem1 is to find every 
subsequence of T whose relative order between all characters (numbers) is the same as that of P [3,5]. For example, when 
P = (5, 3, 4, 8, 9, 6, 7) and T = (10, 6, 2, 7, 15, 16, 12, 19, 13, 11, 3) are given, P has the same relative order as those of two 
subsequences of T , i.e., T ′ = (10, 6, 7, 15, 16, 12, 13) and T ′′ = (10, 2, 7, 15, 16, 12, 13). The first character ‘10’ in T ′ (resp. 
in T ′′) is the 3rd smallest character as ‘5’ in P , the second character ‘6’ in T ′ (resp. ‘2’ in T ′′) is the smallest character as ‘3’ 
in P , and so on.

The above (classical) permutation pattern matching problem is shown to be NP-hard [3] and other various types of 
permutation patterns and corresponding problems have been introduced and have been studied. For example, when cer-
tain characters in the pattern should be adjacent in the text, we call it vincular permutation pattern matching problem 
which is also shown to be NP-hard [5]. When all the characters in the pattern should be adjacent in the text, we call 
it order-preserving pattern matching problem (also known as consecutive permutation pattern matching problem). For the order-
preserving pattern matching problem, Kubica et al. [13] and Cho et al. [7] gave O (n +m logm)-time algorithms for a general 
alphabet and gave O (n + m)-time algorithms for an integer alphabet when |T | = n and |P | = m.

In this paper, we focus on the boxed-mesh permutation pattern matching (BPPM for short) problem, another variation 
of permutation pattern matching problem. In BPPM, the ith character c in a (numeric) string x can be represented as 

✩ A preliminary version of this paper appeared in CPM 2015 [8].
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Fig. 1. Representations of P = (5, 3, 4, 8, 9, 6, 7) and T = (10, 6, 2, 7, 15, 16, 12, 19, 13, 11, 3) in two-dimensional planes, where the x-axis is labeled with 
indexes of characters and the y-axis is labeled with ranks of characters.

a point of coordinate (i, c) on a two-dimensional plane. Consider a rectangle R whose coordinates of four apexes are 
(h1, v1), (h1, v2), (h2, v1) and (h2, v2). Assume R includes k number of points each of which represents a character of x. 
Then we can construct a subsequence x′ of x (|x′| = k) by concatenating all the characters represented as points in R from 
left to right. In this case, we say that R represents x′ and x′ is a boxed subsequence of x. Note that not every subsequence of x
is a boxed subsequence. For the previous example, all characters of P and those of T can be represented in two-dimensional 
planes, respectively, as shown in Fig. 1. All the points of T ′ = (10, 6, 7, 15, 16, 12, 13) are included in the shaded rectangle of 
the right plane and there are no other points in the shaded rectangle. Thus, T ′ is a boxed subsequence of T . But for another 
subsequence T ′′ = (10, 2, 7, 15, 16, 12, 13), no rectangle can include all the points of T ′′ without including any other points 
of T . Thus, T ′′ is not a boxed subsequence of T . Avgustinovich et al. [2] firstly introduced the concept of boxed-mesh 
patterns and studied pattern avoidance, i.e., counting the number of permutations not containing a given pattern. Bruner 
et al. [5] introduced the BPPM problem and showed that it can be solved in O (n3) time when |T | = n as follows. First, they 
fix two characters c1 and c2 (c1 < c2) in T . Then, they check whether the boxed subsequence including c1 and c2 as the 
smallest character and the largest character, respectively, is an occurrence of P in T .

In this paper, we propose an O (n2 log m)-time algorithm for the BPPM problem using O (m) space. Our algorithm fixes a 
position i and then finds all the occurrences of P in T whose first character is the ith character of T based on interesting 
properties of boxed subsequences. To speed up pattern matching, our algorithm uses preprocessed information on P and 
order-statistic trees [9]. (Recently, independent work for the BPPM problem was performed by Amit et al. [1]. Their algorithm 
runs in O (n2) time using O (n) space.)

This paper is organized as follows. In Section 2, we give some definitions and describe the previous works related to the 
BPPM problem. In Section 3, we present our O (n2 log m)-time algorithm for the BPPM problem, and then we present an 
algorithm for preprocessing P in Section 4. Finally, we conclude in Section 5.

2. Preliminaries

First, we give some basic definitions and notations on strings. Let � denote the set of characters such that a comparison 
of two characters can be done in constant time. A string x over the alphabet � is a sequence of characters derived from the 
alphabet �. For simplicity, we assume that the characters of x are all distinct. We denote the length of x by |x| and the ith 
character by x[i] (1 ≤ i ≤ |x|). A sequence (x[i1], x[i2], . . . , x[ik]) of characters in x is called a subsequence of x when 1 ≤ i1 <

i2 < · · · < ik ≤ |x|. A substring of x denoted by x[i.. j] is a subsequence of consecutive characters (x[i], x[i + 1], . . . , x[ j]) in x. 
A prefix of x is a substring of x starting at the first position. For a string x, we denote by min(x) (resp. max(x)) the smallest 
(resp. largest) character in x. For a string x and a character c, we denote by x ⊕ c the concatenation of x and c. The rank of 
a character c for a string x is defined as Rank(c, x) = 1 + |{i : x[i] < c, 1 ≤ i ≤ |x|}|.

We formally define the order-isomorphism [13]. Two strings x and y of the same length over � are called order-
isomorphic, written x ≈ y, if

x[i] ≤ x[ j] ⇔ y[i] ≤ y[ j] for all 1 ≤ i, j ≤ |x|.
If two strings x and y are not order-isomorphic, we write x �≈ y. For a string x, the prefix representation μx is defined as 
μx[i] = Rank(x[i], x[1..i]) (1 ≤ i ≤ |x|) and it can be computed in O (|x| log |x|) time using an order-statistic tree [9], which 
is our main tool.2 For example, the prefix representation for P in Fig. 1 is μP = (1, 1, 2, 4, 5, 4, 5) as shown in Table 1. We 
can check order-isomorphism of two strings using their prefix representations. For two strings x and y over �, x ≈ y if and 

2 On the Word RAM model, μx can be computed in O (|x|√log |x|) time [6].
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Table 1
μP and π for P = (5, 3, 4, 8, 9, 6, 7).

i 1 2 3 4 5 6 7

P [i] 5 3 4 8 9 6 7
μP [i] 1 1 2 4 5 4 5
π [i] 0 1 2 3 4 4 5

only if μx = μy [12]. Since we mainly use the prefix representation μP of the given pattern P in our algorithm, we omit 
the subscript P in μP if not confusing.

Given a text T [1..n] and a pattern P [1..m], we say that P occurs at (i, j) of T if there exists a boxed subsequence T ′ of T
such that T [i] and T [ j] are the first and last characters of T ′ , respectively, and T ′ ≈ P . Also, we say that T ′ is an occurrence 
of P at (i, j) in T . In the previous example shown in Fig. 1, T ′ = (10, 6, 7, 15, 16, 12, 13) is an occurrence of P since T ′ is 
a boxed subsequence of T = (10, 6, 2, 7, 15, 16, 12, 19, 13, 11, 3) and T ′ ≈ P . Though the relative order between characters 
of T ′′ = (10, 2, 7, 15, 16, 12, 13) is the same as that of P , T ′′ is not an occurrence since it is not a boxed subsequence of T . 
Then the BPPM problem can be defined as follows.

Definition 1. Given a text T and a pattern P over �, the BPPM problem is to find all occurrences of P in T .

3. Boxed-mesh permutation pattern matching algorithms

3.1. Pivotal subsequences

We first give some basic notions and properties for our algorithm. For a boxed subsequence x′ of a string x, x′ is 
called a full-width boxed (for short, f-boxed) subsequence of x if x′ includes only and all the characters c of x such that 
min(x′) ≤ c ≤ max(x′). For example, a subsequence T ′ = (T [1], T [2], T [4], T [7]) = (10, 6, 7, 12) is an f-boxed subsequence of 
T [1..9] in Fig. 1. However, T ′ is not an f-boxed subsequence of T [1..10], since min(T ′) = 6 ≤ T [10] = 11 ≤ 12 = max(T ′) but 
T [10] is not a character in T ′ . Furthermore, for an f-boxed subsequence x′ of a string x, we define the lower boundary and 
the upper boundary of x′ for x as follows.

• The lower boundary of x′ for x, denoted by lb(x′, x), is the value of the largest character in x less than min(x′). If no 
such character exists, lb(x′, x) is −∞.

• The upper boundary of x′ for x, denoted by ub(x′, x), is the value of the smallest character in x greater than max(x′). If 
no such character exists, ub(x′, x) is ∞.

For the example in Fig. 1, lb(T ′, T [1..9]) = 2 and ub(T ′, T [1..9]) = 13 where T ′ = (10, 6, 7, 12). Note that lb(T ′, T [1..9]) �= 3
since ‘3’ (= T [11]) is not a character in T [1..9]. For another string T [1..8], the upper boundary of T ′ is ub(T ′, T [1..8]) = 15.

Given a pattern P , a boxed subsequence x′ of a string x is called a pivotal subsequence of x if the following three 
conditions are satisfied:

C1. x′ includes the first character of x,
C2. x′ is an f-boxed subsequence of x, and
C3. x′ is order-isomorphic to the prefix P [1..|x′|] of P , i.e., x′ ≈ P [1..|x′|].

For the example in Fig. 1, T ′ = (T [1], T [2], T [4], T [7]) = (10, 6, 7, 12) is a pivotal subsequence of T [1..9] since T ′ includes 
T [1] = 10, T ′ is an f-boxed subsequence of T [1..9], and T ′ = (10, 6, 7, 12) ≈ P [1..4] = (5, 3, 4, 8). As another example, 
T ′′ = (T [1], T [2], T [4], T [10]) = (10, 6, 7, 11) is a pivotal subsequence of T [1..11]. Note that the last character of x may 
not be included in x′ and the shortest pivotal subsequence is x[1]. The following lemmas show the pivotal subsequences 
of x are all of distinct lengths.

Lemma 1. For fixed k and r, there exists at most one f-boxed subsequence x′ of a string x such that |x′| = k, x′[1] = x[1], and 
Rank(x′[1], x′) = r.

Proof. Since x′[1] = x[1] and Rank(x′[1], x′) = r, the number of characters in x′ smaller than x[1] is r −1. Also, since |x′| = k, 
the number of characters in x′ larger than x[1] is k − r. Furthermore, since x′ is an f-boxed subsequence of x, x′ consists 
of x[1], the r − 1 largest characters in x smaller than x[1] and the k − r smallest characters in x larger than x[1]. Therefore, 
x′ is unique (if exists). �
Lemma 2. For a string x and a fixed k, there exists at most one pivotal subsequence of x of length k.
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Proof. Let x′ be a pivotal subsequence of x of length k. By definition of the pivotal subsequence, x′[1] = x[1] and x′ is an 
f-boxed subsequence of x. Since x′ ≈ P [1..k], Rank(x′[1], x′) = Rank(P [1], P [1..k]). Therefore, x′ is unique by Lemma 1. �

From Lemma 2, we can get the following corollary on the uniqueness of an occurrence at (i, j).

Corollary 1. For fixed i and j (1 ≤ i < j ≤ n), there exists at most one boxed subsequence T ′ of T such that T [i] and T [ j] are the first 
and the last characters of T ′, respectively, and T ′ ≈ P .

Proof. Since T [i] and T [ j] are the first character and the last character in T ′ , respectively, T ′ is an f-boxed subsequence 
of T [i.. j]. Thus, T ′ is a unique pivotal subsequence of T [i.. j] of length m by Lemma 2. �
3.2. Algorithm

We present our algorithm for finding all the occurrences of a pattern P [1..m] in a text T [1..n]. Our algorithm consists 
of n − m + 1 phases and in each Phase i (1 ≤ i ≤ n − m + 1), it finds all the occurrences of P whose first character is T [i]. 
Since each phase is completely independent of the other phases, we devote our attention to a fixed phase (Phase 1).

Phase 1 consists of n − 1 steps, from Step 2 to Step n. In Step j, the algorithm finds an occurrence of P (if ex-
ists) whose first character is T [1] and the last character is T [ j] using pivotal subsequences. Let Z j be the set of all 
the pivotal subsequences of T [1.. j] (1 ≤ j ≤ n) and let lz j be the longest subsequence in Z j such that |lz j| < m. 
(lz1 is simply T [1] since T [1] is the only pivotal subsequence of T [1].) For P and T [1..9] in Fig. 1, Z9 = {(10),

(10, 7), (10, 6, 7), (10, 6, 7, 12), (10, 6, 7, 12, 13), (10, 6, 7, 15, 16, 12, 13)} and lz9 = (10, 6, 7, 12, 13) (note that the longest 
subsequence (10, 6, 7, 15, 16, 12, 13) in Z9 is not lz9 since its length is equal to m = 7). In Step j (2 ≤ j ≤ n), given lz j−1, 
we do the following.

• First, we decide whether P occurs at (1, j) or not. Assume that there exists an occurrence (say z′) of P whose first 
character is T [1] and the last character is T [ j]. Let z be the sequence obtained by deleting T [ j] from z′ , i.e., z′ = z⊕T [ j]. 
Then, z′ is a pivotal subsequence of T [1.. j] of length m and z is a pivotal subsequence of T [1.. j − 1] of length m − 1. 
Note that z is lz j−1 in this case. Thus, the occurrence z′ can be found simply by determining whether lz j−1 ⊕ T [ j] is a 
pivotal subsequence of T [1.. j] or not.

• Second, we compute lz j for the next step. Assume that we have Z j−1. From Z j−1, we can compute Z j by checking if, 
for every z ∈ Z j−1, z ⊕ T [ j] and z are pivotal subsequences of T [1.. j], which will be proven later (Lemma 3). Notice 
that our goal is to compute lz j but not Z j . Thus, for z ∈ Z j−1 in decreasing order of length, we repeat the check until 
z ⊕ T [ j] or z is a pivotal subsequence of T [1.. j].

To compute lz j in Step j, we need Z j−1. However, we do not maintain Z j−1 explicitly. Instead, we compute the 
pivotal subsequences z ∈ Z j−1 in decreasing order of length from lz j−1. The computation can be done efficiently us-
ing the π -function defined as follows for the given pattern P . Let Pq be the set of all the pivotal subsequences of 
P [1..q] (1 ≤ q ≤ m). Then, π [q] is the length of the longest subsequence x in Pq such that |x| < q. Obviously, P [1..q]
is the longest pivotal subsequence of P [1..q] and thus, π [q] is the length of the second longest sequence in Pq . For 
P [1..6] = (5, 3, 4, 8, 9, 6) in Fig. 1, P6 = {(5), (5, 4), (5, 3, 4), (5, 3, 4, 6), (5, 3, 4, 8, 9, 6)} and thus π [6] = 4. (See Table 1 in 
Section 2 for the entire π -function.) Assume that there exists a pivotal subsequence of length 6 in Z j−1 . Then, the value 4 
of π [6] informs us that there exists no pivotal subsequence of length 5 but there exists a pivotal subsequence of length 4 
in Z j−1.

Algorithm 1 shows a pseudocode of our algorithm. The first for loop (line 3) represents the phases and the second 
for loop (line 5) represents the steps in each phase. In Phase 1, we initialize z = lz1 (i.e., T [1]), Blb = lb(z, T [1]) = −∞, 
and Bub = ub(z, T [1]) = ∞, respectively (line 4). In Step j (2 ≤ j ≤ n), given lz j−1, lb(lz j−1, T [1.. j − 1]) and ub(lz j−1,

T [1.. j − 1]), we repeat the while loop (lines 6–17) until lz j is computed. In an iteration of the while loop, we consider a 
pivotal subsequence z ∈Z j−1 in decreasing order of its length by maintaining the following loop invariant:

At the beginning of each iteration of the while loop, z is a pivotal subsequence of T [1.. j − 1], Blb = lb(z, T [1.. j − 1])
and Bub = ub(z, T [1.. j − 1]).

Note that z = lz j−1 at the first iteration. Each iteration of the while loop consists of the following three stages. Let r =
Rank(T [ j], z).

1. First, we check if z ⊕ T [ j] ∈ Z j (line 8). If Blb < T [ j] < Bub and r = μ[ |z| + 1], then z ⊕ T [ j] ∈ Z j (Lemma 4). When 
z ⊕ T [ j] ∈Z j , we have two subcases.
• If |z| < m − 1 (line 9), then lz j = z ⊕ T [ j]. Hence, we append T [ j] to z (the Append operation) and terminate Step j

(break in line 9). In this case, since Blb < T [ j] < Bub and T [ j] is included in lz j , lb(lz j, T [1.. j]) and ub(lz j, T [1.. j]) for 
the next step are equal to the current Blb and Bub , respectively.
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Algorithm 1 Boxed-mesh permutation pattern matching.
1: Compute μ and π for P ;
2: m ← |P |, n ← |T |;
3: for i ← 1 to n − m + 1 do
4: z ← (T [i]), Blb ← −∞, Bub ← ∞; � Initialization
5: for j ← i + 1 to n do
6: while TRUE do � for z ∈ Z j−1 in decreasing order of length
7: r ← Rank(T [ j], z);

8: if Blb < T [ j] < Bub and r = μ[ |z| + 1] then � when z ⊕ T [ j] ∈ Z j

9: if |z| < m − 1 then Append(z, T [ j]), break; � z ← z ⊕ T [ j]
10: else print “P occurs at (i, j)”;

11: if r = 1 then Blb ← max(Blb, T [ j]), break; � when z ∈ Z j

12: else if r = |z| + 1 then Bub ← min(Bub, T [ j]), break;

13: else � ← π [ |z| ]; � when z ⊕ T [ j] �= lz j and z �= lz j

14: repeat
15: if P [1] > P [ |z| ] then Blb ← ExtractMin(z);
16: else Bub ← ExtractMax(z);
17: until |z| = �

• If |z| = m − 1 (line 10), then z ⊕ T [ j] is an occurrence at (i, j) but it is not lz j due to the length restriction that 
|lz j | < m. Hence, we continue to compute lz j .

For example, at the beginning Step 7, we are given z = lz6 = (10, 6, 7, 15, 16), Blb = lb(z, T [1..6]) = T [3] = 2, and 
Bub = ub(z, T [1..6]) = ∞. Since Blb < T [7] = 12 < Bub and r = Rank(T [7], z) = Rank(12, z) = 4 is equal to μ[ |z| + 1] =
μ[6] = 4, z ⊕ T [7] = (10, 6, 7, 15, 16, 12) is a pivotal subsequence of T [1..7]. It is also lz7 since |z| = 5 < m − 1 = 6.

2. Next, when z ⊕ T [ j] is not lz j , we check if z ∈ Z j (lines 11–12). If r = 1 or r = |z| + 1, i.e., T [ j] < min(z) or T [ j] >
max(z), then z ∈Z j (Lemma 5). In this case, lz j = z since |z| < m and, for the next step, Blb is updated to lb(z, T [1.. j])
from lb(z, T [1.. j − 1]) and Bub is updated to ub(z, T [1.. j]) from ub(z, T [1.. j − 1]), respectively. Hence, we set Blb =
max(Blb, T [ j]) (if r = 1) and Bub = min(Bub, T [ j]) (if r = |z| + 1), and terminate Step j (break in lines 11–12).
For example, consider Step 8, where z = lz7 = (10, 6, 7, 15, 16, 12), Blb = 2, and Bub = ∞. (In this case, z ⊕ T [8] /∈ Z8.) 
Since r is equal to |z| + 1 = 7 (i.e., T [8] = 19 > max(z) = 16), z is a pivotal subsequence of T [1..8] and lz8 = z. Since 
T [8] is not included in lz8, Bub for the next step is ub(lz8, T [1..8]) = min(∞, 19) = 19.

3. When z ⊕ T [ j] �= lz j and z �= lz j , we compute a new pivotal subsequence for the next iteration of the while loop, i.e., the 
longest sequence z′ in Z j−1 whose length is less than |z| (lines 13–17). Let � = π [ |z| ]. The new pivotal subsequence z′
can be obtained by deleting characters one by one from z until |z′| = � (Lemma 6). We delete min(z) if P [1] > P [ |z| ], 
and max(z) otherwise. Also, for the next iteration, we update Blb (= lb(z′, T [1.. j − 1])) when min(z) is deleted, and we 
update Bub (= ub(z′, T [1.. j − 1])) when max(z) is deleted.
For example, consider Step 9, where z = lz8 = (10, 6, 7, 15, 16, 12), Blb = 2, and Bub = 19. (Note that not only z ⊕
T [9] �= lz9 since |z| = m − 1 (lines 8–10) but also z �= lz9 since r = Rank(T [9], z) = Rank(13, z) = 5 (lines 11–12).) Since 
π [6] = 4, P [6] > P [1], and P [5] > P [1], z′ = (10, 6, 7, 12) is obtained by deleting the two largest characters from z, i.e., 
T [6] = 16 and T [5] = 15. Also, Bub is updated to ub(z′, T [1..8]) = T [5] = 15.

3.3. Analysis

We analyze the correctness of Algorithm 1. Lemma 3 shows that only a pivotal subsequence z of T [1.. j − 1] or z ⊕ T [ j]
can be a pivotal subsequence of T [1.. j].

Lemma 3. For z′ ∈Z j (2 ≤ j ≤ n), if z′ does not include T [ j], then z′ ∈Z j−1; otherwise (if z′ includes T [ j]), z ∈ Z j−1 where z is the 
sequence obtained by deleting T [ j] from z′ , i.e., z′ = z ⊕ T [ j].

Proof. First, consider the case when z′ does not include T [ j]. Since z′ is an f-boxed subsequence of T [1.. j] and z′ does not 
include T [ j], z′ is also an f-boxed subsequence of T [1.. j − 1]. Since z′ ∈Z j , z′ includes T [1] and z′ ≈ P [1..|z′|]. Hence, z′ is 
a pivotal subsequence of T [1.. j − 1].

Next, consider the case when z′ includes T [ j]. Since z′ = z ⊕ T [ j] is an f-boxed subsequence of T [1.. j], z is also an 
f-boxed subsequence of T [1.. j − 1]. Moreover, z ≈ P [1..|z|] since z′ = z ⊕ T [ j] ≈ P [1..|z| + 1]. Obviously, z includes T [1]. 
Hence, z is a pivotal subsequence of T [1.. j − 1]. �

By definition of Z j , Z j includes the occurrence of P (if exists) whose first and last characters are T [1] and T [ j], re-
spectively. Thus, we can get the following corollary from Lemma 3, which shows Algorithm 1 finds correctly the occurrence 
(1, j) (if exists) in Step j of Phase 1.
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Corollary 2. For an occurrence z′ of P at (1, j) in T , let z be the sequence obtained by deleting T [ j] from z′ , i.e., z′ = z ⊕ T [ j]. Then, 
z ∈Z j−1 .

The following two lemmas show conditions for z ⊕ T [ j] and z to be pivotal subsequences of T [1.. j] when z ∈Z j−1.

Lemma 4. For z ∈ Z j−1 (2 ≤ j ≤ n) such that |z| < m, let Blb = lb(z, T [1.. j − 1]), Bub = ub(z, T [1.. j − 1]), and r = Rank(T [ j], z). 
Then, z ⊕ T [ j] ∈Z j if and only if Blb < T [ j] < Bub and r = μ[ |z| + 1].

Proof. Let z′ = z ⊕ T [ j]. We first consider the case when Blb < T [ j] < Bub and r = μ[|z| + 1] = μ[|z′|]. Obviously, z′ in-
cludes T [1] and since Blb < T [ j] < Bub , z′ is an f-boxed subsequence of T [1.. j]. By definition of the rank, Rank(T [ j], z′) =
Rank(T [ j], z) = r. Since z ≈ P [1..|z|] and Rank(T [ j], z′) = Rank(P [|z′|], P [1..|z′|]) by the condition r = μ[|z′|], z′ ≈ P [1..|z′|]. 
Hence, z′ ∈Z j in this case.

Next, we consider the case when T [ j] ≤ Blb or T [ j] ≥ Bub or r �= μP [|z′|]. By definitions of Blb and Bub , there exist 
characters in T [1.. j − 1] whose values are Blb and Bub . Thus, if T [ j] ≤ Blb or T [ j] ≥ Bub , z′ is not an f-boxed subsequence 
of T [1.. j]. Moreover, if r �= μP [|z′|], then Rank(T [ j], z′) �= Rank(P [|z′|], P [1..|z′|]) and thus z′ �≈ P [1..|z′|]. Hence, z′ /∈ Z j in 
this case. �
Lemma 5. For z ∈Z j−1 (2 ≤ j ≤ n), z ∈Z j if and only if r = 1 or r = |z| + 1, where r = Rank(T [ j], z).

Proof. By definition of the rank, r = 1 if and only if T [ j] < min(z), and r = |z| + 1 if and only if T [ j] > max(z). (Note that 
T [ j] cannot be equal to min(z) and max(z) by the assumption that the characters of T are all distinct.) If T [ j] < min(z)
or T [ j] > max(z), the f-boxed subsequence z of T [1.. j − 1] is also an f-boxed subsequence of T [1.. j]. Obviously, z includes 
T [1] and z ≈ P [1..|z|]. Thus, in this case, z ∈ Z j . If min(z) ≤ T [ j] ≤ max(z), z is not an f-boxed subsequence of T [1.. j] and 
thus z /∈Z j . �

Lemma 3, Lemma 4, and Lemma 5 show that Algorithm 1 computes correctly lz j when pivotal subsequences z ∈ Z j−1
are given in decreasing order of length.

Next, we show that Algorithm 1 can compute correctly pivotal subsequences z ∈ Z j−1 in decreasing order of length in 
Step j of Phase 1.

Lemma 6. Given a pivotal subsequence z ∈ Z j−1 (2 ≤ j ≤ n), the repeat-until loop (lines 14–17) computes correctly the longest 
sequence in Z j−1 whose length is less than |z|.

Proof. Let � = π [|z|]. We first prove that the sequence z′ of length � computed by the repeat-until loop satisfies all the 
conditions for being a pivotal subsequence of T [1.. j − 1]. Let r� = Rank(P [1], P [1..�]). Then, since z ≈ P [1..|z|] and min(z)
(resp. max(z)) is deleted if P [1] > P [|z|] (resp. P [1] < P [|z|]) in the repeat-until loop, Rank(z′[1], z′[1..�]) is r� and thus z′
always includes z[1] = T [1]. Moreover, since z′ is obtained by deleting some largest characters and some smallest characters 
from the f-boxed subsequence z of T [1.. j − 1], z′ is also an f-boxed subsequence of T [1.. j − 1]. Finally, we show that 
z′ ≈ P [1..�]. Assume that z′ = (z[p1], . . . , z[p�]). Let P ′ = (P [p1], . . . , P [p�]). Then, z′ ≈ P ′ since z ≈ P [1..|z|]. Moreover, 
P ′ is an f-boxed subsequence of P [1..|z|] such that |P ′| = �, P ′[1] = P [1], and Rank(P ′[1], P ′) = r� (recall that r� is equal 
to Rank(z′[1], z′[1..�])). Meanwhile, by definition of π [|z|], there exists a pivotal subsequence P ′′ of P [1..|z|] of length �. 
Also, P ′′ is an f-boxed subsequence of P [1..|z|] such that |P ′′| = �, P ′′[1] = P [1], and Rank(P ′′[1], P ′′) = r� . That is, P ′′ and 
P ′ satisfy the same conditions and thus P ′′ is the same as P ′ by Lemma 1. Therefore, P ′ = P ′′ ≈ P [1..�] and thus z′ ≈ P ′ ≈
P [1..�]. Hence, z′ is a pivotal subsequence of T [1.. j − 1].

Next, we prove by contradiction that there exists no sequence z′ of length �′ (� < �′ < |z|) in Z j−1. Suppose that such 
sequence z′ exists. Since both z′ and z are pivotal subsequences of T [1.. j − 1] and |z′| < |z|, z′ is a subsequence of z
(otherwise, z′ is not an f-boxed subsequence of T [1.. j − 1]). Assume that z′ = (z[p1], . . . , z[p�′ ]). Let P ′ be the subsequence 
(P [p1], . . . , P [p�′ ]) of P [1..q]. Then, similarly to the above, it can be shown that P ′ is a pivotal subsequence of P [1..|z|], 
which contradicts the definition of π [|z|] since |P ′| = �′ > � = π [|z|]. Hence, there is no such sequence z′ . �

Therefore, we get the following lemma.

Lemma 7. Given the π -function, Algorithm 1 solves the BPPM problem correctly.

Now we analyze the time complexity of Algorithm 1 except for computing the π -function. In each iteration of the while 
loop (lines 6–17), all statements run at most once except for the repeat-until loop (lines 14–17). Only when the repeat-until 
loop is executed, the while loop is repeated. Moreover, in each iteration of the repeat-until loop, either ExtractMin or
ExtractMax (lines 15–16) is called. Let us consider how many times ExtractMax and ExtractMin are called in each phase. 
Whenever ExtractMax or ExtractMin is called, the length of z decreases by one. Moreover, the length of z increases at 
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Table 2
Rmin , Rmax and μ̃ for P = (5, 3, 4, 8, 9, 6, 7).

i 1 2 3 4 5 6 7

P [i] 5 3 4 8 9 6 7
Rmin 0 −1 −2 −2 −2 −2 −2
Rmax 0 0 0 1 2 3 4
μ̃ 0 −1 −1 1 2 1 2

Algorithm 2 Compute the π -function.
1: Compute the arrays Rmin , Rmax , and μ̃ for P ;
2: m ← |P |, π [1] ← 0;
3: for q ← 2 to m do
4: � ← q − 1, r ← μ̃[q]; � z = P [1..�] and r = rRank(P [� + 1], P [1..� + 1])
5: while TRUE do
6: if r = μ̃[ � + 1] and � < q − 1 then � when z ⊕ T [ j] ∈ Pq

7: π [q] = � + 1, break;
8: else if r < Rmin[�] or r > Rmax[�] then π [q] = �, break; � when z ∈ Pq

9: else � ← π [�]; � length of the next pivotal subsequence in Pq−1

most by one in each step (by Append in line 9) and thus it increases at most by n in each phase. Hence, ExtractMax and
ExtractMin runs O (n) times in each phase. Furthermore, each operation on z (Rank, Append, ExtractMax, and ExtractMin) 
can be performed in O (log m) time by maintaining z in an order-statistic tree [9]. Therefore, each phase takes O (n log m)

time. Finally, the prefix representation μ for P can also be computed in O (m log m) time as mentioned in Section 2. Hence, 
we get the following lemma.

Lemma 8. Given the π -function, the BPPM problem can be solved in O (n2 log m) time.

4. Computing the π -function

In this section, we describe how to compute the π -function. In our preliminary version [8], an O (m2 log m)-time algo-
rithm has been proposed. We improve it to run in O (m2) time. In our algorithm for computing the π -function, we use an 
r-rank defined as follows: For a character c and a string x, the r-rank of c for x, denoted by rRank(c, x), is the rank relative 
to the first character of x, i.e., rRank(c, x) = Rank(c, x) − Rank(x[1], x). Note that rRank(c, x) is positive if c > x[1], negative 
if c < x[1], and 0 if c = x[1].

Our algorithm for computing the π -function is similar to Phase 1 of Algorithm 1. Recall that π [q] (1 ≤ q ≤ m) is the 
length of the longest sequence in Pq whose length is less than q, and Pq (the set of the pivotal subsequences of P [1..q]) 
is defined similarly to Z j used in Phase 1 of Algorithm 1. Thus, for computing π [q] (2 ≤ q ≤ m), we use the subsequences 
in Pq−1 (by definition, π [1] = 0). That is, for subsequences z ∈ Pq−1 in decreasing order of length, we check if z ⊕ P [q]
and z are pivotal subsequences of P [1..q]. Differently from Algorithm 1, however, we do not compute explicitly each pivotal 
subsequence z, its lower boundary Blb , and its upper boundary Bub .

For each subsequence z ∈ Pq−1, we only maintain the length of z but not z itself. Note that a subsequence z� ∈ Pq−1 of 
a fixed length � is unique (Lemma 2). Thus, the subsequence z� can be specified by only its length. Let a� and b� be the 
numbers of characters in P [1..�] less and greater than P [1], respectively. Then, since z� ≈ P [1..�], z� consists of P [1], the a�

largest characters in P [1..q − 1] less than P [1], and the b� smallest characters in P [1..q − 1] greater than P [1]. For example, 
assume � = 2 and q = 6 in Fig. 1. Then, a2 = 1 and b2 = 0, and thus z2 ∈P6 consists of P [1] and P [3] since P [3] = 4 is the 
largest character in P [1..5] less than P [1] = 5. Let us define two arrays Rmin and Rmax as Rmin[�] = −a� and Rmax[�] = b�

(1 ≤ � ≤ m). Then, Rmin and Rmax can be computed using r-ranks as follows:

• Rmin[�] = rRank(cmin, P [1..�]) where cmin = min(P [1..�]), and
• Rmax[�] = rRank(cmax, P [1..�]) where cmax = max(P [1..�]).

Then, z� ∈ Pq−1 consists of the characters c in P [1..q − 1] such that Rmin[�] ≤ rRank(c, P [1..q − 1]) ≤ Rmax[�]. (Note that 
Rmin[�] and Rmax[�] are not dependent on q.) Also, we use μ̃ instead of μ, where μ̃ is the r-rank version of the prefix 
representation μ of P , i.e., μ̃[�] = rRank(P [�], P [1..�]) (1 ≤ � ≤ m). See Table 2 for an example.

Algorithm 2 shows a pseudocode of our algorithm for computing the π -function. First, we compute the arrays Rmin , Rmax , 
and μ̃, i.e., μ̃[�] = rRank(P [�], P [1..�]) (1 ≤ � ≤ m). Our algorithm consists of m − 1 steps, from Step 2 to Step m. Initially, 
we set π [1] = 0 (line 2). In Step q (2 ≤ q ≤ m), we maintain the length � of a sequence z ∈ Pq−1 and compute π [q]. Let 
lzq (1 ≤ q ≤ m) be the longest subsequence in Pq and lz′

q be the longest subsequence in Pq such that |lz′
q| < q. Since lzq is 

simply P [1..q], we do not need to compute lzq for the next step. Thus, at the beginning of Step q, we set � = q − 1 (i.e., 
z = P [1..q − 1]) and repeat the while loop (lines 5–9) until lz′

q is computed (the while loop always terminates, since for 
q > 1 and � = 1 the condition in line 8 is always true). In an iteration of the while loop, we consider a pivotal subsequence 
z ∈Pq−1 in decreasing order of length. Let r be μ̃[q] = rRank(P [q], P [1..q]). Each iteration consists of three stages.
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1. First, we check if whether z ⊕ P [q] ∈ Pq (line 6). Since the definition of Pq is the same as that of Z j in Section 3, we 
can check it in a similar way as in Algorithm 1. Since r is a rank for P [1..q] but not for z, however, we can avoid the 
comparison on the lower and upper boundaries of z (in line 8 of Algorithm 1). If � < q − 1, then z ⊕ P [q] is lz′

q , and 
thus we set π [q] = |lz′

q| = � + 1 and terminate Step q.
2. Next, we check if z ∈Pq (line 8), which can be done by comparing ranks as in Algorithm 1. If r < Rmin[�] or r > Rmax[�], 

then P [q] < min(z) or P [q] > max(z), and thus z ∈Pq . Since z is lz′
q , we set π [q] = |z| = � and terminate Step q.

3. If z ⊕ P [q] �= lz′
q and z �= lz′

q , we compute the length of a new pivotal subsequence for the next iteration of the while 
loop, i.e., the longest sequence z′ ∈Pq−1 whose length is less than �. The length of z′ is simply π [�] as in Algorithm 1. 
Note that π [�] is known in Step q since � < q, and we do not compute z′ explicitly.

Now we consider the correctness of Algorithm 2. Lemmas for Z j presented in Section 3.3 are also satisfied for Pq . Since 
we use ranks for P [1..q] but not for a pivotal subsequence z, however, we need the following two lemmas on conditions 
for z ⊕ P [q] and z to be pivotal subsequences of P [1..q] when z ∈Pq−1.

Lemma 9. For z ∈Pq−1 (2 ≤ q ≤ m), z ⊕ P [q] ∈Pq if and only if r = μ̃[ � + 1], where r = rRank(P [q], P [1..q]) and � = |z|.

Proof. Let z′ = z ⊕ P [q]. We first prove that z′ ∈ Pq if r = μ̃[ � + 1]. Obviously, z′ includes P [1]. Let Blb = lb(z, P [1..q − 1]). 
Since z is a pivotal subsequence of P [1..q −1] of length �, rRank(min(z), P [1..q −1]) = Rmin[�] and rRank(Blb, P [1..q −1]) =
Rmin[�] −1. Moreover, r = rRank(P [q], P [1..q]) = rRank(P [q], P [1..q −1]) by definition of the r-rank. Thus, if P [q] < Blb , then 
r < Rmin[�] − 1 and thus r cannot be equal to μ̃[ � + 1] since μ̃[ � + 1] ≥ Rmin[� + 1] ≥ Rmin[�] − 1. Therefore, Blb < P [q]
and similarly P [q] < Bub where Bub = ub(z, P [1..q − 1]), and thus z′ is an f-boxed subsequence of P [1..q]. Finally, since z′
is an f-boxed subsequence of P [1..q], rRank(P [q], z′) = rRank(P [q], P [1..q]) = r and, since r = μ̃[ � + 1], rRank(P [q], z′) =
rRank(P [� + 1], P [1..� + 1]). Since z ≈ P [1..�] and rRank(z′[� + 1], z′) = rRank(P [� + 1], P [1..� + 1]), z′ ≈ P [1..� + 1] (note 
that z′[� + 1] = P [q]). Hence, z′ ∈Pq .

Next, we prove that z′ /∈ Pq if r �= μ̃[ � + 1]. We only consider the case when z′ is an f-boxed subsequence of P [1..q]
(otherwise, z′ /∈ Pq). In this case, rRank(P [q], z′) = rRank(P [q], P [1..q]) = r. Since r �= μ̃[ � + 1], rRank(z′[� + 1], z′) �=
rRank(P [� + 1], P [1..� + 1]) and thus z′ �≈ P [1..� + 1]. Hence, z′ /∈Pq . �
Lemma 10. For z ∈Pq−1 (2 ≤ q ≤ m), z ∈Pq if and only if r < Rmin[�] or r > Rmax[�], where r = rRank(P [q], P [1..q]) and � = |z|.

Proof. By definition of the rank, rRank(P [q], P [1..q]) = rRank(P [q], P [1..q − 1]) and, since z is an f-boxed subsequence of 
P [1..q −1], rRank(P [q], P [1..q −1]) = rRank(P [q], z). Thus, r = rRank(P [q], z). Since z ≈ P [1..�], rRank(min(z), z) = Rmin[�], 
and thus P [q] < min(z) if and only if r = rRank(P [q], z) < Rmin[�]. Similarly, P [q] > max(z) if and only if r > Rmax[�]. If and 
only if P [q] < min(z) or P [q] > max(z), z ∈ Pq as already shown in the proof of Lemma 5. Therefore, z ∈ Pq if and only if 
r < Rmin[�] or r > Rmax[�]. �

We analyze the time complexity of Algorithm 2. Since μ̃ can be computed in O (m) time from the prefix representation μ
for P which can be computed in O (m log m) time, μ̃ can be computed in O (m log m) time. The arrays Rmin and Rmax can 
be computed in O (m) time by counting the number of characters less than and greater than P [1], respectively. The running 
time of each step is bounded by the while loop. In Step q, the length � of z is initialized to q − 1 and it decreases at each 
iteration of the while loop. Thus, each step takes O (m) time and therefore Algorithm 2 takes O (m2) time since it consists 
of m − 1 steps.

Lemma 11. The π -function for P of length m can be computed in O (m2) time.

From Lemma 8 and Lemma 11, we can get the following theorem.

Theorem 1. Given a text of length n and a pattern of length m, the BPPM problem can be solved in O (n2 log m) time.

5. Concluding remarks

In this paper, we have proposed a general framework for solving the BPPM problem which finds an occurrence by fix-
ing its first and last characters. The key of the framework is the notion of the pivotal subsequences and their relationship. 
A naive implementation of the framework leads to an O (n2m)-time algorithm, which was given in our preliminary ver-
sion [8]. In this paper, we have presented an O (n2 logm)-time algorithm (Algorithm 1) for the BPPM problem, which makes 
use of order-statistic trees and the preprocessed information on a pattern P , called the π -function. The π -function can be 
computed in O (m2 log m) time by applying Algorithm 1 for the pattern, which was also given in our preliminary version [8]. 
We have presented an improved algorithm (Algorithm 2) for computing the π -function which runs in O (m2) time.
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