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In this paper, we consider a generalized longest common subsequence problem, the
string-excluding constrained LCS problem. For the two input sequences X and Y of
lengths n and m, and a constraint string P of length r, the problem is to find a common
subsequence Z of X and Y excluding P as a substring and the length of Z is maximized.
The problem and its solution were first proposed by Chen and Chao (2011) [1], but
we found that their algorithm cannot solve the problem correctly. A new dynamic
programming solution for the STR-EC-LCS problem is then presented in this paper. The
correctness of the new algorithm is proved. The time complexity of the new algorithm is
O (nmr).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider a generalized longest com-
mon subsequence problem. The longest common subse-
quence (LCS) problem is a well-known measurement for
computing the similarity of two strings. It can be widely
applied in diverse areas, such as file comparison, pattern
matching and computational biology [2,5,6,8,9].

A sequence is a string of characters over an alphabet Σ .
A subsequence of a sequence X is obtained by deleting
zero or more characters from X (not necessarily contigu-
ous). A substring of a sequence X is a subsequence of
successive characters within X .

For a given sequence X = x1x2 · · · xn of length n, the ith
character of X is denoted as xi ∈ Σ for any i = 1, . . . ,n.
A substring of X from position i to j can be denoted as
X[i : j] = xi xi+1 · · · x j . A substring X[i : j] = xi xi+1 · · · x j is
called a prefix or a suffix of X if i = 1 or j = n, respectively.

Given two sequences X and Y , the longest common
subsequence (LCS) problem is to find a subsequence of X
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and Y whose length is the longest among all common sub-
sequences of the two given sequences.

For some biological applications some constraints must
be applied to the LCS problem. These kinds of variants
of the LCS problem are called the constrained LCS (CLCS)
problem [10]. Recently, Chen and Chao [1] proposed the
more generalized forms of the CLCS problem, the gener-
alized constrained longest common subsequence (GC-LCS)
problem. For the two input sequences X and Y of lengths n
and m, respectively, and a constraint string P of length r,
the GC-LCS problem is a set of four problems which are to
find the LCS of X and Y including/excluding P as a sub-
sequence/substring, respectively. The four generalized con-
strained LCS problems can be summarized in Table 1.

We will discuss the STR-EC-LCS problem in this paper.
We have noticed that a previous proposed dynamic pro-
gramming algorithm for the STR-EC-LCS problem [1] can-
not correctly solve the problem. A new dynamic solution
for the STR-EC-LCS problem is then presented in this pa-
per. The correctness of the new algorithm is proved. The
time complexity of the new algorithm is O (nmr).

The organization of the paper is as follows.
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Table 1
The GC-LCS problems.

Problem Input Output

SEQ-IC-LCS X , Y , and P The longest common subsequence of X and Y including P as a subsequence
STR-IC-LCS X , Y , and P The longest common subsequence of X and Y including P as a substring
SEQ-EC-LCS X , Y , and P The longest common subsequence of X and Y excluding P as a subsequence
STR-EC-LCS X , Y , and P The longest common subsequence of X and Y excluding P as a substring
In the following 4 sections we describe our presented
dynamic programming algorithm for the STR-EC-LCS prob-
lem.

In Section 2 we review the dynamic programming algo-
rithm for the STR-EC-LCS problem proposed by Chen and
Chao [1]. We point out that their algorithm will not work
for a simple counterexample. In Section 3 we give a new
dynamic solution for the STR-EC-LCS problem with time
complexity O (nmr) in a different point of view. In Sec-
tion 4 we discuss the issues to implement the algorithm
efficiently. Some concluding remarks are in Section 5.

2. A proposed dynamic programming algorithm

In this section, we will focus on the STR-EC-LCS prob-
lem and its solution proposed previously by Chen and
Chao [1]. As noted in Table 1, for the two input se-
quences X and Y of lengths n and m, and a constraint
string P of length r, the STR-EC-LCS problem is to find
an LCS Z of X and Y excluding P as a substring.

Let L(i, j,k) denote the length of an LCS of X[1 : i] and
Y [1 : j] excluding P [1 : k] as a substring. Chen and Chao
gave a recursive formula (1) for computing L(i, j,k) as fol-
lows.

L(i, j,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1,k)

if k = 1 and xi = y j = pk,

1 + max{L(i − 1, j − 1,k − 1), L(i − 1, j − 1,k)}
if k � 2 and xi = y j = pk,

1 + L(i − 1, j − 1,k)

if xi = y j and (k = 0, or k > 0 and xi �= pk),

max{L(i − 1, j,k), L(i, j − 1,k)}
if xi �= y j.

(1)

The boundary conditions of this recursive formula are
L(i,0,k) = L(0, j,k) = 0 for any 0 � i � n, 0 � j � m, and
0 � k � r.

The correctness of the recursive formula (1) was based
on Theorem 3 of their paper [1] as follows.

Theorem 1. (See Chen and Chao, 2011 [1].) Let Si, j,k denote
the set of all LCSs of X[1 : i] and Y [1 : j] excluding P [1 : k] as
a substring. If Z [1 : l] ∈ Si, j,k, the following conditions hold:

(1) If xi = y j = pk and k = 1, then zl �= xi and Z [1 : l] ∈
Si−1, j−1,k.

(2) If xi = y j = pk and k � 2, then zl = xi = y j = pk and
zl−1 = pk−1 implies Z [1 : l − 1] ∈ Si−1, j−1,k−1 .

(3) If xi = y j = pk and k � 2, then zl = xi = y j = pk and
zl−1 �= pk−1 implies Z [1 : l − 1] ∈ Si−1, j−1,k.
Table 2
L(i, j,k) computed by recursive formulas (1) and (2).

k = 0 k = 1 k = 2

i = 1 1 1 1 0 0 0 1 1 1
i = 2 1 1 2 0 0 1 1 1 2
i = 3 1 1 2 0 0 1 1 1 2
i = 4 1 1 2 0 0 1 1 1 2

(4) If xi = y j = pk and k � 2, then zl �= xi implies Z [1 : l] ∈
Si−1, j−1,k.

(5) If xi = y j and xi �= pk, then zl = xi = y j and Z [1 : l − 1] ∈
Si−1, j−1,k.

(6) If xi �= y j , then zl �= xi implies Z [1 : l] ∈ Si−1, j,k.
(7) If xi �= y j , then zl �= y j implies Z [1 : l] ∈ Si, j−1,k.

Since a common subsequence of X[1 : i] and Y [1 : j]
excluding P [1 : k − 1] as a substring is also a common
subsequence of X[1 : i] and Y [1 : j] excluding P [1 : k] as
a substring, by the definition of L(i, j,k), we know that
L(i, j,k) � L(i, j,k − 1) is always true. Therefore, the re-
cursive formula (1) can be further reduced to the recursive
formula (2).

L(i, j,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(i − 1, j − 1,k)

if k = 1 and xi = y j = pk,

1 + L(i − 1, j − 1,k)

if k � 2 and xi = y j = pk,

1 + L(i − 1, j − 1,k)

if xi = y j and (k = 0, or k > 0 and xi �= pk),

max{L(i − 1, j,k), L(i, j − 1,k)}
if xi �= y j .

(2)

Furthermore, the most important thing is that the
above theorem was only stated but without a strict proof.
Therefore, the correctness of the proposed algorithm can-
not be guaranteed. For example, if X = abbb, Y = aab
and P = ab, the values of L(i, j,k), 1 � i � 4, 1 � j � 3,
0 � k � 2 computed by recursive formulas (1) and (2) are
listed in Table 2.

From Table 2 we know that the final answer is L(4,

3,2) = 2 which is computed by the formula that L(4,

3,2) = 1 + L(3,2,2) since in this case k � 2 and a4 = b3 =
p2 =′ b′ . But, this is a wrong answer, since the correct an-
swer should be 1.

We have tried to modify the recursive formula (1) or (2)
to a correct one, but failed.

In the next section, we will investigate the problem in
a different way and finally present a correct dynamic solu-
tion for the STR-EC-LCS problem.
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3. Our new dynamic programming solution

For the two input sequences X = x1x2 · · · xn and Y =
y1 y2 · · · ym of lengths n and m, respectively, and a con-
straint string P = p1 p2 · · · pr of length r, we want to find
an LCS of X and Y excluding P as a substring.

In the description of our new algorithm, a function σ
will be mentioned frequently. For any string S and a fixed
constraint string P , the length of the longest suffix of S
that is also a prefix of P is denoted by function σ(S).

The symbol ⊕ is also used to denote the string concate-
nation.

For example, if P = aaba and S = aabaaab, then sub-
string aab is the longest suffix of S that is also a prefix
of P , and therefore σ(S) = 3.

It is readily seen that S ⊕ P = aabaaabaaba.
Let Z(i, j,k) denote the set of all LCSs of X[1 : i] and

Y [1 : j] excluding P as a substring and σ(z) = k for each
z ∈ Z(i, j,k). The length of an LCS in Z(i, j,k) is denoted
as f (i, j,k).

If we can compute f (i, j,k) for any 1 � i � n, 1 �
j � m, and 0 � k < r efficiently, then the length of
an LCS of X and Y excluding P as a substring must be
max0�t<r{ f (n,m, t)}.

We can give a recursive formula for computing f (i, j,k)

by the following theorem.

Theorem 2. For the two input sequences X = x1x2 · · · xn and
Y = y1 y2 · · · ym of lengths n and m, respectively, and a con-
straint string P = p1 p2 · · · pr of length r, let Z(i, j,k) denote
the set of all LCSs of X[1 : i] and Y [1 : j] excluding P as a sub-
string and σ(z) = k for each z ∈ Z(i, j,k).

The length of an LCS in Z(i, j,k) is denoted as f (i, j,k).
For any 1 � i � n, 1 � j � m, and 0 � k < r, f (i, j,k) can

be computed by the following recursive formula (3).

f (i, j,k)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max{ f (i − 1, j,k), f (i, j − 1,k)}
if xi �= y j,

max{ f (i − 1, j − 1,k),

1 + max0�t<r{ f (i − 1, j − 1, t) | σ (P [1 : t] ⊕ xi) = k}}
if xi = y j .

(3)

The boundary conditions of this recursive formula are
f (i,0,k) = f (0, j,k) = 0 for any 0 � i � n, 0 � j � m, and
0 � k � r.

Proof. For any 1 � i � n, 1 � j � m, and 0 � k < r, suppose
f (i, j,k) = t and z = z1, . . . , zt ∈ Z(i, j,k).

First of all, we notice that for each pair (i′, j′),
1 � i′ � n, 1 � j′ � m, such that i′ � i and j′ � j, we
have f (i′, j′,k) � f (i, j,k), since a common subsequence z
of X[1 : i′] and Y [1 : j′] excluding P as a substring and
σ(z) = k is also a common subsequence of X[1 : i] and
Y [1 : j] excluding P as a substring and σ(z) = k.

(1) In the case of xi �= y j , we have xi �= zt or y j �= zt .
(1.1) If xi �= zt , then z = z1, . . . , zt is a common sub-

sequence of X[1 : i − 1] and Y [1 : j] exclud-
ing P as a substring and σ(z1, . . . , zt) = k, and
so f (i − 1, j,k) � t . On the other hand, f (i − 1,

j,k) � f (i, j,k) = t . Therefore, in this case we
have f (i, j,k) = f (i − 1, j,k).

(1.2) If y j �= zt , then we can prove similarly that in
this case, f (i, j,k) = f (i, j − 1,k).

Combining the two subcases we conclude that in
the case of xi �= y j , we have f (i, j,k) = max{ f (i − 1,

j,k), f (i, j − 1,k)}.
(2) In the case of xi = y j , there are also two cases to be

distinguished.
(2.1) If xi = y j �= zt , then z = z1, . . . , zt is also a com-

mon subsequence of X[1 : i − 1] and Y [1 : j − 1]
excluding P as a substring and σ(z1, . . . , zt) = k,
and so f (i − 1, j − 1,k) � t . On the other hand,
f (i − 1, j − 1,k) � f (i, j,k) = t . Therefore, in this
case we have f (i, j,k) = f (i − 1, j − 1,k).

(2.2) If xi = y j = zt , then f (i, j,k) = t > 0 and z =
z1, . . . , zt is an LCS of X[1 : i] and Y [1 : j] ex-
cluding P as a substring and σ(z1, . . . , zt) = k,
and thus z1, . . . , zt−1 is a common subsequence
of X[1 : i − 1] and Y [1 : j − 1] excluding P as
a substring.

Let σ(z1, . . . , zt−1) = q and f (i − 1, j − 1,q) = s. Then
z1, . . . , zt−1 is a common subsequence of X[1 : i − 1] and
Y [1 : j − 1] excluding P as a substring and σ(z1, . . . ,

zt−1) = q. Therefore, we have

f (i − 1, j − 1,q) = s � t − 1. (4)

Let v = v1, . . . , vs ∈ Z(i − 1, j − 1,q) be an LCS of
X[1 : i − 1] and Y [1 : j − 1] excluding P as a sub-
string and σ(v1, . . . , vs) = q. Then σ((v1, . . . , vs) ⊕ xi) =
σ(P [1 : q] ⊕ xi) = k, and thus (v1, . . . , vs) ⊕ xi is a com-
mon subsequence of X[1 : i] and Y [1 : j] excluding P as
a substring and σ((v1, . . . , vs) ⊕ xi) = k.

Therefore,

f (i, j,k) = t � s + 1. (5)

Combining (4) and (5) we have s = t − 1. Therefore,
z1, . . . , zt−1 is an LCS of X[1 : i − 1] and Y [1 : j − 1] ex-
cluding P as a substring and σ(z1, . . . , zt−1) = q.

In other words,

f (i, j,k)

� 1 + max
0�q<r

{
f (i − 1, j − 1,q)

∣∣ σ (
P [1 : q] ⊕ xi

) = k
}
.

(6)

On the other hand, for any 0 � q < r, if f (i − 1,

j − 1,q) = s and σ(P [1 : q] ⊕ xi) = k, then for any v =
v1, . . . , vs ∈ Z(i − 1, j − 1,q), v ⊕ xi is a common subse-
quence of X[1 : i] and Y [1 : j] and σ(v ⊕ xi) = k. Since v
excludes P as a substring and σ(v ⊕ xi) = k < r, v ⊕ xi is
a common subsequence of X[1 : i] and Y [1 : j] excluding P
as a substring. Furthermore, v ⊕ xi is a common subse-
quence of X[1 : i] and Y [1 : j] excluding P as a substring
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and σ(v ⊕ xi) = k. Therefore, f (i, j,k) = t � 1 + s = 1 +
f (i − 1, j − 1,q), and so we conclude that,

f (i, j,k)

� 1 + max
0�q<r

{
f (i − 1, j − 1,q)

∣∣ σ (
P [1 : q] ⊕ xi

) = k
}
.

(7)

Combining (6) and (7) we have, in this case,

f (i, j,k)

= 1 + max
0�q<r

{
f (i − 1, j − 1,q)

∣∣ σ (
P [1 : q] ⊕ xi

) = k
}
.

(8)

Combining the two subcases in the case of xi = y j , we
conclude that the recursive formula (3) is correct for the
case xi = y j .

The proof is complete. �
4. The implementation of the algorithm

According to Theorem 2, our new algorithm for com-
puting f (i, j,k) is a standard 2-dimensional dynamic pro-
gramming algorithm. By the recursive formula (3), the new
dynamic programming algorithm for computing f (i, j,k)

can be implemented as the following Algorithm 1.

Algorithm 1 STR-EC-LCS.
Input: Strings X = x1 · · · xn , Y = y1 · · · ym of lengths n and m, respectively,
and a constraint string P = p1 · · · pr of length r
Output: The length of an LCS of X and Y excluding P as a sub-
string

1: for all i, j, k, 0 � i � n, 0 � j � m, and 0 � k � r do
2: f (i,0,k) ← 0, f (0, j,k) ← 0 {boundary condition}
3: end for
4: for i = 1 to n do
5: for j = 1 to m do
6: for k = 0 to r do
7: if xi �= y j then
8: f (i, j,k) ← max{ f (i − 1, j,k), f (i, j − 1,k)}
9: else

10: u ← max0�t<r{ f (i − 1, j − 1, t) | σ(P [1 : t] ⊕ xi) = k}
11: f (i, j,k) ← max{ f (i − 1, j − 1,k),1 + u}
12: end if
13: end for
14: end for
15: end for
16: return max0�t<r{ f (n,m, t)}

To implement our new algorithm efficiently, the most
important thing is to compute σ(P [1 : k]⊕ xi) for each 0 �
k < r and xi , 1 � i � n, in line 10 efficiently.

It is obvious that σ(P [1 : k] ⊕ xi) = k + 1 for the
case of xi = pk+1. It will be more complex to com-
pute σ(P [1 : k] ⊕ xi) for the case of xi �= pk+1. In this
case the length of matched prefix of P has to be short-
ened to the largest t < k such that pk−t+1 · · · pk = p1 · · · pt

and xi = pt+1. Therefore, in this case, σ(P [1 : k] ⊕ xi) =
t + 1.

This computation is very similar to the computation of
the prefix function in KMP algorithm for solving the string
matching problem [3,7].
For a given string S = s1 · · · sn , the prefix function
kmp(i) denotes the length of the longest prefix of s1 · · · si−1
that matches a suffix of s1 · · · si . For example, if S = ababaa,
then kmp(1), . . . ,kmp(6) = 0,0,1,2,3,1.

For the constraint string P = p1 · · · pr of lengths r, its
prefix function kmp can be pre-computed in O (r) time as
follows.

Algorithm 2 Prefix function.
Input: String P = p1 · · · pr

Output: The prefix function kmp of P

1: kmp(0) ← −1
2: for i = 2 to r do
3: k ← 0
4: while k � 0 and pk+1 �= pi do
5: k ← kmp(k)

6: end while
7: k ← k + 1
8: kmp(i) ← k
9: end for

With this pre-computed prefix function kmp, the func-
tion σ(P [1 : k] ⊕ ch) for each character ch ∈ Σ and
1 � k � r can be described as follows.

Algorithm 3 σ(k, ch).
Input: String P = p1 · · · pr , integer k and character ch
Output: σ(P [1 : k] ⊕ ch)

1: while k � 0 and pk+1 �= ch do
2: k ← kmp(k)

3: end while
4: return k + 1

Then, we can compute an index t∗ such that

f (i − 1, j − 1, t∗)
= max

0�t<r

{
f (i − 1, j − 1, t)

∣∣ σ (
P [1 : t] ⊕ xi

) = k
}

in line 10 of Algorithm 1 by the following Algorithm 4.

Algorithm 4 maxσ(i, j,k).
Input: Integers i, j, k
Output: An index t∗ such that

f
(
i − 1, j − 1, t∗) = max

0�t<r

{
f (i − 1, j − 1, t)

∣∣ σ (
P [1 : t] ⊕ xi

) = k
}

1: tmp ← −1, t∗ ← −1
2: for t = 0 to r − 1 do
3: if σ(t, xi) = k and f (i − 1, j − 1, t) > tmp then
4: tmp ← f (i − 1, j − 1, t), t∗ ← t
5: end if
6: end for
7: return t∗

Then the value of u in line 10 of Algorithm 1 must be

u = f
(
i − 1, j − 1, t∗) = f

(
i − 1, j − 1,maxσ(i, j,k)

)
.

We can improve the efficiency of the above algorithms
further in the following two points.

First, we can pre-compute a table λ of the function
σ(P [1 : k] ⊕ ch) for each character ch ∈ Σ and 1 � k � r
to speed up the computation of maxσ(i, j,k).



L. Wang et al. / Information Processing Letters 113 (2013) 723–728 727
Algorithm 5 λ(1 : r, ch ∈ Σ).
Input: String P = p1 · · · pr , alphabet Σ

Output: A table λ

1: for all a ∈ Σ and a �= p1 do
2: λ(0,a) ← 0
3: end for
4: λ(0, p1) ← 1
5: for t = 1 to r − 1 do
6: for all a ∈ Σ do
7: if a = pt+1 then
8: λ(t,a) ← t + 1
9: else

10: λ(t,a) ← λ(kmp(t),a)

11: end if
12: end for
13: end for

The time cost of the above preprocessing algorithm is
obviously O (r|Σ |). By using this pre-computed table λ, the
value of function σ(P [1 : k]⊕ ch) for each character ch ∈ Σ

and 1 � k < r can be computed readily in O (1) time.
Second, the computation of function maxσ(i, j,k) is

very time consuming and many repeated computations
are overlapped in the whole for loop of Algorithm 1. We
can amortize the computation of function maxσ(i, j,k) to
each entry of f (i, j,k) in the for loop on variable k of Al-
gorithm 1 and finally reduce the time costs of the whole
algorithm. The modified algorithm can be described as fol-
lows.

Algorithm 6 STR-EC-LCS.
Input: Strings X = x1 · · · xn , Y = y1 · · · ym of lengths n and m, respectively,
and a constraint string P = p1 · · · pr of length r
Output: The length of an LCS of X and Y excluding P as a sub-
string

1: for all i, j, k, 0 � i � n, 0 � j � m, and 0 � k � r do
2: f (i,0,k) ← 0, f (0, j,k) ← 0 {boundary condition}
3: end for
4: for i = 1 to n do
5: for j = 1 to m do
6: for k = 0 to r do
7: f (i, j,k) ← max{ f (i − 1, j,k), f (i, j − 1,k)}
8: end for
9: if xi = y j then

10: for k = 0 to r do
11: t ← λ(k, xi)

12: f (i, j, t) ← max{ f (i, j, t),1 + f (i − 1, j − 1,k)}
13: end for
14: end if
15: end for
16: end for
17: return max0�t<r{ f (n,m, t)}

Since λ(k, xi) can be computed in O (1) time for each xi ,
1 � i � n and any 0 � k < r, the loop body of the above
algorithm requires only O (1) time. Therefore, our new al-
gorithm for computing the length of an LCS of X and Y
excluding P as a substring requires O (nmr) time and
O (r|Σ |) preprocessing time.

If we want to get the answer LCS of X and Y exclud-
ing P as a substring, but not just its length, we can also
present a simple recursive back tracing algorithm for this
purpose as the following Algorithm 7.

In the end of our new algorithm, we will find an in-
dex t such that f (n,m, t) gives the length of an LCS of X
Algorithm 7 back(i, j,k).
Comments: A recursive back tracing algorithm to construct the answer
LCS

1: if i = 0 or j = 0 then
2: return
3: end if
4: if xi = y j then
5: if f (i, j,k) = f (i − 1, j − 1,k) then
6: back(i − 1, j − 1,k)

7: else
8: back(i − 1, j − 1,maxσ(i, j,k))

9: print xi

10: end if
11: else if f (i − 1, j,k) > f (i, j − 1,k) then
12: back(i − 1, j,k)

13: else
14: back(i, j − 1,k)

15: end if

and Y excluding P as a substring. Then, a function call
back(n,m, t) will produce the answer LCS accordingly.

Since the cost of the algorithm maxσ(i, j,k) is O (r)
in the worst case, the algorithm back(i, j,k) will cost
O (r max(n,m)).

Finally we summarize our results in the following the-
orem.

Theorem 3. Algorithm 6 solves STR-EC-LCS problem correctly
in O (nmr) time and O (nmr) space, with preprocessing time
O (r|Σ |).

5. Concluding remarks

We have suggested a new dynamic programming solu-
tion for the STR-EC-LCS problem. The new algorithm cor-
rects a previously presented dynamic programming algo-
rithm with the same time and space complexities.

The STR-IC-LCS problem is another interesting gener-
alized constrained longest common subsequence (GC-LCS)
which is very similar to the STR-EC-LCS problem.

The STR-IC-LCS problem, introduced in [1], is to find
an LCS of two main sequences, in which a constraining
sequence of length r must be included as its substring.
In [1] an O (nmr)-time algorithm was given for it. Al-
most immediately the presented algorithm was improved
to a quadratic-time algorithm and furthermore to many
main input sequences [4].

It is not clear that whether the same improvement can
be applied to our presented O (nmr)-time algorithm for the
STR-EC-LCS problem to achieve a quadratic-time algorithm.
We will investigate the problem further.
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