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Given a text T and a pattern P , the order-preserving pattern matching (OPPM) problem 
is to find all substrings in T which have the same relative orders as P . The OPPM has 
been studied in the fields of finding some patterns affected by relative orders, not by their 
absolute values. In this paper, we present a method of deciding the order-isomorphism 
between two strings even when there are same characters. Then, we show that the bad 
character rule of the Horspool algorithm for generic pattern matching problems can be 
applied to the OPPM problem and we present a space-efficient algorithm for computing 
shift tables for text search. Finally, we combine our bad character rule with the KMP-based 
algorithm to improve the worst-case running time. We give experimental results to show 
that our algorithm is about 2 to 6 times faster than the KMP-based algorithm in reasonable 
cases.

© 2014 Published by Elsevier B.V.
1. Introduction

Given a text T and a pattern P , the order-preserving 
pattern matching (OPPM for short) problem is to find 
all substrings in T which have the same relative orders 
as P . For example, when P = (35, 40, 23, 40, 40, 28, 30)

and T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) are 
given, P has the same relative orders as the substring 
T ′ = (28, 32, 12, 32, 32, 20, 25) of T . In T ′ (resp. P ), the 
first character 28 (resp. 35) is the 4-th smallest, the sec-
ond character 32 (resp. 40) is the 5-th smallest, the third 
character 12 (resp. 23) is the smallest, and so on. See 
Fig. 1. The OPPM has been studied in the fields of finding 
some patterns affected by relative orders, not by their ab-
solute values. For example, it can be applied to time series 
analysis like share prices on stock markets and to musical 
melody matching of two musical scores [2].

✩ A preliminary version of this paper appeared in COCOA 2013 [1].
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Recently, several results were presented on the OPPM 
problem. For the OPPM problem, the order-isomorphism 
must be defined. Kim et al. [2] defined the order-isomor-
phism as the equivalence of permutations converted from 
strings with an assumption that all the characters in a 
string are distinct. Given T (|T | = n) and P (|P | = m), 
they proposed an algorithm for the OPPM problem running 
in O (n + m logm) time based on the Knuth–Morris–Pratt 
(KMP) algorithm [3]. Meanwhile, Kubica et al. [4] defined 
the order-isomorphism as the equivalence of all relative 
orders between two strings, and presented a method of 
deciding the order-isomorphism of two strings even when 
there are same characters. They independently proposed 
an algorithm for the OPPM problem based on the KMP 
algorithm running in O (n + m logm) time for a general al-
phabet and O (n + m) time for an integer alphabet whose 
characters can be sorted in linear time. More recently, 
Crochemore et al. [5] introduced order-preserving suffix 
trees, and they suggested an algorithm finding all occur-
rences of P in T running in O (m + z) time where z is the 
number of occurrences.

http://dx.doi.org/10.1016/j.ipl.2014.10.018
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Fig. 1. An OPPM example for P = (35,40,23,40,40,28,30) and T = (10,20,15,28,32,12,32,32,20,25,15,25).
In this paper, we propose fast algorithms for the OPPM 
problem based on the Horspool algorithm [6–8]. Experi-
mental results show that our algorithms are about 2 to 6 
times faster than the KMP-based algorithm in reasonable 
cases. Our contributions are as follows.

• We present a method of deciding the order-isomor-
phism between two strings even when there are same 
characters. We show that Kubica et al.’s method [4]
may decide it incorrectly when there are same charac-
ters.

• We show that the bad character rule can be applied to 
the OPPM problem by defining a group of characters as 
one character. Kim et al. [2] mentioned the hardness of 
applying the Boyer–Moore algorithm [9] to the OPPM 
problem. The good suffix rule could be well-defined 
but the bad character rule could not be directly ap-
plied to the OPPM problem.

• We present a space-efficient algorithm computing the 
shift table for text search based on a factorial num-
ber system. Let q be a size of the group of characters 
and |Σ | be the size of an alphabet. Then, our algo-
rithm uses O (q!) space for the shift table while the 
algorithms of [6,7] for the generic pattern matching 
problem use O (|Σ |q) space for the shift table.

• We also show that our bad character rule can be com-
bined with the KMP-based algorithm to improve the 
worst-case running time of [1]. The combined algo-
rithm guarantees O (n + m log m) time for a general 
alphabet and O (n + m) time for an integer alphabet 
in the worst case when q is a constant.

2. Preliminaries

Let Σ denote an alphabet and σ = |Σ |. Let |x| denote 
the length of a string x. A string x is described by a se-
quence of characters (x[0], x[1], . . . , x[|x| − 1]).

Now, we formally define the order-isomorphism and 
the order-preserving pattern matching problem. Two
strings x and y of the same length over Σ are called order-
isomorphic, written x ≈ y, if

x[i] ≤ x[ j] ⇔ y[i] ≤ y[ j] for 0 ≤ i, j < |x| [4].

If two strings x and y are not order-isomorphic, we write 
x �≈ y. Given a text T [0..n − 1] and a pattern P [0..m − 1], 
we say that T matches P at position i if T [i −m +1..i] ≈ P . 
In the previous example shown in Fig. 1, T matches P at 
Table 1
μP , LMaxP , LMinP , πP for P = (35, 40, 23, 40, 40, 28, 30).

i 0 1 2 3 4 5 6

P [i] 35 40 23 40 40 28 30
μP [i] 0 1 0 3 4 1 2
LMaxP [i] −1 0 −1 1 3 2 5
LMinP [i] −1 −1 0 1 3 0 0
πP [i] 0 1 1 2 1 1 2

position 9 because T [3..9] ≈ P . The order-preserving pat-
tern matching problem is to find all positions of T matched 
with P .

Let us define a prefix table μx of string x:

μx[i] = ∣∣{ j : x[ j] ≤ x[i] for 0 ≤ j < i
}∣∣.

See Table 1 for an example.

Lemma 1. For two strings x and y, if x ≈ y, then μx = μy .

Proof. By the assumption that x ≈ y, x[i] ≤ x[ j] ⇔ y[i] ≤
y[ j] for 0 ≤ i < j < |x|. Hence, μx = μy . �
Lemma 2. Assume that x[0..t] ≈ y[0..t]. For all 0 ≤ i, j ≤ t, 
if x[i] < x[ j], then y[i] < y[ j], and if x[i] = x[ j], then y[i] =
y[ j].

Proof. We first prove by contradiction the first proposition 
(when x[i] < x[ j]). Suppose that y[i] ≥ y[ j]. Then, by the 
definition of order-isomorphism, x[i] ≥ x[ j], which contra-
dicts the assumption that x[i] < x[ j].

Next, consider the case when x[i] = x[ j]. Then, since 
x[i] ≤ x[ j], y[i] ≤ y[ j] by the definition of order-isomor-
phism. Moreover, since x[ j] ≤ x[i], y[ j] ≤ y[i]. Since y[i] ≤
y[ j] and y[ j] ≤ y[i], y[i] = y[ j]. �

Kubica et al. [4] used location tables called LMax and 
LMin for the order information of prefixes of P : Given a 
string x, for i = 0, . . . , |x| − 1,

LMaxx[i] = j

if x[ j] = max
{

x[k] : k ∈ [0, i − 1], x[k] ≤ x[i]} and

LMinx[i] = j

if x[ j] = min
{

x[k] : k ∈ [0, i − 1], x[k] ≥ x[i]}.
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If there is no such j then LMinx[i] = −1 and LMaxx[i] =
−1. If more than one such j exists, we select the rightmost 
one among them. Intuitively, LMaxx[i] indicates the posi-
tion of the largest character which is not larger than x[i] in 
x[0..i − 1], and LMinx[i] indicates the position of the small-
est character which is not smaller than x[i] in x[0..i − 1]. 
See Table 1 for an example. Notice the location tables of 
x can be computed in O (|x|) time for an integer alphabet 
and in O (|x| log |x|) time for a general alphabet [4].

In the KMP algorithm, the failure function πx for x
is well-defined in the order-preserving pattern matching 
[2,4]. See Table 1 for an example.

3. New decision of order-isomorphism

In this section, we show that Kubica et al.’s method [4]
for deciding the order-isomorphism of two strings may be 
incorrect when there are same characters and present a 
new method which corrects Kubica et al.’s one. Kubica et 
al. [4] claimed that the order-isomorphism of two strings 
x and y could be decided using the location tables as fol-
lows.

Lemma 3. (See [4].) Assume that x[0..t] ≈ y[0..t], t < |x| −
1, |y| −1 and a = LMaxx[t +1], b = LMinx[t +1]. Then, x[0..t +
1] ≈ y[0..t + 1] ⇔ y[a] ≤ y[t + 1] ≤ y[b]. In case a or b is 
equal to −1, we omit the respective inequality in the condition.

This lemma may not hold when there are same char-
acters. For example, consider two strings x = (1, 3, 2) and 
y = (1, 2, 2). Then, y[LMaxx[i]] ≤ y[i] ≤ y[LMinx[i]] for all 
0 ≤ i < 3. But, by the definition of order-isomorphism, 
y �≈ x because x[1] � x[2] and y[1] ≤ y[2]. The reasons 
why Lemma 3 may not hold when there are same char-
acters in the given strings are as follows. In the proof 
of Lemma 3, to show x[0..t + 1] ≈ y[0..t + 1] (when 
y[a] ≤ y[t + 1] ≤ y[b]), they tried to prove that x[i] ≤
x[t + 1] ⇔ y[i] ≤ y[t + 1] for i ≤ t . For this, they proved 
that x[i] ≤ x[t + 1] ⇒ y[i] ≤ y[t + 1] and x[i] ≥ x[t + 1] ⇒
y[i] ≥ y[t + 1]. But, it is not equivalent to x[i] ≤ x[t + 1] ⇔
y[i] ≤ y[t + 1]. Instead of the latter x[i] ≥ x[t + 1] ⇒ y[i] ≥
y[t + 1], it should be proven that x[i] > x[t + 1] ⇒ y[i] >
y[t + 1]. As seen in our example, however, x[1] > x[2] �
y[1] > y[2].

We show a new lemma for deciding the order-isomor-
phism of two strings even when there are same characters.

Lemma 4. Assume that x[0..t] ≈ y[0..t], t < |x| − 1, |y| − 1
and a = LMaxx[t + 1], b = LMinx[t + 1]. Let p be the condition 
y[a] < y[t + 1] and q be the condition y[t + 1] < y[b]. Then, 
x[0..t + 1] ≈ y[0..t + 1] ⇔ (p ∧ q) ∨ (¬ p ∧ ¬ q). In case a or 
b is equal to −1, we assume the respective condition p or q is 
true.

Proof. Without loss of generality, we assume that a �= −1
and b �= −1. By definitions of LMax and LMin, x[a] ≤ x[b]
and also y[a] ≤ y[b] since a, b ≤ t and x[0..t] ≈ y[0..t]. 
Hence, (¬ p ∧ ¬ q), i.e., y[a] ≥ y[t + 1] ≥ y[b] is equivalent 
to y[a] = y[t + 1] = y[b] under the assumption x[0..t] ≈
y[0..t].
(⇒) We show x[0..t +1] ≈ y[0..t +1] ⇒ (p ∧q) ∨ (¬ p ∧
¬ q). By definitions of LMax and LMin, x[a] ≤ x[t +1] ≤ x[b]. 
We have two cases according to whether x[a] = x[b] or not.

• Case when x[a] = x[b]: In this case, x[a] = x[t + 1] =
x[b]. Since x[0..t + 1] ≈ y[0..t + 1], y[a] = y[t + 1] =
y[b] by Lemma 2, i.e., (¬ p ∧ ¬ q) is true.

• Case when x[a] < x[b]: We first prove that x[a] �=
x[t + 1] �= x[b]. Without loss of generality, suppose 
x[t + 1] = x[a]. Then, LMaxx[t + 1] = LMinx[t + 1] by 
definitions. Hence, x[a] = x[b], which contradicts the 
condition that x[a] < x[b]. Since x[a] �= x[t + 1] �= x[b], 
x[a] < x[t + 1] < x[b] and thus y[a] < y[t + 1] < y[b]
by Lemma 2, i.e., (p ∧ q) is true.

Therefore, x[0..t + 1] ≈ y[0..t + 1] ⇒ (p ∧ q) ∨ (¬ p ∧ ¬ q).
(⇐) We show x[0..t +1] ≈ y[0..t +1] ⇐ (p ∧q) ∨ (¬ p ∧

¬ q). Since we have already x[0..t] ≈ y[0..t] (assumption), 
to show x[0..t + 1] ≈ y[0..t + 1], we only need to prove 
that for all i ≤ t ,

x[i] ≤ x[t + 1] ⇔ y[i] ≤ y[t + 1] and

x[t + 1] ≤ x[i] ⇔ y[t + 1] ≤ y[i].

We only consider the former, i.e., x[i] ≤ x[t + 1] ⇔ y[i] ≤
y[t + 1]. (The latter can be proven in a similar way.)

We first show that x[i] ≤ x[t +1] ⇒ y[i] ≤ y[t +1] when 
(p ∧q) ∨ (¬ p ∧¬ q). If x[i] ≤ x[t +1], x[i] ≤ x[a] by the def-
inition of LMax and also y[i] ≤ y[a] since x[0..t] ≈ y[0..t]. 
Finally, by the hypothesis (p ∧ q) ∨ (¬ p ∧ ¬ q), y[a] ≤
y[t + 1]. Hence, we get y[i] ≤ y[t + 1].

Next, we show that y[i] ≤ y[t + 1] ⇒ x[i] ≤ x[t + 1]
when (p ∧ q) ∨ (¬ p ∧ ¬ q). We have two cases according 
to the hypothesis (p ∧ q) ∨ (¬ p ∧ ¬ q).

• Case when y[a] = y[t + 1] = y[b] (¬ p ∧ ¬ q): In this 
case, x[a] = x[b] by Lemma 2, and thus x[a] = x[t +
1] = x[b]. When y[i] ≤ y[a](= y[t + 1]), x[i] ≤ x[a](=
x[t +1]) since x[0..t] ≈ y[0..t]. Hence, y[i] ≤ y[t +1] ⇒
x[i] ≤ x[t + 1].

• Case when y[a] < y[t + 1] < y[b] (p ∧ q): We prove it 
by contradiction. Suppose there exists x[i] (0 ≤ i ≤ t) 
such that x[i] > x[t + 1] when y[i] ≤ y[t + 1]. Then, 
x[i] ≥ x[b] by the definition of LMin, and thus y[i] ≥
y[b] since x[0..t] ≈ y[0..t]. Moreover, since y[b] >
y[t +1], we have y[i] > y[t +1]. It contradicts the con-
dition that y[i] ≤ y[t + 1].

Therefore, (p ∧ q) ∨ (¬ p ∧ ¬ q) ⇒ x[0..t + 1] ≈
y[0..t + 1]. �

For example, let us consider again the two strings x =
(1, 3, 2), y = (1, 2, 2) and the location tables LMaxx =
(−1, 0, 0), LMinx = (−1, −1, 1) shown as the counter-
example. Obviously, x[0..1] ≈ y[0..1] by the definition of 
the order-isomorphism. Then, y �≈ x because y[LMaxx[2]] <
y[2] = y[LMinx[2]].
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4. Fast order-preserving pattern matching algorithm

4.1. Basic idea

Basically, our algorithm for the OPPM problem is based 
on the Horspool algorithm widely used for generic pattern 
matching problems. The Horspool algorithm for generic 
pattern matching problems uses the shift table for filtering 
mismatched positions to expect sublinear behavior. (This 
method is well known as the bad character rule.) That is, 
when a mismatch occurs, the generic Horspool algorithm 
shifts the pattern using the shift table by setting the char-
acter of T compared with P [m − 1] as the bad character. 
However, as mentioned in [2], it is not easy to apply the 
bad character rule to the OPPM problem since the order-
isomorphism is defined using the orders of characters, not 
just the character itself.

To solve the hardness of defining bad characters in the 
OPPM, we use the notion of q-grams, as in some vari-
ants [6,7] of the Horspool algorithm, which consider q con-
secutive characters as one character. Given a q-gram x and 
a pattern P of length m, let us define

lx = max{i | μP [i−q+1..i] = μx for q − 1 ≤ i < m − 1}.
Roughly, lx means the last position of P matching a 
q-gram x. Since, if μP [i−q+1..i] �= μx , P [i − q + 1..i] �≈ x by 
Lemma 1, we do not miss any position of P that matches 
the q-gram x. Then, the shift table D is defined as

D
[

f (x)
] = min(m − q + 1,m − lx − 1),

where f (x) is a fingerprint mapping a q-gram x to an 
integer. For space-efficiency of the shift table, differently 
from the variants [6,7] of the Horspool algorithm, we de-
fine f (x) using the prefix table μx and a factorial number 
system [10] as follows:

f (x) =
q−1∑

k=0

μx[k] · k!.

Note that since there are i + 1 possible values for the i-th 
element of the prefix table, we can use the factorial num-
ber system [10,11]. Since the prefix tables are uniquely 
mapped to integers from 0 to q! − 1 [10,11], our shift ta-
ble D needs O (q!) space.

4.2. Search algorithm

Our algorithm consists of two steps. In the first step, we 
compute the location tables LMaxP , LMinP and the shift 
table D of pattern P . As mentioned above, the location 
tables can be computed in O (m log m) time for a general 
alphabet and can be computed in O (m) time for an integer 
alphabet [4]. To compute D , all the fingerprints of q-grams 
of P must be computed. For all the q-grams of P , prefix ta-
bles can be computed in O (m q log q) time using dynamic 
order-statistics trees [2] for a general alphabet and can be 
computed in O (m q) time using word-encoded sets [11] for 
an integer alphabet where σ = 2�w/q�−1 and w is the word 
size. Then, after computing all the prefix tables, all the 
fingerprints can be computed in O (m q) time by Horner’s 
rule [3]. Finally, D can be computed in O (q! + m q log q)
Fig. 2. Searching P = (35, 40, 23, 40, 40, 28, 30) in T = (10, 20, 15, 28, 32,

12, 32, 32, 20, 25, 15, 25).

time [6,7]. Note that we need O (q!) time for initialization 
of D . The first step takes O (q! + m q log q + m logm) for a 
general alphabet.

Algorithm 1 shows the pseudo-code of our algorithm 
searching for P in T using the shift table D . Suppose we 
check if P matches T [i − m + 1..i]. We first compare the 
last q-grams of P and T [i − m + 1..i] using their finger-
prints, i.e., f (P [m − q..m − 1]) and f (T [i − q + 1..i]). If 
they are the same, we check the order-isomorphism of P
and T [i −m + 1..i] character by character using LMaxP and 
LMinP (Lemma 4). Otherwise, we do not compare P and 
T [i − m + 1..i] because T [i − m + 1..i] cannot be order-
isomorphic to P by Lemma 1. Then, we shift P forward by 
D[ f (T [i − q + 1..i])]. We repeat this until P reaches the 
rightmost of T . Fig. 2 shows how Algorithm 1 works on 
the previous example shown in Fig. 1. We first compare 
the fingerprints f (T [4..6]) = 4 and f (P [4..6]) = 2. Since 
they are distinct, we shift P by D[ f (T [4..6])] = D[4] = 3. 
Next, since f (T [7..9]) and f (P [4..6]) are the same, we 
compare P and T [3..9] using Lemma 4. Since P ≈ T [3..9], 
Algorithm 1 reports the position 9 as an occurrence. Since 
the second step takes O (n m + n q log q) time for a gen-
eral alphabet, Algorithm 1 takes O (n m +n q log q +q!) time 
overall. For an integer alphabet of size σ = 2�w/q�−1 where 
w is the word size, Algorithm 1 takes O (n m + n q + q!)
time.

4.3. Improving the worst-case complexity

We can improve the worst-case running time of Al-
gorithm 1 by combining with the KMP-based algorithm. 
A similar approach was used in [12] for generic pattern 
matching. Algorithm 2 shows the pseudo-code of our im-
proved version consisting of two parts: the Horspool-based 
algorithm (lines 6 to 8) and the KMP-based algorithm 
(lines 9 to 13). Initially, we run the Horspool-based algo-
rithm until a match of fingerprints occurs. If fingerprints of 
q-grams of P and T do not match (line 6), we continue to 
run the Horpool-based algorithm. But, when they match, 
we run the KMP-based algorithm to check whether P oc-
curs at position i (lines 10–12) and to compute the amount 
of a pattern shift j − πP [ j − 1] (line 13). If j �= 1, we con-
tinue to run the KMP-based algorithm; otherwise, we run 
the Horspool-based algorithm again.

Now we analyze the time complexity of Algorithm 2. 
For a general alphabet, the preprocessing step (line 1) 
runs in O (q! + m q log q + m log m) time since the failure 
function πP can be computed in O (m) time [4,2] us-
ing Lemma 4. Note that at most n − m + 1 fingerprints
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Algorithm 1
1: Preprocess D, LMaxP , LMinP

2: m ← |P |, n ← |T |, t ← f (P [m − q..m − 1])
3: i ← m − 1
4: while i < n do
5: c ← f (T [i − q + 1..i])
6: if c = t then � Compare the last q-grams
7: if T [i − m + 1..i] ≈ P then
8: print “pattern occurs at position” i
9: i ← i + D[c] � Shift P by D[c]

Algorithm 2
1: Preprocess D, LMaxP , LMinP , πP

2: m ← |P |, n ← |T |, t ← f (P [m − q..m − 1])
3: i ← m − 1, j ← 1
4: while i < n do
5: if j = 1 then
6: while (c ← f (T [i − q + 1..i])) �= t do � Horspool-based algorithm
7: i ← i + D[c]
8: if i ≥ n then return
9: s ← i − m + 1

10: while j < m and P [0.. j] ≈ T [s..s + j] do � KMP-based algorithm
11: j ← j + 1

12: if j = m then print “pattern occurs at position” i
13: i ← i + ( j − πP [ j − 1]), j ← max(1, πP [ j − 1])

Table 2
Search times (in seconds) for 1,000 random patterns in a random text of length 5,000,000.

σ m 5 10 15 20

q 3 3 4 5 3 4 5 3 4 5

230 OKMP 39.9 39.9 39.7 39.9
OHq 29.3 17.5 13.3 15.2 15.6 8.9 8.9 15.3 7.2 6.5
OHy 32.1 19.6 13.7 15.0 17.9 9.2 8.8 17.6 7.4 6.5

10 OKMP 39.0 39.1 38.9 38.9
OHq 29.0 17.4 13.4 15.2 15.6 9.1 9.0 15.3 7.3 6.6
OHy 30.9 19.8 13.8 15.1 18.0 9.3 8.9 17.7 7.5 6.5

4 OKMP 39.5 39.0 39.0 39.2
OHq 31.2 18.8 14.3 15.6 17.0 9.9 9.3 16.6 8.2 7.0
OHy 33.0 21.7 15.1 15.6 19.7 10.4 9.3 19.1 8.6 7.0

2 OKMP 38.1 38.3 38.1 38.2
OHq 38.1 24.6 19.2 18.3 21.7 14.4 12.0 21.0 12.3 9.2
OHy 38.2 27.3 20.7 19.0 25.1 15.9 12.5 24.2 13.3 9.6
of T are computed, the Horspool-based algorithm takes 
O (n q log q) time in total. Since the KMP-based algorithm 
takes O (n + m log m) time [4,2] in total, Algorithm 2 takes 
O ((m + n) q log q + q! + m logm) time overall. For an in-
teger alphabet where σ = 2�w/q�−1 and w is the word 
size, the preprocessing step takes O (q! + m q) time as 
explained above. The Horspool-based algorithm and the 
KMP-based algorithm take O (n q) time and O (n) time, re-
spectively, Algorithm 2 takes O ((m + n) q + q!) time in 
total.

5. Experimental results

We conducted experiments to compare the practical 
performance of our algorithms and the KMP-based algo-
rithm. Our Horspool-based algorithm and the worst-case 
improved algorithm are denoted by OHq and OHy, respec-
tively. The KMP-based algorithm, denoted by OKMP, was 
implemented based on the algorithms of [2,4]. We used 
a naive approach to compute the fingerprints instead of 
using dynamic order-statistics trees or word-encoded sets 
because they are less practical when implemented. All al-
gorithms were implemented in C++ and performed on a 
Windows 8 PC (64 bit) with Intel Core i7 3820 processor 
and 32 GB RAM.

We tested for a random text T of length n = 5,000,000
from an integer alphabet and searched for 1,000 random 
patterns of length m = 5, 10, 15, 20, respectively. We per-
formed experiments with varying q from 3 to 5 and σ =
230, 10, 4, 2. Note that when m = 5, we performed tests for 
the case only when q = 3 because if q is almost the same 
as m, q-gram technique has no effect on speedup.

Table 2 shows search times. As the pattern length m
becomes longer, OHq and OHy run faster compared to 
OKMP. Especially, for example, when σ = 230, m = 20, 
and q = 5, OHq and OHy are about 6 times faster than 
OKMP. However, as σ decreases, OHq and OHy do not 
work well compared to OKMP, for example, when σ = 2, 
m = 10, and q = 5, they are about 2 times faster than 
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OKMP. The reason why our algorithms are relatively slower 
in this case is because they are based on the Horspool al-
gorithm which works better as patterns are longer and σ
is larger.
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