
Theoretical Computer Science 979 (2023) 114183
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Finding top-k longest palindromes in substrings ✩

Kazuki Mitani a, Takuya Mieno b,∗, Kazuhisa Seto c, Takashi Horiyama c

a Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
b Department of Computer and Network Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, 182-8585, Japan
c Faculty of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2023
Accepted 8 September 2023
Available online 18 September 2023

Keywords:
String algorithms
Palindromes
Internal queries
Top-k queries

Palindromes are strings that read the same forward and backward. Problems of computing
palindromic structures in strings have been studied for many years with the motivation
of their application to biology. The longest palindrome problem is one of the most
important and classical problems regarding palindromic structures, that is, to compute
the longest palindrome appearing in a string T of length n. The problem can be solved
in O(n) time by the famous algorithm of Manacher (1975) [27]. This paper generalizes
the longest palindrome problem to the problem of finding the top-k longest palindromes
in an arbitrary substring, including the input string T itself. The internal top-k longest
palindrome query is, given a substring T [i.. j] of T and a positive integer k as a query,
to compute the top-k longest palindromes appearing in T [i.. j]. This paper proposes a
linear-size data structure that can answer internal top-k longest palindromes query in
optimal O (k) time. Also, given the input string T , our data structure can be constructed
in O(n logn) time. For k = 1, the construction time is reduced to O(n).

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A string which is the same as its reversal is called a palindrome. Palindromes have been widely studied with the
motivation of their application to biology [23]. Computing and counting palindromes in a string are fundamental tasks.
Manacher [27] proposed an O(n)-time algorithm that computes all maximal palindromes in the string of length n. Droubay
et al. [17] showed that any string of length n contains at most n +1 distinct palindromes (including the empty string). Then,
Groult et al. [22] proposed an O(n)-time algorithm to enumerate the number of distinct palindromes in a string. The above
O(n)-time algorithms are time-optimal since reading the input string of length n takes �(n) time.

Regarding the longest palindrome computation, Funakoshi et al. [19] considered the problem of computing the longest
palindromic substring of the string T ′ after a single character insertion, deletion, or substitution is applied to the input string
T of length n. Of course, using O(n) time, we can obtain the longest palindromic substring of T ′ from scratch. However,
this idea is naïve and appears to be inefficient. To avoid such inefficiency, Funakoshi et al. [19] proposed an O(n)-space data
structure that can compute the solution for any editing operation given as a query in O(log(min{σ , log n})) time where σ
is the alphabet size. Amir et al. [7] considered the dynamic longest palindromic substring problem, which is an extension
of Funakoshi et al.’s problem where up to O(n) sequential editing operations are allowed. They proposed an algorithm that

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
E-mail addresses: kazukida199911204649@eis.hokudai.ac.jp (K. Mitani), tmieno@uec.ac.jp (T. Mieno), seto@ist.hokudai.ac.jp (K. Seto),

horiyama@ist.hokudai.ac.jp (T. Horiyama).
https://doi.org/10.1016/j.tcs.2023.114183
0304-3975/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2023.114183
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114183&domain=pdf
mailto:kazukida199911204649@eis.hokudai.ac.jp
mailto:tmieno@uec.ac.jp
mailto:seto@ist.hokudai.ac.jp
mailto:horiyama@ist.hokudai.ac.jp
https://doi.org/10.1016/j.tcs.2023.114183

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Table 1
Manacher’s algorithm [27] can compute the longest palindrome in a string T in linear time. We study
three generalized problems and give efficient data structures and algorithms. All the proposed data
structures are of linear size.

longest palindrome top-k palindromes

String T preprocessing O(n) time [27] O(n) time
query O(1) time O(k) time

Query substring preprocessing O(n) time O(n logn) time
T [i.. j] query O(1) time O(k) time

solves this problem in O(
√

n log2 n) time per a single character edit with high probability with a data structure of size
O(n log n), which can be constructed in O(n log2 n) time. Furthermore, Amir and Boneh [6] proposed an algorithm running
in poly-logarithmic time per a single character substitution.

Internal queries are queries about substrings of the input string T . Let us consider a situation where we solve a certain
problem for each of k different substrings of T . If we run an O(|w|)-time algorithm from scratch for each substring w , the
total time complexity can be as large as O(kn). To be more efficient, by performing an appropriate preprocessing on T , we
construct some data structure for the query to output each solution efficiently. Such efficient data structures for palindromic
problems are known. Rubinchik and Shur [31] proposed an algorithm that computes the number of distinct palindromes
in a given substring of an input string of length n. Their algorithm runs in O(log n) time with a data structure of size
O(n log n), which can be constructed in O(n log n) time. Amir et al. [7] considered a problem of computing the longest
palindromic substring in a given substring of the input string of length n; it is called the internal longest palindrome query.
Their algorithm runs in O(log n) time with a data structure of size O(n log n), which can be constructed in O(n log2 n) time.

This paper proposes a new algorithm for the internal longest palindrome query. The algorithm of Amir et al. [7] uses
2-dimensional orthogonal range maximum queries [3,4,12]; furthermore, the time and space complexities of their algorithm
are dominated by this query. Instead of 2-dimensional orthogonal range maximum queries, by using palindromic trees [32],
weighted ancestor queries [20], and range maximum queries [18], we obtain a time-optimal algorithm.

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n) in O(n) time
that can answer any internal longest palindrome query in O(1) time.

Here, an alphabet is said to be linearly sortable if any sequence of n characters from � can be sorted in O(n) time. For
example, the integer alphabet {1, 2, . . . , nc} for some constant c is linearly sortable because we can sort a sequence from the
alphabet in linear time by using a radix sort with base n. We also assume the word-RAM model with word size ω ≥ log n
bits for input size n.

Furthermore, we consider a more general problem of finding palindromes, i.e., the problem of finding the top-k longest
palindromes in a substring of T , rather than just the longest palindrome in T . Then, we finally prove the following proposi-
tion, which will be given as a corollary in Section 4.

Corollary 1. Given a string T of length n, we can construct a data structure of size O(n) in O(n log n) time that can answer any internal
top-k longest palindrome query in O(k) time.

Our results are summarized in Table 1.

Related work Internal queries have been studied on many problems, not only those related to palindromic structures. For
instance, Kociumaka et al. [26] considered the internal pattern matching queries that are ones for computing the occurrences
of a substring U of the input string T in another substring V of T . Besides, internal queries for string alignment [14,33–35],
longest common prefix [1,5,21,29], and longest common substring [7] have been studied in the last two decades. See [25]
for an overview of internal queries. We also refer to [2,10,11,15,16,24] and references therein.

Paper organization The rest of this paper is organized as follows. Section 2 gives some notations and definitions. Section 3
shows our data structure to solve the internal longest palindrome queries. Section 4 shows how to compute the top-k
longest palindromes in (sub)strings. Finally, Section 5 concludes this paper.

2. Preliminaries

2.1. Strings and palindromes

Let � be an alphabet. An element of � is called a character, and an element of �∗ is called a string. The empty string ε
is the string of length 0. The length of a string T is denoted by |T |. For each i with 1 ≤ i ≤ |T |, the i-th character of T is
denoted by T [i]. For each i and j with 1 ≤ i, j ≤ |T |, the string T [i]T [i +1] · · · T [j] is denoted by T [i.. j]. For convenience, let
2

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Fig. 1. Palindromic suffixes of a string and the partition (suf 1, . . . , suf 5) of their lengths. Three integers s3 = 3, s4 = 5, and s5 = 7 are represented by a single
arithmetic progression suf 3 since dif 3 = dif 4 = dif 5 = 2. Since s4 is the second smallest term in suf 3, suf 3,2 = s4.

T [i′.. j′] = ε if i′ > j′ . If T = xyz, then x, y, and z are called a prefix, substring, and suffix of T , respectively. They are called
a proper prefix, a proper substring, and a proper suffix of T if x �= T , y �= T , and z �= T , respectively. The string y is called an
infix of T if x �= ε and z �= ε. The reversal of string T is denoted by T R , i.e., T R = T [|T |] · · · T [2]T [1]. A string T is called a
palindrome if T = T R . Note that ε is also a palindrome. For a palindromic substring T [i.. j] of T , the center of T [i.. j] is i+ j

2 .
A palindromic substring T [i.. j] is called a maximal palindrome in T if i = 1, j = |T |, or T [i − 1] �= T [j + 1]. In what follows,
we consider an arbitrary fixed string T of length n > 0. In this paper, we assume that the alphabet � is linearly sortable.
We also assume the word-RAM model with word size ω ≥ log n bits.

Let q be the number of palindromic suffixes of T . Let suf (T) = (s1, s2, . . ., sq) be the sequence of the lengths of palin-
dromic suffixes of T sorted in increasing order. Further let dif i = si − si−1 for each i with 2 ≤ i ≤ q. For convenience, let
dif 1 = 0. Then, the sequence (dif 1, . . . , dif q) is monotonically non-decreasing (Lemma 7 in [28]). Let (suf 1, suf 2, . . . , suf p)

be the partition of suf (T) such that for any two elements si, s j in suf (T), si, s j ∈ suf k for some k iff dif i = dif j . By def-
inition, each suf k forms an arithmetic progression. It is known that the number p of arithmetic progressions satisfies
p ∈ O(log n) [9,28]. For 1 ≤ k ≤ p and 1 ≤ � ≤ |suf k|, suf k,� denote the �-th term of suf k . Fig. 1 shows an example of
the above definitions.

2.2. Tools

In this section, we list some data structures used in our algorithm in Section 3.

Palindromic trees and series trees The palindromic tree of T is a data structure that represents all distinct palindromes in
T [32]. The palindromic tree of T , denoted by paltree(T), has d ordinary nodes and one auxiliary node ⊥ where d ≤ n + 1 is
the number of all distinct palindromes in T . Each ordinary node v corresponds to a palindromic substring of T (including
the empty string ε) and stores its length as weight(v). For the auxiliary node ⊥, we define weight(⊥) = −1. For convenience,
we identify each node with its corresponding palindrome. For an ordinary node v in paltree(T) and a character c, if nodes
v and cvc exist, then an edge labeled c connects these nodes. The auxiliary node ⊥ has edges to all nodes corresponding
to length-1 palindromes. Each node v in paltree(T) has a suffix link that points to the longest palindromic proper suffix of
v . Let link(v) be the string pointed to by the suffix link of v . We define link(ε) = link(⊥) = ⊥. See Fig. 2(a) for example.
For each node v corresponding to a non-empty palindrome in paltree(T), let δv = |v| − |link(v)| be the difference between
the lengths of v and its longest palindromic proper suffix. For convenience, let δε = 0. Each node v corresponding to a
non-empty palindrome has a series link that points to the longest palindromic proper suffix u of v such that δu �= δv . Let
serieslink(v) be the string pointed to by the series link of v .

Let LSufPal be an array of length n such that LSufPal[j] stores a pointer to the node in paltree(T) corresponding to the
longest palindromic suffix of T [1.. j] for each 1 ≤ j ≤ n. The definition of LSufPal is identical to the array node[1] defined
in [32], and it was shown that node[1] can be computed in O(n) time. Hence, LSufPal can be computed in O(n) time. Let
LPrePal be an array of length n such that LPrePal[i] stores a pointer to the node in paltree(T) corresponding to the longest
palindromic prefix of T [i..n] for each 1 ≤ i ≤ n. LPrePal can be computed in O(n) time as well as LSufPal.

Theorem 2 (Proposition 4.10 in [32]). Given a string T over a linearly sortable alphabet, the palindromic tree of T , including its suffix
links and series links, can be constructed in O(n) time. Also, LSufPal and LPrePal can be computed in O(n) time.1

Let us consider the subgraph S of paltree(T) that consists of all ordinary nodes and reversals of all series links. By
definition, S has no cycle, and S is connected (any node is reachable from the node ε), i.e., it forms a tree. We call the tree

1 Note that the definition of LSufPal is the same as that of node[1] in [32].
3

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Fig. 2. Illustration for the palindromic tree and the series tree of string T = abaabaabababbb. Since δabaabaaba = |abaabaaba| − |abaaba| = 3,
δabaaba = |abaaba| − |aba| = 3, and δaba = |aba| − |a| = 2, then serieslink(abaabaaba) = aba. Substring abaabaaba stores the arithmetic progression
representing {6, 9}, abaaba stores the arithmetic progression representing {6} and aba stores the arithmetic progression representing {3}.

Fig. 3. Illustration for weighted ancestor query. Integers in nodes denote the weights. Given a node v5 in a monotone-weighted tree T and an integer k = 6
for query, WAQ returns the node v3 since v3 is an ancestor of v5, weight(v3) > k = 6, and the weight of the parent v2 of v3 is not greater than k = 6.

S the series tree of T and denote it by seriestree(T). By definition of series links, the set of lengths of palindromic suffixes
of v that are longer than |serieslink(v)| can be represented by an arithmetic progression. Each node v stores the arithmetic
progression, represented by a triple consisting of its first term, its common difference, and the number of terms. Arithmetic
progressions for all nodes can be computed in linear time by traversing the palindromic tree. It is known that the length of
a path consisting of series links is O(log n) [32]. Hence, the height of seriestree(T) is O(log n). See Fig. 2(b) for illustration.

Weighted ancestor query A rooted tree whose nodes are associated with integer weights is called a monotone-weighted
tree if the weight of every non-root node is not smaller than the parent’s weight. Given a monotone-weighted tree T for
preprocessing and a node v and an integer k for query, a weighted ancestor query (WAQ) returns the ancestor u closest to
the root of v such that the weight of u is greater than k. Let WAQT (v, k) be the output of the weighted ancestor query for
tree T , node v , and integer k. See Fig. 3 for a concrete example. It is known that there is an O(N)-space data structure that
can answer any weighted ancestor query in O(log log N) time where N is the number of nodes in the tree [8]. In general,
the query time O(log log N) is known to be optimal within O(N) space [30]. On the other hand, if the height of the input
tree is low enough, the query time can be improved:

Theorem 3 (Proposition 15 in [20]). Given a monotone-weighted tree with N nodes and height O(ω), one can construct an O(N)

space data structure in O(N) time that can answer any weighted ancestor query in constant time.

In this paper, we use weighted ancestor queries only on the series tree of T whose height is O(log n) ⊆ O(ω), where ω
is the word size, thus we will apply Theorem 3. Note that we assume the word-RAM model with word size ω ≥ log n bits.

Range maximum query Given an integer array A of length m for preprocessing and two indices i and j with 1 ≤ i ≤ j ≤ m
for query, range maximum query returns the index of a maximum element in the sub-array A[i.. j]. Let RMQA(i, j) be the
4

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
output of the range maximum query for array A and indices i, j. In other words, RMQA(i, j) = arg maxk{A[k] | i ≤ k ≤ j}.
The following result is known:

Theorem 4 (Theorem 5.8 in [18]). Let m be the size of the input array A. There is a data structure of size 2m + o(m) bits that can
answer any range maximum query on A in constant time. The data structure can be constructed in O(m) time.

3. Internal longest palindrome queries

In this section, we propose an efficient data structure for the internal longest palindrome query defined as follows:

Internal longest palindrome query
Preprocess: A string T of length n.
Query input: Two indices i and j with 1 ≤ i ≤ j ≤ n.
Query output: The longest palindromic substring in T [i.. j].

Our data structure requires only O(n) words of space and can answer any internal longest palindrome query in constant
time. To answer queries efficiently, we classify all palindromic substrings of T into palindromic prefixes, palindromic infixes,
and palindromic suffixes. First, we compute the longest palindromic prefix and the longest palindromic suffix of T [i.. j].
Second, we compute a palindromic infix that is a candidate for the answer. As we will discuss in a later subsection, this
candidate may not be the longest palindromic infix of T [i.. j]. Finally, we compare the three above palindromes and output
the longest one.

3.1. Palindromic suffixes and prefixes

First, we compute the longest palindromic suffix of T [i.. j]. In the preprocessing, we build seriestree(T) and a data
structure for the weighted ancestor queries on seriestree(T), and compute LSufPal as well. The query algorithm consists of
three steps:

Step 1: Obtain the longest palindromic suffix of T [1.. j].
We obtain the longest palindromic suffix v of T [1.. j] from LSufPal[j]. If |v| ≤ |T [i.. j]|, then v is the longest palin-
dromic suffix of T [i.. j]. Then, we return T [j −|v| + 1.. j], and the algorithm terminates. Otherwise, we continue to
Step 2.

Step 2: Determine the group to which the desired length belongs.
Let � be the length of the longest palindromic suffix of T [i.. j] we want to know. We use the longest palin-
dromic suffix v of T [1.. j] obtained in Step 1. First, we find the shortest palindrome u that is an ancestor of v
in seriestree(T) and has a length at least |T [i.. j]|. Such a palindrome (equivalently the node) u can be found by
weighted ancestor query on the series tree, i.e., u = WAQseriestree(T)(v, j − i). Then, |u| is an upper bound of �. Let
sufα be the group such that |u| ∈ sufα . If the smallest element suf α,1 in sufα is at most |T [i.. j]|, the length �
belongs to the same group suf α as |u|. Otherwise, the length � belongs to the previous group suf α−1.

Step 3: Calculate the desired length.
Let suf β be the group to which the length � belongs, which is determined in Step 2. Since suf β is an arithmetic
progression, i.e., suf β,γ = suf β,1 + (γ − 1)dif β for 1 ≤ γ ≤ |suf β |, the desired length � can be computed by using a
constant number of arithmetic operations. Then, we return T [j − � + 1.. j].

See Fig. 4 for illustration. Now, we show the correctness of the algorithm and analyze time and space complexities.

Lemma 1. We can compute the longest palindromic suffix and prefix of T [i.. j] in O(1) time with a data structure of size O(n) that
can be constructed in O(n) time.

Proof. In the preprocessing, we build seriestree(T), LSufPal, LPrePal and a data structure of weighted ancestor query on
seriestree(T) in O(n) time (Theorems 2 and 3). Recall that since the height of seriestree(T) is O(log n) ⊆ O(ω), we can
apply Theorem 3 to the series tree. Again, by Theorem 2 and 3, the space complexity is O(n) words of space.

In what follows, let � be the length of the longest palindromic suffix of T [i.. j]. In Step 1, we can obtain the longest
palindromic suffix v of T [1.. j] by just referring to LSufPal[j]. If |v| ≤ |T [i.. j]|, v is also the longest palindromic suffix of
T [i.. j], i.e., � = |v|. Otherwise, v is not a substring of T [i.. j]. In Step 2, we first query WAQseriestree(T)(v, j − i). The resulting
node u corresponds to a palindromic suffix of T [1.. j], which is longer than |T [i.. j]|. Let sufα and suf β be the groups to
which |u| and � belong to, respectively. If the smallest element suf α,1 in sufα is at most j − i + 1, then the desired length �
satisfies suf α,1 ≤ � ≤ |u|. Namely, β = α. Otherwise, if s is greater than j − i + 1, � is not in suf α but is in suf α−x for some
x > 1. If we assume that � belongs to suf α−y for some y ≥ 2, the length of serieslink(u) belonging to suf α−1 is longer than
5

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Fig. 4. Illustration for how to compute the longest palindromic suffix of T [i.. j], when T [1.. j] = abababaabababaabababababababaabababaabababa.
The graph on the right hand depicts a part of the series tree of a string T , and the lengths of palindromes are written inside the nodes. In Step 1, we obtain
the length suf 5,1 of the longest palindromic suffix v1 of T [1.. j]. In Step 2, we find suf 3,3 by WAQseriestree(T)(v1, j − i). Since suf 3,1 > j − i + 1, the desired
length belongs to suf 3. In Step 3, since suf 3 is an arithmetic progression, we can find that suf 3,1 is the longest palindromic suffix of T [i.. j] in constant
time.

Fig. 5. Illustration for Lemma 2. Two-way arrows denote palindromic substrings of T . T [i..t] is the longest palindromic prefix of T [i.. j]. A palindrome whose
center c is less than i+t

2 is either (a) not a substring of T [i.. j] or (b) shorter than the longest palindromic prefix of T [i.. j] as shown in this figure.

T [i.. j]. However, it contradicts that u is the answer of WAQseriestree(T)(v, j − i). Hence, if s is greater than j − i + 1, then
the length � is in sufα−1. Namely, β = α − 1. In Step 3, we can compute � in constant time since we know the arithmetic
progression suf β to which � belongs. More specifically, � is the largest element that is in suf β and is at most j − i + 1.

Throughout the query algorithm, all operations, including WAQ and operations on arithmetic progressions, can be done
in constant time. Thus, the query algorithm runs in constant time. �

We can compute the longest palindromic prefix of T [i.. j] in a symmetric way using LPrePal instead of LSufPal.

3.2. Palindromic infixes

Next, we compute the longest palindromic infix except for ones that cannot be the longest palindromic substring due to
the longest palindromic prefix or the longest palindromic suffix of the query substring. We show that to find the desired
palindromic infix, it suffices to consider maximal palindromes whose centers are between the centers of the longest palin-
dromic prefix and the longest palindromic suffix of T [i.. j]. Let t be the ending position of the longest palindromic prefix
and s be the starting position of the longest palindromic suffix. Namely, T [i..t] is the longest palindromic prefix and T [s.. j]
is the longest palindromic suffix of T [i.. j].

Lemma 2. Let w be a palindromic infix of T [i.. j] and c be the center of w. If c < i+t
2 or c >

s+ j
2 , w cannot be the longest palindromic

substring of T [i.. j].

Proof. Palindrome w is a proper substring of T [i..t] (resp. T [s.. j]) if c < i+t
2 (resp. c >

s+ j
2). Then, w is shorter than T [i..t]

or T [s.. j] (see also Fig. 5). �
Then, we consider palindromes whose centers are between the centers of the longest palindromic prefix and the longest

palindromic suffix of T [i.. j].
6

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Fig. 6. Illustration for contradictions in the proof of Lemma 3. T [i..t] is the longest palindromic prefix and T [s.. j] is the longest palindromic suffix of
T [i.. j]. If a palindrome as (a) exists, there exists a palindromic prefix (a’) of T [i.. j] that is longer than T [i..t], a contradiction. Similarly, the existence of a
palindrome as (b) leads to a contradiction.

Lemma 3. Let w be a palindromic substring of T and c be the center of w. If i+t
2 < c <

s+ j
2 , then w is a palindromic infix of T [i.. j].

Proof. Let w = T [p..q]. Then, c = p+q
2 . To prove that w is a palindromic infix, we show that p > i and q < j. For the sake

of contradiction, we assume p ≤ i. If i+t
2 < c ≤ i+ j

2 , there exists a palindromic prefix w1 whose center is c. This contradicts
that T [i..t] is the longest palindromic prefix of T [i.. j] since T [i..t] is a substring of w1 (see also Fig. 6). Otherwise, if
i+ j

2 < c <
s+ j

2 , there exists a palindromic suffix whose w2 center is c. This contradicts that T [s.. j] is the longest palindromic
suffix of T [i.. j] since T [i..t] is a substring of w2 (see also Fig. 6). Therefore, p > i. We can show q < j in a symmetric
way. �

By Lemmas 2 and 3, when a palindromic infix w of T [i.. j] is the longest palindromic substring of T [i.. j], the center of
w must be located between i+t

2 and s+ j
2 . Furthermore, w is a maximal palindrome in T . In other words, w is the longest

maximal palindrome in T whose center c satisfies i+t
2 < c <

s+ j
2 . To find such a (maximal) palindrome, we build a succinct

RMQ data structure on the length-(2n − 1) array MP that stores the lengths of maximal palindromes in T . For each integer
and half-integer c ∈ {1, 1.5, . . . , n − 0.5, n}, MP[2c − 1] stores the length of the maximal palindrome whose center is c. By
doing so, when the indices t and s are given, we can find a candidate for the longest palindromic substring which is an infix
of T [i.. j] in constant time. More precisely, the length of the candidate is MP[RMQMP(i + t, s + j − 2)] since the center c of
the candidate satisfies i+t

2 < c <
s+ j

2 (i + t − 1 < 2c − 1 < s + j − 1). By Manacher’s algorithm [27], MP can be constructed
in O(n) time. Then, we obtain the following lemma.

Lemma 4. Given the longest palindromic prefix T [i..t] and the longest palindromic suffix T [s.. j] of T [i.. j], we can compute the longest
palindromic infix of T [i.. j] whose centers are between the centers of T [i..t] and T [s.. j] in O(1) time with a data structure of size O(n)

that can be constructed in O(n) time.

By Lemmas 1 and 4, we have shown our main theorem:

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n) in O(n) time
that can answer any internal longest palindrome query in O(1) time.

4. Top-k longest palindromes

We denote by TopLPalT ([i, j], k) an array of occurrences of top-k longest palindromic substrings in T [i.. j] sorted in their
lengths. In other words, TopLPalT ([i, j], k)[r] = [s, t] means that T [s..t] is the r-th longest palindromic substring in T [i.. j].
For simplicity, we denote TopLPalT ([1, |T |], k) as TopLPalT (k).

4.1. Top-k longest palindromes in a string

First, we consider a problem to compute the top-k longest palindromes in the input string and propose an efficient
algorithm.

Top-k longest palindromes problem
Input: A string T of length n and an integer k.
Output: An array TopLPalT (k).
7

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Firstly, we give an important observation of this problem. For a palindromic substring P = T [α..β], we call the substring
T [α + 1..β − 1] the shrink of P . Note that the shrink of a palindrome is also a palindrome.

Observation 1. The r-th longest palindrome in a string T is either

(i) a maximal palindrome in T or
(ii) the shrink of the q-th longest palindrome for some q with 1 ≤ q ≤ r − 1.

In our algorithm, we precompute array M[1..2n −1] and dynamically maintain array R[1..n], where each M[p] stores the
p-th longest maximal palindrome in T , and each R[�] stores the set of palindromes of length � that are already returned
and whose palindromic substring is not returned yet (if there is no such palindrome, let R[�] = nil).

Note that the sorted array M can be computed in O(n) time by using Manacher’s algorithm and radix sorting. Also, since
the longest palindrome is M[1], we first return M[1] = [s, t] and then update R[t − s + 1] to singleton {[s, t]}.

When we compute the r-th longest palindrome for some r with 2 ≤ r ≤ k, we utilize Observation 1. Let �r−1 be the
length of the (r − 1)-th longest palindrome. Then, the length �r of the r-th longest palindrome is in {�r−1, �r−1 − 1, �r−1 − 2}
because the shrink of the (r − 1)-th longest palindrome, whose length is �r−1 − 2, is at least a palindrome. We pick up a
longest palindrome Q within R[�r−1 + 2] ∪ R[�r−1 + 1] ∪ R[�r−1]. Note that such Q always exists since R[�r−1] �= nil at this
step. Let Q − be the shrink of Q . We compare its length |Q −| with the length of the longest maximal palindrome that has
not returned yet. Then, the longer one is the r-th longest palindrome Pr . If Pr is equal to Q − , we remove Q from R[|Q |].
At last, we append Pr to the set R[|Pr |].

Since every operation in each r-th step can be done in constant time, the above algorithm runs in O(n + k) time. Also,
since we remove Q from R when we return Q − , most entries of R are nil except for at most three entries at each step.
Thus, array R can be implemented within min{3n, k} words of space. In total, our algorithm requires O(n) working space.
We have shown the next lemma.

Lemma 5. Given a string T of length n and an integer k, we can compute TopLPalT (k) in O(n + k) time with O(n) working space.

We further show that the above algorithm can be applied to a query version of the top-k longest palindromes problem
defined as below:

Top-k longest palindromes query
Input: A string T of length n.
Query input: An integer k.
Query output: An array TopLPalT (k).

In the preprocessing phase, we compute and store the sorted top-n longest palindromes by using the algorithm of
Lemma 5. If k ≤ n, we just scan the pre-stored palindromes and return the top-k ones. Otherwise, we apply the aforemen-
tioned algorithm. For both cases, the query time is O(k), which is optimal. Thus, the following theorem holds.

Theorem 5. After O(n)-time preprocessing on an input string T of length n, we can compute TopLPalT (k) in O(k) time for a given
query integer k.

4.2. Internal top-k longest palindromes query

This subsection considers a more general model; the internal query model.

Internal Top-k longest palindromes query
Input: A string T of length n.
Query input: An interval [i, j] and an integer k.
Query output: An array TopLPalT ([i, j], k).

First, we give some observations and the idea of our algorithm. The following observation on palindromic symmetry is
fundamental.

Observation 2. Let T [α..β] be a palindrome and let c be an (half-) integer with α ≤ c <
α+β

2 . There is a palindromic substring of
T [α..β] whose center is c iff there is a palindromic substring of T [α..β] whose center is α + β − c.

Similar to Observation 1, we categorize the r-th longest palindrome. Let LPPi, j (resp. LPSi, j) be the longest palindromic
prefix (resp. suffix) of T [i.. j]. Further let cp (resp. cs) be the center of LPPi, j (resp. LPSi. j).
8

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Fig. 7. Illustration for Observation 3. All non-empty palindromic substrings of T [3..10] are depicted, and they are categorized into (i)–(vi).

Observation 3. The r-th longest palindrome in a string T [i.. j] is one of the followings:

(i) a maximal palindrome of T whose center is between cp + 0.5 and cs − 0.5, inclusive,
(ii) the shrink of the q-th longest palindrome whose center is between cp and cs, inclusive, for some q with 1 ≤ q ≤ r − 1,

(iii) the longest palindromic prefix LPPi, j of T [i.. j],
(iv) the longest palindromic suffix LPSi, j of T [i.. j],
(v) a palindromic substring of T [i.. j] whose center is less than cp, which is shorter than LPPi, j , or

(vi) a palindromic substring of T [i.. j] whose center is greater than cs, which is shorter than LPSi, j .

Note that the candidates (iii) and (iv) are not necessarily maximal palindromes of T , and thus, we cannot merge them
with (i) in general. Also, the candidates (v) and (vi) are derived by Observation 2. See Fig. 7.

The first and the second candidates (i), (ii) are the same as those of Observation 1. To compute these candidates, we
modify the algorithm of Lemma 5 and apply it to this problem. Instead of the sorted array M[1..2n − 1], we simply use
array MP[1..2n − 1] of the lengths of maximal palindromes in the positional order. In the preprocessing, we construct a
top-k Range Maximum Query (top-k RMQ) data structure on array MP. The top-k RMQ (a.k.a. sorted range selection query) on
an integer array A[1..n] is, given an interval [i, j] ⊆ [1, n] and a positive integer k ≤ j − i + 1 as a query, to output a sorted
list of the top-k largest elements in subarray A[i.. j]. As for the top-k RMQ, the next result is known:

Theorem 6 ([13]). There is a data structure of size O(n) which can answer top-k RMQ in O(k) time for any k. Also, the data structure
can be constructed in O(n logn) time.

After constructing a top-k RMQ data structure on array MP, we can enumerate the top-k longest maximal palindromes
of T whose center is between cp + 0.5 and cs − 0.5 (i.e., candidates (i)). The second candidate (ii) can be maintained
dynamically by using array R̃ of returned palindromes which is almost the same as R but contains only palindromes
centered between cp and cs . The third and fourth candidates (iii) and (iv) are unique. Thus, we can easily treat them. The
fifth and sixth candidates (v), (vi) can be found by palindromic symmetry of LPP and LPS.

Algorithm Now, we are ready to describe our algorithm. Given a query interval [i, j] and a query integer k, we first run
the algorithm of Theorem 1. Then, the longest palindromic substring P1 in T [i.. j] and the longest palindromic prefix/suffix
(equivalently, cp and cs) of T [i.. j] are obtained. We set R̃[�] = {[s, s + � − 1]} where s and � are the starting position and
the length of the longest palindromic substring of T [i.. j], respectively. The second-longest palindrome P2 is the longest
one in ({MP[x] | 2cp < x < 2cs} ∪ {T [α + 1..β − 1] | [α, β] ∈ R̃} ∪ {LPPi, j, LPSi, j}) \R where R is the set of palindromes that
have been returned. Before detecting P2, R = {[s, s + � − 1]} holds, and after detecting P2, we update R ← R ∪ {P2}. In
addition, if P2 is a substring of LPPi, j and the center of P2 is greater than cp , then there is the same palindrome as P2 in
the opposite position w.r.t. cp . Thus, we add the (third-longest) palindrome into R and continue the procedure. In the case
where P2 is a substring of LPSi, j with a different center from LPSi, j , the same symmetric procedure is applied. We iterate
the above procedure until k-th longest palindrome is obtained.
9

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Example 1. We give a running example using Fig. 7. Assume that we want to find the top-5 longest palindromes in substring
T [3..10] = ababaabb of string T = abababaabbaba. Palindromes in T [3..10] are categorized as (i)–(vi). Here, the longest
maximal palindrome whose center c is 5 < c < 9.5 is T [6..9]. Also, LPP3,10 = T [3..7] and LPS3,10 = T [9..10] hold. Thus, the
longest one in TopLPalT ([3, 10], 5) is T [3..7]. Then, R̃[5] = {[3, 7]}. Thus the second-longest palindrome is either T [6..9] (a
maximal palindrome), T [9..10] = LPS3,10, or T [4..6] (, which is the shrink of T [3..7] ∈ R̃[5]). Thus we return T [6..9] and
update R̃[4] = {[6, 9]}. The second-longest maximal palindrome whose center c is 5 < c < 9.5 is T [5..7]. Thus the third-
longest palindrome is either T [5..7] (a maximal palindrome), T [9..10] = LPS3,10, or T [4..6]. Since there are two longest ones
T [5..7] and T [4..6] with the same length 3, we return them. Also, we remove [3, 7] from LPSi, j since its shrink T [4..6] has
been returned. Finally, since T [5..7] is a palindromic substring of LPP3,10, there is a palindrome T [3..5] of length 3 at the
mirror position by Observation 2. So we also return T [3..5] and update R̃[3] = {[5, 7], [4, 6], [3, 5]}. Then, we have returned
the top-5 palindromes R = {[3, 7], [6, 9], [5, 7], [4, 6], [3, 5]}, so the algorithm terminates.

Analyzing algorithm At each iteration, the longest palindrome in {MP[x] | 2cp < x < 2cs} \ R can be computed in constant
time by answering top-k RMQ in parallel. The longest palindrome in {T [α + 1..β − 1] | [α, β] ∈ R̃} \R can be also computed
in constant time since elements in R̃ are sorted by length (cf. the algorithm of Lemma 5). Trivially, the longest one in
{LPPi, j, LPSi, j}) \ R can be found in constant time. By exploring the longest elements of the above three sets, the first
four candidates in Observation 1 have been checked. By the remaining process, the existence of candidates (v) and (vi) in
Observation 1 has also been checked. Therefore, the proposed algorithm runs correctly, and its time complexity is dominated
by the query time for top-k RMQ. We obtain the next theorem.

Theorem 7. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n + πs(n)) in
O(n + πp(n)) time that can answer any internal top-k longest palindrome query in O(k + πq(n, i, j, k)) time where πp(n) is the
preprocessing time for top-k RMQ, πs(n) is the size of top-k RMQ data structure, and πq(n, i, j, k) is the query time for top-k RMQ.

We obtain the next corollary by plugging the result of Theorem 6 into Theorem 7.

Corollary 1. Given a string T of length n, we can construct a data structure of size O(n) in O(n log n) time that can answer any internal
top-k longest palindrome query in O(k) time.

5. Conclusions and open problems

In this paper, we considered three variants of the longest palindrome problem on the input string T of length n and
proposed algorithms for them. The problems are the followings.

1. The internal longest palindrome query, which requires returning the longest palindrome appearing in substring T [i.. j].
2. The top-k longest palindrome query, which requires returning the top-k longest palindrome appearing in T .
3. The internal top-k longest palindrome query, which requires returning the top-k longest palindrome appearing in sub-

string T [i.. j].

Note that every problem is a generalization of the longest palindrome problem, which can be solved in O(n) time [27]. Our
proposed data structures are of size O(n) and can answer every query in optimal time, i.e., in O(1) time for the internal
longest palindrome query and in O(k) time for the top-k queries. Construction time is O(n) for the first and the second
problem, and O(n log n) time for the third problem. Note that this O(n log n) term is dominated by the preprocessing time
for the top-k RMQ [13].

Open problems Our results achieved optimal time in terms of order notations. It will be an interesting open problem to
develop a time-space tradeoff algorithm for variants of the longest palindrome problem. For example, for some parameter
τ > 1, can we design a data structure (except for the input string) of size O(n/τ) which can answer the internal longest
palindrome query in O(τ) time? One of the other possible directions to reduce space is designing a data structure of size
O(d) where d is the number of distinct palindromes occurring in T . It is known that d is at most n + 1 [17] and thus
O(d) = O(n) in the worst case. However, in most cases, d is much smaller than n. So, it is worthwhile to design such data
structures. For example, the size of the palindromic tree is actually O(d) rather than O(n). Whether the space usage of our
data structure can be reduced to O(d) is open.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
10

K. Mitani, T. Mieno, K. Seto et al. Theoretical Computer Science 979 (2023) 114183
Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers JP20H05964 (TH), JP21H05839 (KS), JP22K21273,
and JP23H04381 (TM).

References

[1] Paniz Abedin, Arnab Ganguly, Wing-Kai Hon, Kotaro Matsuda, Yakov Nekrich, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan, A linear-space
data structure for range-LCP queries in poly-logarithmic time, Theor. Comput. Sci. 822 (2020) 15–22.

[2] Paniz Abedin, Arnab Ganguly, Solon P. Pissis, Sharma V. Thankachan, Efficient data structures for range shortest unique substring queries, Algorithms
13 (11) (2020) 1–9.

[3] Pankaj K. Agarwal, Range searching, in: Handbook of Discrete and Computational Geometry, Chapman and Hall/CRC, 2017, pp. 1057–1092.
[4] Stephen Alstrup, Gerth Stølting Brodal, Theis Rauhe, New data structures for orthogonal range searching, in: 2013 IEEE 54th Annual Symposium on

Foundations of Computer Science, IEEE Computer Society, 2000, p. 198.
[5] Amihood Amir, Alberto Apostolico, Gad M. Landau, Avivit Levy, Moshe Lewenstein, Ely Porat, Range LCP, J. Comput. Syst. Sci. 80 (7) (2014) 1245–1253.
[6] Amihood Amir, Itai Boneh, Dynamic palindrome detection, arXiv preprint, arXiv:1906 .09732, 2019.
[7] Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Dynamic and internal longest common substring, Algorithmica 82 (12)

(2020) 3707–3743.
[8] Amihood Amir, Gad M. Landau, Moshe Lewenstein, Dina Sokol, Dynamic text and static pattern matching, ACM Trans. Algorithms 3 (2) (2007) 19.
[9] Alberto Apostolico, Dany Breslauer, Zvi Galil, Parallel detection of all palindromes in a string, Theor. Comput. Sci. 141 (1) (1995) 163–173.

[10] Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, Ignat Kolesnichenko, Tatiana Starikovskaya, Computing minimal and maximal suffixes of a
substring, Theor. Comput. Sci. 638 (2016) 112–121.

[11] Golnaz Badkobeh, Panagiotis Charalampopoulos, Dmitry Kosolobov, Solon P. Pissis, Internal shortest absent word queries in constant time and linear
space, Theor. Comput. Sci. 922 (2022) 271–282.

[12] Jon Louis Bentley, Multidimensional divide-and-conquer, Commun. ACM 23 (4) (1980) 214–229.
[13] Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, Alejandro López-Ortiz, Online sorted range reporting, in: Algorithms and Computation: 20th Inter-

national Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16–18, 2009, in: Proceedings, vol. 20, Springer, 2009, pp. 173–182.
[14] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, Oren Weimann, An almost optimal edit distance oracle, in: 48th International Collo-

quium on Automata, Languages, and Programming (ICALP 2021), Schloss Dagstuhl-Leibniz-Zentrum Für Informatik, 2021.
[15] Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, Internal dictionary matching,

Algorithmica 83 (7) (2021) 2142–2169.
[16] Panagiotis Charalampopoulos, Tomasz Kociumaka, Philip Wellnitz, Faster approximate pattern matching: a unified approach, in: 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), IEEE, 2020, pp. 978–989.
[17] Xavier Droubay, Jacques Justin, Giuseppe Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theor. Comput. Sci. 255 (1–2) (2001)

539–553.
[18] Johannes Fischer, Volker Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM J. Comput. 40 (2) (2011)

465–492.
[19] Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, Computing longest palindromic substring after single-character

or block-wise edits, Theor. Comput. Sci. 859 (2021) 116–133.
[20] Moses Ganardi, Compression by contracting straight-line programs, in: Petra Mutzel, Rasmus Pagh, Grzegorz Herman (Eds.), 29th Annual European

Symposium on Algorithms (ESA 2021), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 204, Schloss Dagstuhl – Leibniz-Zentrum Für
Informatik, 2021, pp. 45:1–45:16.

[21] Arnab Ganguly, Manish Patil, Rahul Shah, Sharma V. Thankachan, A linear space data structure for range LCP queries, Fundam. Inform. 163 (3) (2018)
245–251.

[22] Richard Groult, Élise Prieur, Gwénaël Richomme, Counting distinct palindromes in a word in linear time, Inf. Process. Lett. 110 (20) (2010) 908–912.
[23] Dan Gusfield, Algorithms on stings, trees, and sequences: computer science and computational biology, ACM SIGACT News 28 (4) (1997) 41–60.
[24] Kociumaka Tomasz, Minimal suffix and rotation of a substring in optimal time, in: 27th Annual Symposium on Combinatorial Pattern Matching (CPM

2016), vol. 54, Schloss Dagstuhl–Leibniz-Zentrum Fuer Informatik, 2016, pp. 28:1–28:12.
[25] Kociumaka Tomasz, Efficient data structures for internal queries in texts, PhD thesis, University of Warsaw, 2018.
[26] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, Internal pattern matching queries in a text and applications, in: Proceedings

of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2014, pp. 532–551.
[27] Glenn Manacher, A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string, J. ACM 22 (3) (1975) 346–351.
[28] Wataru Matsubara, Shunsuke Inenaga, Akira Ishino, Ayumi Shinohara, Tomoyuki Nakamura, Kazuo Hashimoto, Efficient algorithms to compute com-

pressed longest common substrings and compressed palindromes, Theor. Comput. Sci. 410 (8–10) (2009) 900–913.
[29] Kotaro Matsuda, Kunihiko Sadakane, Tatiana Starikovskaya, Masakazu Tateshita, Compressed orthogonal search on suffix arrays with applications to

range LCP, in: 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020), Schloss Dagstuhl-Leibniz-Zentrum Für Informatik, 2020.
[30] Mihai Pătraşcu, Mikkel Thorup, Time-space trade-offs for predecessor search, in: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory

of Computing, 2006, pp. 232–240.
[31] Mikhail Rubinchik, Arseny M. Shur, Counting palindromes in substrings, in: International Symposium on String Processing and Information Retrieval,

Springer, 2017, pp. 290–303.
[32] Mikhail Rubinchik, Arseny M. Shur, EERTREE: an efficient data structure for processing palindromes in strings, Eur. J. Comb. 68 (2018) 249–265.
[33] Yoshifumi Sakai, A substring–substring LCS data structure, Theor. Comput. Sci. 753 (2019) 16–34.
[34] Yoshifumi Sakai, A data structure for substring-substring LCS length queries, Theor. Comput. Sci. 911 (2022) 41–54.
[35] Alexander Tiskin, Semi-local string comparison: algorithmic techniques and applications, Math. Comput. Sci. 1 (4) (2008) 571–603.
11

http://refhub.elsevier.com/S0304-3975(23)00496-6/bibFDB0529124531401DFBF1B57D8B0C8FEs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibFDB0529124531401DFBF1B57D8B0C8FEs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib8C03DE7D623DE9EFDFCDD9CB50FE2469s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib8C03DE7D623DE9EFDFCDD9CB50FE2469s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib14880091F53F9AFBF1068E418763A601s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib251010975A89343220C1251808688B42s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib251010975A89343220C1251808688B42s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib2D246F3A8C5B778077AD8E3B49D0EB2Es1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib141DDDBF5B7167332818B56D57CD153As1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib4D7A76F023AD99EAB5D5752BED1913EAs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib4D7A76F023AD99EAB5D5752BED1913EAs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibAF17C25969DA3B7A8078B1DD4781DBB0s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib144AA1B7F80012E6656CE46E8597C2A7s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib12B45A6481E7DACCC306AAE08966C038s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib12B45A6481E7DACCC306AAE08966C038s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibFE51EB0D88584CC9E5EF0B07030D0BF1s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibFE51EB0D88584CC9E5EF0B07030D0BF1s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib37EDD98B1E205FE752BD0FB41F9635DFs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib1301B7DACE3507AF0DD82D2422ED7A6Cs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib1301B7DACE3507AF0DD82D2422ED7A6Cs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib298EC17FD1B903B9ED009A5924394E9Bs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib298EC17FD1B903B9ED009A5924394E9Bs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib7E3BE879870E132DD3B2FB5AE1E26C8Es1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib7E3BE879870E132DD3B2FB5AE1E26C8Es1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibD532EC73111E8068418C1DE57692AAF7s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibD532EC73111E8068418C1DE57692AAF7s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibBED46A94E6F092E8A3EDC38766FC1348s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibBED46A94E6F092E8A3EDC38766FC1348s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib0082D29DFE23A70A976725F560D875D6s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib0082D29DFE23A70A976725F560D875D6s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib1B1DD5AA16EB4907DA267698B9E5629Cs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib1B1DD5AA16EB4907DA267698B9E5629Cs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib2395EFA93345291C4F2F0EC1F514722Bs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib2395EFA93345291C4F2F0EC1F514722Bs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib2395EFA93345291C4F2F0EC1F514722Bs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib3B8C8CF496F852944DC5737BD0FECC59s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib3B8C8CF496F852944DC5737BD0FECC59s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibD028CEC5AD92667883A9A61B095AF400s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib814774DA2EF6AD6A5D66A21F22D2C6C9s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib5EA3C99DC8E0891C27215506840AC561s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib5EA3C99DC8E0891C27215506840AC561s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib2E23ECFC6973582549C7B1A209475D7Fs1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib5FD50AF23D0E140E2F048548A9A3FA9Ds1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib5FD50AF23D0E140E2F048548A9A3FA9Ds1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib79A967628BDD9895551F76C7172A087Es1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib05D621D2B6D2DB9B0882B5B988A55271s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib05D621D2B6D2DB9B0882B5B988A55271s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib9ECEE5F365119338B1C12690DB15E771s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib9ECEE5F365119338B1C12690DB15E771s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibBAE21D57A0B989270D58E7A10D86F650s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibBAE21D57A0B989270D58E7A10D86F650s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibD484979B5C57F3DA4BD41BB109677A4Ds1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibD484979B5C57F3DA4BD41BB109677A4Ds1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibAFA216160A2AE552639FB831EDCDF607s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibF4E35606F6C3F337D70B2A6024B3678As1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bib3836662FE52ECBFAE5D3C23D69419962s1
http://refhub.elsevier.com/S0304-3975(23)00496-6/bibBC211416C0AFE8EA0F6F1E6F2ADDAF34s1

	Finding top-k longest palindromes in substrings
	1 Introduction
	2 Preliminaries
	2.1 Strings and palindromes
	2.2 Tools

	3 Internal longest palindrome queries
	3.1 Palindromic suffixes and prefixes
	3.2 Palindromic infixes

	4 Top-k longest palindromes
	4.1 Top-k longest palindromes in a string
	4.2 Internal top-k longest palindromes query

	5 Conclusions and open problems
	Declaration of competing interest
	Acknowledgements
	References

