
Information Processing Letters 115 (2015) 397–402
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A fast algorithm for order-preserving pattern matching ✩

Sukhyeun Cho a, Joong Chae Na b, Kunsoo Park c, Jeong Seop Sim a,∗
a Department of Computer and Information Engineering, Inha University, Incheon 402-751, South Korea
b Department of Computer Science and Engineering, Sejong University, Seoul 143-747, South Korea
c School of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2014
Received in revised form 27 September
2014
Accepted 29 October 2014
Available online 1 November 2014
Communicated by Tsan-sheng Hsu

Keywords:
Analysis of algorithms
Order-preserving pattern matching
Order-isomorphism
Horspool algorithm
KMP algorithm

Given a text T and a pattern P , the order-preserving pattern matching (OPPM) problem
is to find all substrings in T which have the same relative orders as P . The OPPM has
been studied in the fields of finding some patterns affected by relative orders, not by their
absolute values. In this paper, we present a method of deciding the order-isomorphism
between two strings even when there are same characters. Then, we show that the bad
character rule of the Horspool algorithm for generic pattern matching problems can be
applied to the OPPM problem and we present a space-efficient algorithm for computing
shift tables for text search. Finally, we combine our bad character rule with the KMP-based
algorithm to improve the worst-case running time. We give experimental results to show
that our algorithm is about 2 to 6 times faster than the KMP-based algorithm in reasonable
cases.

© 2014 Published by Elsevier B.V.
1. Introduction

Given a text T and a pattern P , the order-preserving
pattern matching (OPPM for short) problem is to find
all substrings in T which have the same relative orders
as P . For example, when P = (35, 40, 23, 40, 40, 28, 30)

and T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) are
given, P has the same relative orders as the substring
T ′ = (28, 32, 12, 32, 32, 20, 25) of T . In T ′ (resp. P), the
first character 28 (resp. 35) is the 4-th smallest, the sec-
ond character 32 (resp. 40) is the 5-th smallest, the third
character 12 (resp. 23) is the smallest, and so on. See
Fig. 1. The OPPM has been studied in the fields of finding
some patterns affected by relative orders, not by their ab-
solute values. For example, it can be applied to time series
analysis like share prices on stock markets and to musical
melody matching of two musical scores [2].

✩ A preliminary version of this paper appeared in COCOA 2013 [1].

* Corresponding author. Tel.: +82 32 860 7455.
E-mail address: jssim@inha.ac.kr (J.S. Sim).
http://dx.doi.org/10.1016/j.ipl.2014.10.018
0020-0190/© 2014 Published by Elsevier B.V.
Recently, several results were presented on the OPPM
problem. For the OPPM problem, the order-isomorphism
must be defined. Kim et al. [2] defined the order-isomor-
phism as the equivalence of permutations converted from
strings with an assumption that all the characters in a
string are distinct. Given T (|T | = n) and P (|P | = m),
they proposed an algorithm for the OPPM problem running
in O (n + m logm) time based on the Knuth–Morris–Pratt
(KMP) algorithm [3]. Meanwhile, Kubica et al. [4] defined
the order-isomorphism as the equivalence of all relative
orders between two strings, and presented a method of
deciding the order-isomorphism of two strings even when
there are same characters. They independently proposed
an algorithm for the OPPM problem based on the KMP
algorithm running in O (n + m logm) time for a general al-
phabet and O (n + m) time for an integer alphabet whose
characters can be sorted in linear time. More recently,
Crochemore et al. [5] introduced order-preserving suffix
trees, and they suggested an algorithm finding all occur-
rences of P in T running in O (m + z) time where z is the
number of occurrences.

http://dx.doi.org/10.1016/j.ipl.2014.10.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jssim@inha.ac.kr
http://dx.doi.org/10.1016/j.ipl.2014.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.10.018&domain=pdf

398 S. Cho et al. / Information Processing Letters 115 (2015) 397–402
Fig. 1. An OPPM example for P = (35,40,23,40,40,28,30) and T = (10,20,15,28,32,12,32,32,20,25,15,25).
In this paper, we propose fast algorithms for the OPPM
problem based on the Horspool algorithm [6–8]. Experi-
mental results show that our algorithms are about 2 to 6
times faster than the KMP-based algorithm in reasonable
cases. Our contributions are as follows.

• We present a method of deciding the order-isomor-
phism between two strings even when there are same
characters. We show that Kubica et al.’s method [4]
may decide it incorrectly when there are same charac-
ters.

• We show that the bad character rule can be applied to
the OPPM problem by defining a group of characters as
one character. Kim et al. [2] mentioned the hardness of
applying the Boyer–Moore algorithm [9] to the OPPM
problem. The good suffix rule could be well-defined
but the bad character rule could not be directly ap-
plied to the OPPM problem.

• We present a space-efficient algorithm computing the
shift table for text search based on a factorial num-
ber system. Let q be a size of the group of characters
and |Σ | be the size of an alphabet. Then, our algo-
rithm uses O (q!) space for the shift table while the
algorithms of [6,7] for the generic pattern matching
problem use O (|Σ |q) space for the shift table.

• We also show that our bad character rule can be com-
bined with the KMP-based algorithm to improve the
worst-case running time of [1]. The combined algo-
rithm guarantees O (n + m log m) time for a general
alphabet and O (n + m) time for an integer alphabet
in the worst case when q is a constant.

2. Preliminaries

Let Σ denote an alphabet and σ = |Σ |. Let |x| denote
the length of a string x. A string x is described by a se-
quence of characters (x[0], x[1], . . . , x[|x| − 1]).

Now, we formally define the order-isomorphism and
the order-preserving pattern matching problem. Two
strings x and y of the same length over Σ are called order-
isomorphic, written x ≈ y, if

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for 0 ≤ i, j < |x| [4].

If two strings x and y are not order-isomorphic, we write
x �≈ y. Given a text T [0..n − 1] and a pattern P [0..m − 1],
we say that T matches P at position i if T [i −m +1..i] ≈ P .
In the previous example shown in Fig. 1, T matches P at
Table 1
μP , LMaxP , LMinP , πP for P = (35, 40, 23, 40, 40, 28, 30).

i 0 1 2 3 4 5 6

P [i] 35 40 23 40 40 28 30
μP [i] 0 1 0 3 4 1 2
LMaxP [i] −1 0 −1 1 3 2 5
LMinP [i] −1 −1 0 1 3 0 0
πP [i] 0 1 1 2 1 1 2

position 9 because T [3..9] ≈ P . The order-preserving pat-
tern matching problem is to find all positions of T matched
with P .

Let us define a prefix table μx of string x:

μx[i] = ∣∣{ j : x[j] ≤ x[i] for 0 ≤ j < i
}∣∣.

See Table 1 for an example.

Lemma 1. For two strings x and y, if x ≈ y, then μx = μy .

Proof. By the assumption that x ≈ y, x[i] ≤ x[j] ⇔ y[i] ≤
y[j] for 0 ≤ i < j < |x|. Hence, μx = μy . �
Lemma 2. Assume that x[0..t] ≈ y[0..t]. For all 0 ≤ i, j ≤ t,
if x[i] < x[j], then y[i] < y[j], and if x[i] = x[j], then y[i] =
y[j].

Proof. We first prove by contradiction the first proposition
(when x[i] < x[j]). Suppose that y[i] ≥ y[j]. Then, by the
definition of order-isomorphism, x[i] ≥ x[j], which contra-
dicts the assumption that x[i] < x[j].

Next, consider the case when x[i] = x[j]. Then, since
x[i] ≤ x[j], y[i] ≤ y[j] by the definition of order-isomor-
phism. Moreover, since x[j] ≤ x[i], y[j] ≤ y[i]. Since y[i] ≤
y[j] and y[j] ≤ y[i], y[i] = y[j]. �

Kubica et al. [4] used location tables called LMax and
LMin for the order information of prefixes of P : Given a
string x, for i = 0, . . . , |x| − 1,

LMaxx[i] = j

if x[j] = max
{

x[k] : k ∈ [0, i − 1], x[k] ≤ x[i]} and

LMinx[i] = j

if x[j] = min
{

x[k] : k ∈ [0, i − 1], x[k] ≥ x[i]}.

S. Cho et al. / Information Processing Letters 115 (2015) 397–402 399
If there is no such j then LMinx[i] = −1 and LMaxx[i] =
−1. If more than one such j exists, we select the rightmost
one among them. Intuitively, LMaxx[i] indicates the posi-
tion of the largest character which is not larger than x[i] in
x[0..i − 1], and LMinx[i] indicates the position of the small-
est character which is not smaller than x[i] in x[0..i − 1].
See Table 1 for an example. Notice the location tables of
x can be computed in O (|x|) time for an integer alphabet
and in O (|x| log |x|) time for a general alphabet [4].

In the KMP algorithm, the failure function πx for x
is well-defined in the order-preserving pattern matching
[2,4]. See Table 1 for an example.

3. New decision of order-isomorphism

In this section, we show that Kubica et al.’s method [4]
for deciding the order-isomorphism of two strings may be
incorrect when there are same characters and present a
new method which corrects Kubica et al.’s one. Kubica et
al. [4] claimed that the order-isomorphism of two strings
x and y could be decided using the location tables as fol-
lows.

Lemma 3. (See [4].) Assume that x[0..t] ≈ y[0..t], t < |x| −
1, |y| −1 and a = LMaxx[t +1], b = LMinx[t +1]. Then, x[0..t +
1] ≈ y[0..t + 1] ⇔ y[a] ≤ y[t + 1] ≤ y[b]. In case a or b is
equal to −1, we omit the respective inequality in the condition.

This lemma may not hold when there are same char-
acters. For example, consider two strings x = (1, 3, 2) and
y = (1, 2, 2). Then, y[LMaxx[i]] ≤ y[i] ≤ y[LMinx[i]] for all
0 ≤ i < 3. But, by the definition of order-isomorphism,
y �≈ x because x[1] � x[2] and y[1] ≤ y[2]. The reasons
why Lemma 3 may not hold when there are same char-
acters in the given strings are as follows. In the proof
of Lemma 3, to show x[0..t + 1] ≈ y[0..t + 1] (when
y[a] ≤ y[t + 1] ≤ y[b]), they tried to prove that x[i] ≤
x[t + 1] ⇔ y[i] ≤ y[t + 1] for i ≤ t . For this, they proved
that x[i] ≤ x[t + 1] ⇒ y[i] ≤ y[t + 1] and x[i] ≥ x[t + 1] ⇒
y[i] ≥ y[t + 1]. But, it is not equivalent to x[i] ≤ x[t + 1] ⇔
y[i] ≤ y[t + 1]. Instead of the latter x[i] ≥ x[t + 1] ⇒ y[i] ≥
y[t + 1], it should be proven that x[i] > x[t + 1] ⇒ y[i] >
y[t + 1]. As seen in our example, however, x[1] > x[2] �
y[1] > y[2].

We show a new lemma for deciding the order-isomor-
phism of two strings even when there are same characters.

Lemma 4. Assume that x[0..t] ≈ y[0..t], t < |x| − 1, |y| − 1
and a = LMaxx[t + 1], b = LMinx[t + 1]. Let p be the condition
y[a] < y[t + 1] and q be the condition y[t + 1] < y[b]. Then,
x[0..t + 1] ≈ y[0..t + 1] ⇔ (p ∧ q) ∨ (¬ p ∧ ¬ q). In case a or
b is equal to −1, we assume the respective condition p or q is
true.

Proof. Without loss of generality, we assume that a �= −1
and b �= −1. By definitions of LMax and LMin, x[a] ≤ x[b]
and also y[a] ≤ y[b] since a, b ≤ t and x[0..t] ≈ y[0..t].
Hence, (¬ p ∧ ¬ q), i.e., y[a] ≥ y[t + 1] ≥ y[b] is equivalent
to y[a] = y[t + 1] = y[b] under the assumption x[0..t] ≈
y[0..t].
(⇒) We show x[0..t +1] ≈ y[0..t +1] ⇒ (p ∧q) ∨ (¬ p ∧
¬ q). By definitions of LMax and LMin, x[a] ≤ x[t +1] ≤ x[b].
We have two cases according to whether x[a] = x[b] or not.

• Case when x[a] = x[b]: In this case, x[a] = x[t + 1] =
x[b]. Since x[0..t + 1] ≈ y[0..t + 1], y[a] = y[t + 1] =
y[b] by Lemma 2, i.e., (¬ p ∧ ¬ q) is true.

• Case when x[a] < x[b]: We first prove that x[a] �=
x[t + 1] �= x[b]. Without loss of generality, suppose
x[t + 1] = x[a]. Then, LMaxx[t + 1] = LMinx[t + 1] by
definitions. Hence, x[a] = x[b], which contradicts the
condition that x[a] < x[b]. Since x[a] �= x[t + 1] �= x[b],
x[a] < x[t + 1] < x[b] and thus y[a] < y[t + 1] < y[b]
by Lemma 2, i.e., (p ∧ q) is true.

Therefore, x[0..t + 1] ≈ y[0..t + 1] ⇒ (p ∧ q) ∨ (¬ p ∧ ¬ q).
(⇐) We show x[0..t +1] ≈ y[0..t +1] ⇐ (p ∧q) ∨ (¬ p ∧

¬ q). Since we have already x[0..t] ≈ y[0..t] (assumption),
to show x[0..t + 1] ≈ y[0..t + 1], we only need to prove
that for all i ≤ t ,

x[i] ≤ x[t + 1] ⇔ y[i] ≤ y[t + 1] and

x[t + 1] ≤ x[i] ⇔ y[t + 1] ≤ y[i].

We only consider the former, i.e., x[i] ≤ x[t + 1] ⇔ y[i] ≤
y[t + 1]. (The latter can be proven in a similar way.)

We first show that x[i] ≤ x[t +1] ⇒ y[i] ≤ y[t +1] when
(p ∧q) ∨ (¬ p ∧¬ q). If x[i] ≤ x[t +1], x[i] ≤ x[a] by the def-
inition of LMax and also y[i] ≤ y[a] since x[0..t] ≈ y[0..t].
Finally, by the hypothesis (p ∧ q) ∨ (¬ p ∧ ¬ q), y[a] ≤
y[t + 1]. Hence, we get y[i] ≤ y[t + 1].

Next, we show that y[i] ≤ y[t + 1] ⇒ x[i] ≤ x[t + 1]
when (p ∧ q) ∨ (¬ p ∧ ¬ q). We have two cases according
to the hypothesis (p ∧ q) ∨ (¬ p ∧ ¬ q).

• Case when y[a] = y[t + 1] = y[b] (¬ p ∧ ¬ q): In this
case, x[a] = x[b] by Lemma 2, and thus x[a] = x[t +
1] = x[b]. When y[i] ≤ y[a](= y[t + 1]), x[i] ≤ x[a](=
x[t +1]) since x[0..t] ≈ y[0..t]. Hence, y[i] ≤ y[t +1] ⇒
x[i] ≤ x[t + 1].

• Case when y[a] < y[t + 1] < y[b] (p ∧ q): We prove it
by contradiction. Suppose there exists x[i] (0 ≤ i ≤ t)
such that x[i] > x[t + 1] when y[i] ≤ y[t + 1]. Then,
x[i] ≥ x[b] by the definition of LMin, and thus y[i] ≥
y[b] since x[0..t] ≈ y[0..t]. Moreover, since y[b] >
y[t +1], we have y[i] > y[t +1]. It contradicts the con-
dition that y[i] ≤ y[t + 1].

Therefore, (p ∧ q) ∨ (¬ p ∧ ¬ q) ⇒ x[0..t + 1] ≈
y[0..t + 1]. �

For example, let us consider again the two strings x =
(1, 3, 2), y = (1, 2, 2) and the location tables LMaxx =
(−1, 0, 0), LMinx = (−1, −1, 1) shown as the counter-
example. Obviously, x[0..1] ≈ y[0..1] by the definition of
the order-isomorphism. Then, y �≈ x because y[LMaxx[2]] <
y[2] = y[LMinx[2]].

400 S. Cho et al. / Information Processing Letters 115 (2015) 397–402
4. Fast order-preserving pattern matching algorithm

4.1. Basic idea

Basically, our algorithm for the OPPM problem is based
on the Horspool algorithm widely used for generic pattern
matching problems. The Horspool algorithm for generic
pattern matching problems uses the shift table for filtering
mismatched positions to expect sublinear behavior. (This
method is well known as the bad character rule.) That is,
when a mismatch occurs, the generic Horspool algorithm
shifts the pattern using the shift table by setting the char-
acter of T compared with P [m − 1] as the bad character.
However, as mentioned in [2], it is not easy to apply the
bad character rule to the OPPM problem since the order-
isomorphism is defined using the orders of characters, not
just the character itself.

To solve the hardness of defining bad characters in the
OPPM, we use the notion of q-grams, as in some vari-
ants [6,7] of the Horspool algorithm, which consider q con-
secutive characters as one character. Given a q-gram x and
a pattern P of length m, let us define

lx = max{i | μP [i−q+1..i] = μx for q − 1 ≤ i < m − 1}.
Roughly, lx means the last position of P matching a
q-gram x. Since, if μP [i−q+1..i] �= μx , P [i − q + 1..i] �≈ x by
Lemma 1, we do not miss any position of P that matches
the q-gram x. Then, the shift table D is defined as

D
[

f (x)
] = min(m − q + 1,m − lx − 1),

where f (x) is a fingerprint mapping a q-gram x to an
integer. For space-efficiency of the shift table, differently
from the variants [6,7] of the Horspool algorithm, we de-
fine f (x) using the prefix table μx and a factorial number
system [10] as follows:

f (x) =
q−1∑

k=0

μx[k] · k!.

Note that since there are i + 1 possible values for the i-th
element of the prefix table, we can use the factorial num-
ber system [10,11]. Since the prefix tables are uniquely
mapped to integers from 0 to q! − 1 [10,11], our shift ta-
ble D needs O (q!) space.

4.2. Search algorithm

Our algorithm consists of two steps. In the first step, we
compute the location tables LMaxP , LMinP and the shift
table D of pattern P . As mentioned above, the location
tables can be computed in O (m log m) time for a general
alphabet and can be computed in O (m) time for an integer
alphabet [4]. To compute D , all the fingerprints of q-grams
of P must be computed. For all the q-grams of P , prefix ta-
bles can be computed in O (m q log q) time using dynamic
order-statistics trees [2] for a general alphabet and can be
computed in O (m q) time using word-encoded sets [11] for
an integer alphabet where σ = 2�w/q�−1 and w is the word
size. Then, after computing all the prefix tables, all the
fingerprints can be computed in O (m q) time by Horner’s
rule [3]. Finally, D can be computed in O (q! + m q log q)
Fig. 2. Searching P = (35, 40, 23, 40, 40, 28, 30) in T = (10, 20, 15, 28, 32,

12, 32, 32, 20, 25, 15, 25).

time [6,7]. Note that we need O (q!) time for initialization
of D . The first step takes O (q! + m q log q + m logm) for a
general alphabet.

Algorithm 1 shows the pseudo-code of our algorithm
searching for P in T using the shift table D . Suppose we
check if P matches T [i − m + 1..i]. We first compare the
last q-grams of P and T [i − m + 1..i] using their finger-
prints, i.e., f (P [m − q..m − 1]) and f (T [i − q + 1..i]). If
they are the same, we check the order-isomorphism of P
and T [i −m + 1..i] character by character using LMaxP and
LMinP (Lemma 4). Otherwise, we do not compare P and
T [i − m + 1..i] because T [i − m + 1..i] cannot be order-
isomorphic to P by Lemma 1. Then, we shift P forward by
D[f (T [i − q + 1..i])]. We repeat this until P reaches the
rightmost of T . Fig. 2 shows how Algorithm 1 works on
the previous example shown in Fig. 1. We first compare
the fingerprints f (T [4..6]) = 4 and f (P [4..6]) = 2. Since
they are distinct, we shift P by D[f (T [4..6])] = D[4] = 3.
Next, since f (T [7..9]) and f (P [4..6]) are the same, we
compare P and T [3..9] using Lemma 4. Since P ≈ T [3..9],
Algorithm 1 reports the position 9 as an occurrence. Since
the second step takes O (n m + n q log q) time for a gen-
eral alphabet, Algorithm 1 takes O (n m +n q log q +q!) time
overall. For an integer alphabet of size σ = 2�w/q�−1 where
w is the word size, Algorithm 1 takes O (n m + n q + q!)
time.

4.3. Improving the worst-case complexity

We can improve the worst-case running time of Al-
gorithm 1 by combining with the KMP-based algorithm.
A similar approach was used in [12] for generic pattern
matching. Algorithm 2 shows the pseudo-code of our im-
proved version consisting of two parts: the Horspool-based
algorithm (lines 6 to 8) and the KMP-based algorithm
(lines 9 to 13). Initially, we run the Horspool-based algo-
rithm until a match of fingerprints occurs. If fingerprints of
q-grams of P and T do not match (line 6), we continue to
run the Horpool-based algorithm. But, when they match,
we run the KMP-based algorithm to check whether P oc-
curs at position i (lines 10–12) and to compute the amount
of a pattern shift j − πP [j − 1] (line 13). If j �= 1, we con-
tinue to run the KMP-based algorithm; otherwise, we run
the Horspool-based algorithm again.

Now we analyze the time complexity of Algorithm 2.
For a general alphabet, the preprocessing step (line 1)
runs in O (q! + m q log q + m log m) time since the failure
function πP can be computed in O (m) time [4,2] us-
ing Lemma 4. Note that at most n − m + 1 fingerprints

S. Cho et al. / Information Processing Letters 115 (2015) 397–402 401
Algorithm 1
1: Preprocess D, LMaxP , LMinP

2: m ← |P |, n ← |T |, t ← f (P [m − q..m − 1])
3: i ← m − 1
4: while i < n do
5: c ← f (T [i − q + 1..i])
6: if c = t then � Compare the last q-grams
7: if T [i − m + 1..i] ≈ P then
8: print “pattern occurs at position” i
9: i ← i + D[c] � Shift P by D[c]

Algorithm 2
1: Preprocess D, LMaxP , LMinP , πP

2: m ← |P |, n ← |T |, t ← f (P [m − q..m − 1])
3: i ← m − 1, j ← 1
4: while i < n do
5: if j = 1 then
6: while (c ← f (T [i − q + 1..i])) �= t do � Horspool-based algorithm
7: i ← i + D[c]
8: if i ≥ n then return
9: s ← i − m + 1

10: while j < m and P [0.. j] ≈ T [s..s + j] do � KMP-based algorithm
11: j ← j + 1

12: if j = m then print “pattern occurs at position” i
13: i ← i + (j − πP [j − 1]), j ← max(1, πP [j − 1])

Table 2
Search times (in seconds) for 1,000 random patterns in a random text of length 5,000,000.

σ m 5 10 15 20

q 3 3 4 5 3 4 5 3 4 5

230 OKMP 39.9 39.9 39.7 39.9
OHq 29.3 17.5 13.3 15.2 15.6 8.9 8.9 15.3 7.2 6.5
OHy 32.1 19.6 13.7 15.0 17.9 9.2 8.8 17.6 7.4 6.5

10 OKMP 39.0 39.1 38.9 38.9
OHq 29.0 17.4 13.4 15.2 15.6 9.1 9.0 15.3 7.3 6.6
OHy 30.9 19.8 13.8 15.1 18.0 9.3 8.9 17.7 7.5 6.5

4 OKMP 39.5 39.0 39.0 39.2
OHq 31.2 18.8 14.3 15.6 17.0 9.9 9.3 16.6 8.2 7.0
OHy 33.0 21.7 15.1 15.6 19.7 10.4 9.3 19.1 8.6 7.0

2 OKMP 38.1 38.3 38.1 38.2
OHq 38.1 24.6 19.2 18.3 21.7 14.4 12.0 21.0 12.3 9.2
OHy 38.2 27.3 20.7 19.0 25.1 15.9 12.5 24.2 13.3 9.6
of T are computed, the Horspool-based algorithm takes
O (n q log q) time in total. Since the KMP-based algorithm
takes O (n + m log m) time [4,2] in total, Algorithm 2 takes
O ((m + n) q log q + q! + m logm) time overall. For an in-
teger alphabet where σ = 2�w/q�−1 and w is the word
size, the preprocessing step takes O (q! + m q) time as
explained above. The Horspool-based algorithm and the
KMP-based algorithm take O (n q) time and O (n) time, re-
spectively, Algorithm 2 takes O ((m + n) q + q!) time in
total.

5. Experimental results

We conducted experiments to compare the practical
performance of our algorithms and the KMP-based algo-
rithm. Our Horspool-based algorithm and the worst-case
improved algorithm are denoted by OHq and OHy, respec-
tively. The KMP-based algorithm, denoted by OKMP, was
implemented based on the algorithms of [2,4]. We used
a naive approach to compute the fingerprints instead of
using dynamic order-statistics trees or word-encoded sets
because they are less practical when implemented. All al-
gorithms were implemented in C++ and performed on a
Windows 8 PC (64 bit) with Intel Core i7 3820 processor
and 32 GB RAM.

We tested for a random text T of length n = 5,000,000
from an integer alphabet and searched for 1,000 random
patterns of length m = 5, 10, 15, 20, respectively. We per-
formed experiments with varying q from 3 to 5 and σ =
230, 10, 4, 2. Note that when m = 5, we performed tests for
the case only when q = 3 because if q is almost the same
as m, q-gram technique has no effect on speedup.

Table 2 shows search times. As the pattern length m
becomes longer, OHq and OHy run faster compared to
OKMP. Especially, for example, when σ = 230, m = 20,
and q = 5, OHq and OHy are about 6 times faster than
OKMP. However, as σ decreases, OHq and OHy do not
work well compared to OKMP, for example, when σ = 2,
m = 10, and q = 5, they are about 2 times faster than

402 S. Cho et al. / Information Processing Letters 115 (2015) 397–402
OKMP. The reason why our algorithms are relatively slower
in this case is because they are based on the Horspool al-
gorithm which works better as patterns are longer and σ
is larger.

Acknowledgements

Joong Chae Na was supported by Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2014R1A1A1004901). Kunsoo Park was
supported by Next-Generation Information Computing De-
velopment Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2011-0029924). Jeong Seop Sim
was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIP)
(No. 2012R1A2A2A01014892 & 2014R1A2A1A11050337),
by the IT R&D program of MSIP/KEIT [10041971, Devel-
opment of Power Efficient High-Performance Multimedia
Contents Service Technology using Context-Adapting Dis-
tributed Transcoding], and by Inha University Research
Grant.
References

[1] S. Cho, J.C. Na, K. Park, J.S. Sim, Fast order-preserving pattern match-
ing, in: Combinatorial Optimization and Applications, Springer, 2013,
pp. 295–305.

[2] J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C.S. Iliopoulos, K. Park, S.J.
Puglisi, T. Tokuyama, Order-preserving matching, Theor. Comput. Sci.
525 (2014) 68–79.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms, 3rd edition, The MIT Press, 2009.

[4] M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, T. Walen, A linear
time algorithm for consecutive permutation pattern matching, Inf.
Process. Lett. 113 (12) (2013) 430–433.

[5] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu,
S.P. Pissis, J. Radoszewski, W. Rytter, T. Waleń, Order-preserving in-
complete suffix trees and order-preserving indexes, in: String Pro-
cessing and Information Retrieval, Springer, 2013, pp. 84–95.

[6] R. Baeza-Yates, Improved string searching, Softw. Pract. Exp. 19 (3)
(1989) 257–271.

[7] J. Tarhio, H. Peltola, String matching in the DNA alphabet, Softw.
Pract. Exp. 27 (7) (1997) 851–861.

[8] R.N. Horspool, Practical fast searching in strings, Softw. Pract. Exp.
10 (6) (1980) 501–506.

[9] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Commun.
ACM 20 (10) (1977) 762–772.

[10] D.E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, 3rd edition, Addison-Wesley, 1997.

[11] M. Mares, M. Straka, Linear-time ranking of permutations, in: Algo-
rithms – ESA 2007, 2007, pp. 187–193.

[12] F. Franek, C.G. Jennings, W.F. Smyth, A simple fast hybrid pattern-
matching algorithm, J. Discrete Algorithms 5 (4) (2007) 682–695.

http://refhub.elsevier.com/S0020-0190(14)00233-6/bib666F706Ds1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib666F706Ds1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib666F706Ds1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F746373s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F746373s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F746373s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib636C7273s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib636C7273s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F69706Cs1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F69706Cs1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F69706Cs1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F7374s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F7374s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F7374s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib6F706D5F7374s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D687131s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D687131s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D687132s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D687132s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D68s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626D68s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626Ds1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib626Ds1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib61727432s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib61727432s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib72616E6B32s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib72616E6B32s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib666A73s1
http://refhub.elsevier.com/S0020-0190(14)00233-6/bib666A73s1

	A fast algorithm for order-preserving pattern matching
	1 Introduction
	2 Preliminaries
	3 New decision of order-isomorphism
	4 Fast order-preserving pattern matching algorithm
	4.1 Basic idea
	4.2 Search algorithm
	4.3 Improving the worst-case complexity

	5 Experimental results
	Acknowledgements
	References

