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Palindromes are strings that read the same forward and backward. Problems of computing 
palindromic structures in strings have been studied for many years with the motivation 
of their application to biology. The longest palindrome problem is one of the most 
important and classical problems regarding palindromic structures, that is, to compute 
the longest palindrome appearing in a string T of length n. The problem can be solved 
in O(n) time by the famous algorithm of Manacher (1975) [27]. This paper generalizes 
the longest palindrome problem to the problem of finding the top-k longest palindromes 
in an arbitrary substring, including the input string T itself. The internal top-k longest 
palindrome query is, given a substring T [i.. j] of T and a positive integer k as a query, 
to compute the top-k longest palindromes appearing in T [i.. j]. This paper proposes a 
linear-size data structure that can answer internal top-k longest palindromes query in 
optimal O (k) time. Also, given the input string T , our data structure can be constructed 
in O(n logn) time. For k = 1, the construction time is reduced to O(n).

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A string which is the same as its reversal is called a palindrome. Palindromes have been widely studied with the 
motivation of their application to biology [23]. Computing and counting palindromes in a string are fundamental tasks. 
Manacher [27] proposed an O(n)-time algorithm that computes all maximal palindromes in the string of length n. Droubay 
et al. [17] showed that any string of length n contains at most n +1 distinct palindromes (including the empty string). Then, 
Groult et al. [22] proposed an O(n)-time algorithm to enumerate the number of distinct palindromes in a string. The above 
O(n)-time algorithms are time-optimal since reading the input string of length n takes �(n) time.

Regarding the longest palindrome computation, Funakoshi et al. [19] considered the problem of computing the longest 
palindromic substring of the string T ′ after a single character insertion, deletion, or substitution is applied to the input string 
T of length n. Of course, using O(n) time, we can obtain the longest palindromic substring of T ′ from scratch. However, 
this idea is naïve and appears to be inefficient. To avoid such inefficiency, Funakoshi et al. [19] proposed an O(n)-space data 
structure that can compute the solution for any editing operation given as a query in O(log(min{σ , log n})) time where σ
is the alphabet size. Amir et al. [7] considered the dynamic longest palindromic substring problem, which is an extension 
of Funakoshi et al.’s problem where up to O(n) sequential editing operations are allowed. They proposed an algorithm that 
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Table 1
Manacher’s algorithm [27] can compute the longest palindrome in a string T in linear time. We study 
three generalized problems and give efficient data structures and algorithms. All the proposed data 
structures are of linear size.

longest palindrome top-k palindromes

String T preprocessing O(n) time [27] O(n) time
query O(1) time O(k) time

Query substring preprocessing O(n) time O(n logn) time
T [i.. j] query O(1) time O(k) time

solves this problem in O(
√

n log2 n) time per a single character edit with high probability with a data structure of size 
O(n log n), which can be constructed in O(n log2 n) time. Furthermore, Amir and Boneh [6] proposed an algorithm running 
in poly-logarithmic time per a single character substitution.

Internal queries are queries about substrings of the input string T . Let us consider a situation where we solve a certain 
problem for each of k different substrings of T . If we run an O(|w|)-time algorithm from scratch for each substring w , the 
total time complexity can be as large as O(kn). To be more efficient, by performing an appropriate preprocessing on T , we 
construct some data structure for the query to output each solution efficiently. Such efficient data structures for palindromic 
problems are known. Rubinchik and Shur [31] proposed an algorithm that computes the number of distinct palindromes 
in a given substring of an input string of length n. Their algorithm runs in O(log n) time with a data structure of size 
O(n log n), which can be constructed in O(n log n) time. Amir et al. [7] considered a problem of computing the longest 
palindromic substring in a given substring of the input string of length n; it is called the internal longest palindrome query. 
Their algorithm runs in O(log n) time with a data structure of size O(n log n), which can be constructed in O(n log2 n) time.

This paper proposes a new algorithm for the internal longest palindrome query. The algorithm of Amir et al. [7] uses 
2-dimensional orthogonal range maximum queries [3,4,12]; furthermore, the time and space complexities of their algorithm 
are dominated by this query. Instead of 2-dimensional orthogonal range maximum queries, by using palindromic trees [32], 
weighted ancestor queries [20], and range maximum queries [18], we obtain a time-optimal algorithm.

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n) in O(n) time 
that can answer any internal longest palindrome query in O(1) time.

Here, an alphabet is said to be linearly sortable if any sequence of n characters from � can be sorted in O(n) time. For 
example, the integer alphabet {1, 2, . . . , nc} for some constant c is linearly sortable because we can sort a sequence from the 
alphabet in linear time by using a radix sort with base n. We also assume the word-RAM model with word size ω ≥ log n
bits for input size n.

Furthermore, we consider a more general problem of finding palindromes, i.e., the problem of finding the top-k longest 
palindromes in a substring of T , rather than just the longest palindrome in T . Then, we finally prove the following proposi-
tion, which will be given as a corollary in Section 4.

Corollary 1. Given a string T of length n, we can construct a data structure of size O(n) in O(n log n) time that can answer any internal 
top-k longest palindrome query in O(k) time.

Our results are summarized in Table 1.

Related work Internal queries have been studied on many problems, not only those related to palindromic structures. For 
instance, Kociumaka et al. [26] considered the internal pattern matching queries that are ones for computing the occurrences 
of a substring U of the input string T in another substring V of T . Besides, internal queries for string alignment [14,33–35], 
longest common prefix [1,5,21,29], and longest common substring [7] have been studied in the last two decades. See [25]
for an overview of internal queries. We also refer to [2,10,11,15,16,24] and references therein.

Paper organization The rest of this paper is organized as follows. Section 2 gives some notations and definitions. Section 3
shows our data structure to solve the internal longest palindrome queries. Section 4 shows how to compute the top-k
longest palindromes in (sub)strings. Finally, Section 5 concludes this paper.

2. Preliminaries

2.1. Strings and palindromes

Let � be an alphabet. An element of � is called a character, and an element of �∗ is called a string. The empty string ε
is the string of length 0. The length of a string T is denoted by |T |. For each i with 1 ≤ i ≤ |T |, the i-th character of T is 
denoted by T [i]. For each i and j with 1 ≤ i, j ≤ |T |, the string T [i]T [i +1] · · · T [ j] is denoted by T [i.. j]. For convenience, let 
2
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Fig. 1. Palindromic suffixes of a string and the partition (suf 1, . . . , suf 5) of their lengths. Three integers s3 = 3, s4 = 5, and s5 = 7 are represented by a single 
arithmetic progression suf 3 since dif 3 = dif 4 = dif 5 = 2. Since s4 is the second smallest term in suf 3, suf 3,2 = s4.

T [i′.. j′] = ε if i′ > j′ . If T = xyz, then x, y, and z are called a prefix, substring, and suffix of T , respectively. They are called 
a proper prefix, a proper substring, and a proper suffix of T if x �= T , y �= T , and z �= T , respectively. The string y is called an 
infix of T if x �= ε and z �= ε. The reversal of string T is denoted by T R , i.e., T R = T [|T |] · · · T [2]T [1]. A string T is called a 
palindrome if T = T R . Note that ε is also a palindrome. For a palindromic substring T [i.. j] of T , the center of T [i.. j] is i+ j

2 . 
A palindromic substring T [i.. j] is called a maximal palindrome in T if i = 1, j = |T |, or T [i − 1] �= T [ j + 1]. In what follows, 
we consider an arbitrary fixed string T of length n > 0. In this paper, we assume that the alphabet � is linearly sortable. 
We also assume the word-RAM model with word size ω ≥ log n bits.

Let q be the number of palindromic suffixes of T . Let suf (T ) = (s1, s2, . . ., sq) be the sequence of the lengths of palin-
dromic suffixes of T sorted in increasing order. Further let dif i = si − si−1 for each i with 2 ≤ i ≤ q. For convenience, let 
dif 1 = 0. Then, the sequence (dif 1, . . . , dif q) is monotonically non-decreasing (Lemma 7 in [28]). Let (suf 1, suf 2, . . . , suf p)

be the partition of suf (T ) such that for any two elements si, s j in suf (T ), si, s j ∈ suf k for some k iff dif i = dif j . By def-
inition, each suf k forms an arithmetic progression. It is known that the number p of arithmetic progressions satisfies 
p ∈ O(log n) [9,28]. For 1 ≤ k ≤ p and 1 ≤ � ≤ |suf k|, suf k,� denote the �-th term of suf k . Fig. 1 shows an example of 
the above definitions.

2.2. Tools

In this section, we list some data structures used in our algorithm in Section 3.

Palindromic trees and series trees The palindromic tree of T is a data structure that represents all distinct palindromes in 
T [32]. The palindromic tree of T , denoted by paltree(T ), has d ordinary nodes and one auxiliary node ⊥ where d ≤ n + 1 is 
the number of all distinct palindromes in T . Each ordinary node v corresponds to a palindromic substring of T (including 
the empty string ε) and stores its length as weight(v). For the auxiliary node ⊥, we define weight(⊥) = −1. For convenience, 
we identify each node with its corresponding palindrome. For an ordinary node v in paltree(T ) and a character c, if nodes 
v and cvc exist, then an edge labeled c connects these nodes. The auxiliary node ⊥ has edges to all nodes corresponding 
to length-1 palindromes. Each node v in paltree(T ) has a suffix link that points to the longest palindromic proper suffix of 
v . Let link(v) be the string pointed to by the suffix link of v . We define link(ε) = link(⊥) = ⊥. See Fig. 2(a) for example. 
For each node v corresponding to a non-empty palindrome in paltree(T ), let δv = |v| − |link(v)| be the difference between 
the lengths of v and its longest palindromic proper suffix. For convenience, let δε = 0. Each node v corresponding to a 
non-empty palindrome has a series link that points to the longest palindromic proper suffix u of v such that δu �= δv . Let 
serieslink(v) be the string pointed to by the series link of v .

Let LSufPal be an array of length n such that LSufPal[ j] stores a pointer to the node in paltree(T ) corresponding to the 
longest palindromic suffix of T [1.. j] for each 1 ≤ j ≤ n. The definition of LSufPal is identical to the array node[1] defined 
in [32], and it was shown that node[1] can be computed in O(n) time. Hence, LSufPal can be computed in O(n) time. Let 
LPrePal be an array of length n such that LPrePal[i] stores a pointer to the node in paltree(T ) corresponding to the longest 
palindromic prefix of T [i..n] for each 1 ≤ i ≤ n. LPrePal can be computed in O(n) time as well as LSufPal.

Theorem 2 (Proposition 4.10 in [32]). Given a string T over a linearly sortable alphabet, the palindromic tree of T , including its suffix 
links and series links, can be constructed in O(n) time. Also, LSufPal and LPrePal can be computed in O(n) time.1

Let us consider the subgraph S of paltree(T ) that consists of all ordinary nodes and reversals of all series links. By 
definition, S has no cycle, and S is connected (any node is reachable from the node ε), i.e., it forms a tree. We call the tree 

1 Note that the definition of LSufPal is the same as that of node[1] in [32].
3
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Fig. 2. Illustration for the palindromic tree and the series tree of string T = abaabaabababbb. Since δabaabaaba = |abaabaaba| − |abaaba| = 3, 
δabaaba = |abaaba| − |aba| = 3, and δaba = |aba| − |a| = 2, then serieslink(abaabaaba) = aba. Substring abaabaaba stores the arithmetic progression 
representing {6, 9}, abaaba stores the arithmetic progression representing {6} and aba stores the arithmetic progression representing {3}.

Fig. 3. Illustration for weighted ancestor query. Integers in nodes denote the weights. Given a node v5 in a monotone-weighted tree T and an integer k = 6
for query, WAQ returns the node v3 since v3 is an ancestor of v5, weight(v3) > k = 6, and the weight of the parent v2 of v3 is not greater than k = 6.

S the series tree of T and denote it by seriestree(T ). By definition of series links, the set of lengths of palindromic suffixes 
of v that are longer than |serieslink(v)| can be represented by an arithmetic progression. Each node v stores the arithmetic 
progression, represented by a triple consisting of its first term, its common difference, and the number of terms. Arithmetic 
progressions for all nodes can be computed in linear time by traversing the palindromic tree. It is known that the length of 
a path consisting of series links is O(log n) [32]. Hence, the height of seriestree(T ) is O(log n). See Fig. 2(b) for illustration.

Weighted ancestor query A rooted tree whose nodes are associated with integer weights is called a monotone-weighted 
tree if the weight of every non-root node is not smaller than the parent’s weight. Given a monotone-weighted tree T for 
preprocessing and a node v and an integer k for query, a weighted ancestor query (WAQ) returns the ancestor u closest to 
the root of v such that the weight of u is greater than k. Let WAQT (v, k) be the output of the weighted ancestor query for 
tree T , node v , and integer k. See Fig. 3 for a concrete example. It is known that there is an O(N)-space data structure that 
can answer any weighted ancestor query in O(log log N) time where N is the number of nodes in the tree [8]. In general, 
the query time O(log log N) is known to be optimal within O(N) space [30]. On the other hand, if the height of the input 
tree is low enough, the query time can be improved:

Theorem 3 (Proposition 15 in [20]). Given a monotone-weighted tree with N nodes and height O(ω), one can construct an O(N)

space data structure in O(N) time that can answer any weighted ancestor query in constant time.

In this paper, we use weighted ancestor queries only on the series tree of T whose height is O(log n) ⊆ O(ω), where ω
is the word size, thus we will apply Theorem 3. Note that we assume the word-RAM model with word size ω ≥ log n bits.

Range maximum query Given an integer array A of length m for preprocessing and two indices i and j with 1 ≤ i ≤ j ≤ m
for query, range maximum query returns the index of a maximum element in the sub-array A[i.. j]. Let RMQA(i, j) be the 
4
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output of the range maximum query for array A and indices i, j. In other words, RMQA(i, j) = arg maxk{A[k] | i ≤ k ≤ j}. 
The following result is known:

Theorem 4 (Theorem 5.8 in [18]). Let m be the size of the input array A. There is a data structure of size 2m + o(m) bits that can 
answer any range maximum query on A in constant time. The data structure can be constructed in O(m) time.

3. Internal longest palindrome queries

In this section, we propose an efficient data structure for the internal longest palindrome query defined as follows:

Internal longest palindrome query
Preprocess: A string T of length n.
Query input: Two indices i and j with 1 ≤ i ≤ j ≤ n.
Query output: The longest palindromic substring in T [i.. j].

Our data structure requires only O(n) words of space and can answer any internal longest palindrome query in constant 
time. To answer queries efficiently, we classify all palindromic substrings of T into palindromic prefixes, palindromic infixes, 
and palindromic suffixes. First, we compute the longest palindromic prefix and the longest palindromic suffix of T [i.. j]. 
Second, we compute a palindromic infix that is a candidate for the answer. As we will discuss in a later subsection, this 
candidate may not be the longest palindromic infix of T [i.. j]. Finally, we compare the three above palindromes and output 
the longest one.

3.1. Palindromic suffixes and prefixes

First, we compute the longest palindromic suffix of T [i.. j]. In the preprocessing, we build seriestree(T ) and a data 
structure for the weighted ancestor queries on seriestree(T ), and compute LSufPal as well. The query algorithm consists of 
three steps:

Step 1: Obtain the longest palindromic suffix of T [1.. j].
We obtain the longest palindromic suffix v of T [1.. j] from LSufPal[ j]. If |v| ≤ |T [i.. j]|, then v is the longest palin-
dromic suffix of T [i.. j]. Then, we return T [ j −|v| + 1.. j], and the algorithm terminates. Otherwise, we continue to 
Step 2.

Step 2: Determine the group to which the desired length belongs.
Let � be the length of the longest palindromic suffix of T [i.. j] we want to know. We use the longest palin-
dromic suffix v of T [1.. j] obtained in Step 1. First, we find the shortest palindrome u that is an ancestor of v
in seriestree(T ) and has a length at least |T [i.. j]|. Such a palindrome (equivalently the node) u can be found by 
weighted ancestor query on the series tree, i.e., u = WAQseriestree(T )(v, j − i). Then, |u| is an upper bound of �. Let 
sufα be the group such that |u| ∈ sufα . If the smallest element suf α,1 in sufα is at most |T [i.. j]|, the length �
belongs to the same group suf α as |u|. Otherwise, the length � belongs to the previous group suf α−1.

Step 3: Calculate the desired length.
Let suf β be the group to which the length � belongs, which is determined in Step 2. Since suf β is an arithmetic 
progression, i.e., suf β,γ = suf β,1 + (γ − 1)dif β for 1 ≤ γ ≤ |suf β |, the desired length � can be computed by using a 
constant number of arithmetic operations. Then, we return T [ j − � + 1.. j].

See Fig. 4 for illustration. Now, we show the correctness of the algorithm and analyze time and space complexities.

Lemma 1. We can compute the longest palindromic suffix and prefix of T [i.. j] in O(1) time with a data structure of size O(n) that 
can be constructed in O(n) time.

Proof. In the preprocessing, we build seriestree(T ), LSufPal, LPrePal and a data structure of weighted ancestor query on 
seriestree(T ) in O(n) time (Theorems 2 and 3). Recall that since the height of seriestree(T ) is O(log n) ⊆ O(ω), we can 
apply Theorem 3 to the series tree. Again, by Theorem 2 and 3, the space complexity is O(n) words of space.

In what follows, let � be the length of the longest palindromic suffix of T [i.. j]. In Step 1, we can obtain the longest 
palindromic suffix v of T [1.. j] by just referring to LSufPal[ j]. If |v| ≤ |T [i.. j]|, v is also the longest palindromic suffix of 
T [i.. j], i.e., � = |v|. Otherwise, v is not a substring of T [i.. j]. In Step 2, we first query WAQseriestree(T )(v, j − i). The resulting 
node u corresponds to a palindromic suffix of T [1.. j], which is longer than |T [i.. j]|. Let sufα and suf β be the groups to 
which |u| and � belong to, respectively. If the smallest element suf α,1 in sufα is at most j − i + 1, then the desired length �
satisfies suf α,1 ≤ � ≤ |u|. Namely, β = α. Otherwise, if s is greater than j − i + 1, � is not in suf α but is in suf α−x for some 
x > 1. If we assume that � belongs to suf α−y for some y ≥ 2, the length of serieslink(u) belonging to suf α−1 is longer than 
5
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Fig. 4. Illustration for how to compute the longest palindromic suffix of T [i.. j], when T [1.. j] = abababaabababaabababababababaabababaabababa. 
The graph on the right hand depicts a part of the series tree of a string T , and the lengths of palindromes are written inside the nodes. In Step 1, we obtain 
the length suf 5,1 of the longest palindromic suffix v1 of T [1.. j]. In Step 2, we find suf 3,3 by WAQseriestree(T )(v1, j − i). Since suf 3,1 > j − i + 1, the desired 
length belongs to suf 3. In Step 3, since suf 3 is an arithmetic progression, we can find that suf 3,1 is the longest palindromic suffix of T [i.. j] in constant 
time.

Fig. 5. Illustration for Lemma 2. Two-way arrows denote palindromic substrings of T . T [i..t] is the longest palindromic prefix of T [i.. j]. A palindrome whose 
center c is less than i+t

2 is either (a) not a substring of T [i.. j] or (b) shorter than the longest palindromic prefix of T [i.. j] as shown in this figure.

T [i.. j]. However, it contradicts that u is the answer of WAQseriestree(T )(v, j − i). Hence, if s is greater than j − i + 1, then 
the length � is in sufα−1. Namely, β = α − 1. In Step 3, we can compute � in constant time since we know the arithmetic 
progression suf β to which � belongs. More specifically, � is the largest element that is in suf β and is at most j − i + 1.

Throughout the query algorithm, all operations, including WAQ and operations on arithmetic progressions, can be done 
in constant time. Thus, the query algorithm runs in constant time. �

We can compute the longest palindromic prefix of T [i.. j] in a symmetric way using LPrePal instead of LSufPal.

3.2. Palindromic infixes

Next, we compute the longest palindromic infix except for ones that cannot be the longest palindromic substring due to 
the longest palindromic prefix or the longest palindromic suffix of the query substring. We show that to find the desired 
palindromic infix, it suffices to consider maximal palindromes whose centers are between the centers of the longest palin-
dromic prefix and the longest palindromic suffix of T [i.. j]. Let t be the ending position of the longest palindromic prefix 
and s be the starting position of the longest palindromic suffix. Namely, T [i..t] is the longest palindromic prefix and T [s.. j]
is the longest palindromic suffix of T [i.. j].

Lemma 2. Let w be a palindromic infix of T [i.. j] and c be the center of w. If c < i+t
2 or c >

s+ j
2 , w cannot be the longest palindromic 

substring of T [i.. j].

Proof. Palindrome w is a proper substring of T [i..t] (resp. T [s.. j]) if c < i+t
2 (resp. c >

s+ j
2 ). Then, w is shorter than T [i..t]

or T [s.. j] (see also Fig. 5). �
Then, we consider palindromes whose centers are between the centers of the longest palindromic prefix and the longest 

palindromic suffix of T [i.. j].
6
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Fig. 6. Illustration for contradictions in the proof of Lemma 3. T [i..t] is the longest palindromic prefix and T [s.. j] is the longest palindromic suffix of 
T [i.. j]. If a palindrome as (a) exists, there exists a palindromic prefix (a’) of T [i.. j] that is longer than T [i..t], a contradiction. Similarly, the existence of a 
palindrome as (b) leads to a contradiction.

Lemma 3. Let w be a palindromic substring of T and c be the center of w. If i+t
2 < c <

s+ j
2 , then w is a palindromic infix of T [i.. j].

Proof. Let w = T [p..q]. Then, c = p+q
2 . To prove that w is a palindromic infix, we show that p > i and q < j. For the sake 

of contradiction, we assume p ≤ i. If i+t
2 < c ≤ i+ j

2 , there exists a palindromic prefix w1 whose center is c. This contradicts 
that T [i..t] is the longest palindromic prefix of T [i.. j] since T [i..t] is a substring of w1 (see also Fig. 6). Otherwise, if 
i+ j

2 < c <
s+ j

2 , there exists a palindromic suffix whose w2 center is c. This contradicts that T [s.. j] is the longest palindromic 
suffix of T [i.. j] since T [i..t] is a substring of w2 (see also Fig. 6). Therefore, p > i. We can show q < j in a symmetric 
way. �

By Lemmas 2 and 3, when a palindromic infix w of T [i.. j] is the longest palindromic substring of T [i.. j], the center of 
w must be located between i+t

2 and s+ j
2 . Furthermore, w is a maximal palindrome in T . In other words, w is the longest 

maximal palindrome in T whose center c satisfies i+t
2 < c <

s+ j
2 . To find such a (maximal) palindrome, we build a succinct 

RMQ data structure on the length-(2n − 1) array MP that stores the lengths of maximal palindromes in T . For each integer 
and half-integer c ∈ {1, 1.5, . . . , n − 0.5, n}, MP[2c − 1] stores the length of the maximal palindrome whose center is c. By 
doing so, when the indices t and s are given, we can find a candidate for the longest palindromic substring which is an infix 
of T [i.. j] in constant time. More precisely, the length of the candidate is MP[RMQMP(i + t, s + j − 2)] since the center c of 
the candidate satisfies i+t

2 < c <
s+ j

2 (i + t − 1 < 2c − 1 < s + j − 1). By Manacher’s algorithm [27], MP can be constructed 
in O(n) time. Then, we obtain the following lemma.

Lemma 4. Given the longest palindromic prefix T [i..t] and the longest palindromic suffix T [s.. j] of T [i.. j], we can compute the longest 
palindromic infix of T [i.. j] whose centers are between the centers of T [i..t] and T [s.. j] in O(1) time with a data structure of size O(n)

that can be constructed in O(n) time.

By Lemmas 1 and 4, we have shown our main theorem:

Theorem 1. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n) in O(n) time 
that can answer any internal longest palindrome query in O(1) time.

4. Top-k longest palindromes

We denote by TopLPalT ([i, j], k) an array of occurrences of top-k longest palindromic substrings in T [i.. j] sorted in their 
lengths. In other words, TopLPalT ([i, j], k)[r] = [s, t] means that T [s..t] is the r-th longest palindromic substring in T [i.. j]. 
For simplicity, we denote TopLPalT ([1, |T |], k) as TopLPalT (k).

4.1. Top-k longest palindromes in a string

First, we consider a problem to compute the top-k longest palindromes in the input string and propose an efficient 
algorithm.

Top-k longest palindromes problem
Input: A string T of length n and an integer k.
Output: An array TopLPalT (k).
7
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Firstly, we give an important observation of this problem. For a palindromic substring P = T [α..β], we call the substring 
T [α + 1..β − 1] the shrink of P . Note that the shrink of a palindrome is also a palindrome.

Observation 1. The r-th longest palindrome in a string T is either

(i) a maximal palindrome in T or
(ii) the shrink of the q-th longest palindrome for some q with 1 ≤ q ≤ r − 1.

In our algorithm, we precompute array M[1..2n −1] and dynamically maintain array R[1..n], where each M[p] stores the 
p-th longest maximal palindrome in T , and each R[�] stores the set of palindromes of length � that are already returned 
and whose palindromic substring is not returned yet (if there is no such palindrome, let R[�] = nil).

Note that the sorted array M can be computed in O(n) time by using Manacher’s algorithm and radix sorting. Also, since 
the longest palindrome is M[1], we first return M[1] = [s, t] and then update R[t − s + 1] to singleton {[s, t]}.

When we compute the r-th longest palindrome for some r with 2 ≤ r ≤ k, we utilize Observation 1. Let �r−1 be the 
length of the (r − 1)-th longest palindrome. Then, the length �r of the r-th longest palindrome is in {�r−1, �r−1 − 1, �r−1 − 2}
because the shrink of the (r − 1)-th longest palindrome, whose length is �r−1 − 2, is at least a palindrome. We pick up a 
longest palindrome Q within R[�r−1 + 2] ∪ R[�r−1 + 1] ∪ R[�r−1]. Note that such Q always exists since R[�r−1] �= nil at this 
step. Let Q − be the shrink of Q . We compare its length |Q −| with the length of the longest maximal palindrome that has 
not returned yet. Then, the longer one is the r-th longest palindrome Pr . If Pr is equal to Q − , we remove Q from R[|Q |]. 
At last, we append Pr to the set R[|Pr |].

Since every operation in each r-th step can be done in constant time, the above algorithm runs in O(n + k) time. Also, 
since we remove Q from R when we return Q − , most entries of R are nil except for at most three entries at each step. 
Thus, array R can be implemented within min{3n, k} words of space. In total, our algorithm requires O(n) working space. 
We have shown the next lemma.

Lemma 5. Given a string T of length n and an integer k, we can compute TopLPalT (k) in O(n + k) time with O(n) working space.

We further show that the above algorithm can be applied to a query version of the top-k longest palindromes problem 
defined as below:

Top-k longest palindromes query
Input: A string T of length n.
Query input: An integer k.
Query output: An array TopLPalT (k).

In the preprocessing phase, we compute and store the sorted top-n longest palindromes by using the algorithm of 
Lemma 5. If k ≤ n, we just scan the pre-stored palindromes and return the top-k ones. Otherwise, we apply the aforemen-
tioned algorithm. For both cases, the query time is O(k), which is optimal. Thus, the following theorem holds.

Theorem 5. After O(n)-time preprocessing on an input string T of length n, we can compute TopLPalT (k) in O(k) time for a given 
query integer k.

4.2. Internal top-k longest palindromes query

This subsection considers a more general model; the internal query model.

Internal Top-k longest palindromes query
Input: A string T of length n.
Query input: An interval [i, j] and an integer k.
Query output: An array TopLPalT ([i, j], k).

First, we give some observations and the idea of our algorithm. The following observation on palindromic symmetry is 
fundamental.

Observation 2. Let T [α..β] be a palindrome and let c be an (half-) integer with α ≤ c <
α+β

2 . There is a palindromic substring of 
T [α..β] whose center is c iff there is a palindromic substring of T [α..β] whose center is α + β − c.

Similar to Observation 1, we categorize the r-th longest palindrome. Let LPPi, j (resp. LPSi, j) be the longest palindromic 
prefix (resp. suffix) of T [i.. j]. Further let cp (resp. cs) be the center of LPPi, j (resp. LPSi. j ).
8
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Fig. 7. Illustration for Observation 3. All non-empty palindromic substrings of T [3..10] are depicted, and they are categorized into (i)–(vi).

Observation 3. The r-th longest palindrome in a string T [i.. j] is one of the followings:

(i) a maximal palindrome of T whose center is between cp + 0.5 and cs − 0.5, inclusive,
(ii) the shrink of the q-th longest palindrome whose center is between cp and cs, inclusive, for some q with 1 ≤ q ≤ r − 1,

(iii) the longest palindromic prefix LPPi, j of T [i.. j],
(iv) the longest palindromic suffix LPSi, j of T [i.. j],
(v) a palindromic substring of T [i.. j] whose center is less than cp, which is shorter than LPPi, j , or

(vi) a palindromic substring of T [i.. j] whose center is greater than cs, which is shorter than LPSi, j .

Note that the candidates (iii) and (iv) are not necessarily maximal palindromes of T , and thus, we cannot merge them 
with (i) in general. Also, the candidates (v) and (vi) are derived by Observation 2. See Fig. 7.

The first and the second candidates (i), (ii) are the same as those of Observation 1. To compute these candidates, we 
modify the algorithm of Lemma 5 and apply it to this problem. Instead of the sorted array M[1..2n − 1], we simply use 
array MP[1..2n − 1] of the lengths of maximal palindromes in the positional order. In the preprocessing, we construct a 
top-k Range Maximum Query (top-k RMQ) data structure on array MP. The top-k RMQ (a.k.a. sorted range selection query) on 
an integer array A[1..n] is, given an interval [i, j] ⊆ [1, n] and a positive integer k ≤ j − i + 1 as a query, to output a sorted 
list of the top-k largest elements in subarray A[i.. j]. As for the top-k RMQ, the next result is known:

Theorem 6 ([13]). There is a data structure of size O(n) which can answer top-k RMQ in O(k) time for any k. Also, the data structure 
can be constructed in O(n logn) time.

After constructing a top-k RMQ data structure on array MP, we can enumerate the top-k longest maximal palindromes 
of T whose center is between cp + 0.5 and cs − 0.5 (i.e., candidates (i)). The second candidate (ii) can be maintained 
dynamically by using array R̃ of returned palindromes which is almost the same as R but contains only palindromes 
centered between cp and cs . The third and fourth candidates (iii) and (iv) are unique. Thus, we can easily treat them. The 
fifth and sixth candidates (v), (vi) can be found by palindromic symmetry of LPP and LPS.

Algorithm Now, we are ready to describe our algorithm. Given a query interval [i, j] and a query integer k, we first run 
the algorithm of Theorem 1. Then, the longest palindromic substring P1 in T [i.. j] and the longest palindromic prefix/suffix 
(equivalently, cp and cs) of T [i.. j] are obtained. We set R̃[�] = {[s, s + � − 1]} where s and � are the starting position and 
the length of the longest palindromic substring of T [i.. j], respectively. The second-longest palindrome P2 is the longest 
one in ({MP[x] | 2cp < x < 2cs} ∪ {T [α + 1..β − 1] | [α, β] ∈ R̃} ∪ {LPPi, j, LPSi, j}) \R where R is the set of palindromes that 
have been returned. Before detecting P2, R = {[s, s + � − 1]} holds, and after detecting P2, we update R ← R ∪ {P2}. In 
addition, if P2 is a substring of LPPi, j and the center of P2 is greater than cp , then there is the same palindrome as P2 in 
the opposite position w.r.t. cp . Thus, we add the (third-longest) palindrome into R and continue the procedure. In the case 
where P2 is a substring of LPSi, j with a different center from LPSi, j , the same symmetric procedure is applied. We iterate 
the above procedure until k-th longest palindrome is obtained.
9
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Example 1. We give a running example using Fig. 7. Assume that we want to find the top-5 longest palindromes in substring 
T [3..10] = ababaabb of string T = abababaabbaba. Palindromes in T [3..10] are categorized as (i)–(vi). Here, the longest 
maximal palindrome whose center c is 5 < c < 9.5 is T [6..9]. Also, LPP3,10 = T [3..7] and LPS3,10 = T [9..10] hold. Thus, the 
longest one in TopLPalT ([3, 10], 5) is T [3..7]. Then, R̃[5] = {[3, 7]}. Thus the second-longest palindrome is either T [6..9] (a 
maximal palindrome), T [9..10] = LPS3,10, or T [4..6] (, which is the shrink of T [3..7] ∈ R̃[5]). Thus we return T [6..9] and 
update R̃[4] = {[6, 9]}. The second-longest maximal palindrome whose center c is 5 < c < 9.5 is T [5..7]. Thus the third-
longest palindrome is either T [5..7] (a maximal palindrome), T [9..10] = LPS3,10, or T [4..6]. Since there are two longest ones 
T [5..7] and T [4..6] with the same length 3, we return them. Also, we remove [3, 7] from LPSi, j since its shrink T [4..6] has 
been returned. Finally, since T [5..7] is a palindromic substring of LPP3,10, there is a palindrome T [3..5] of length 3 at the 
mirror position by Observation 2. So we also return T [3..5] and update R̃[3] = {[5, 7], [4, 6], [3, 5]}. Then, we have returned 
the top-5 palindromes R = {[3, 7], [6, 9], [5, 7], [4, 6], [3, 5]}, so the algorithm terminates.

Analyzing algorithm At each iteration, the longest palindrome in {MP[x] | 2cp < x < 2cs} \ R can be computed in constant 
time by answering top-k RMQ in parallel. The longest palindrome in {T [α + 1..β − 1] | [α, β] ∈ R̃} \R can be also computed 
in constant time since elements in R̃ are sorted by length (cf. the algorithm of Lemma 5). Trivially, the longest one in 
{LPPi, j, LPSi, j}) \ R can be found in constant time. By exploring the longest elements of the above three sets, the first 
four candidates in Observation 1 have been checked. By the remaining process, the existence of candidates (v) and (vi) in 
Observation 1 has also been checked. Therefore, the proposed algorithm runs correctly, and its time complexity is dominated 
by the query time for top-k RMQ. We obtain the next theorem.

Theorem 7. Given a string T of length n over a linearly sortable alphabet, we can construct a data structure of size O(n + πs(n)) in 
O(n + πp(n)) time that can answer any internal top-k longest palindrome query in O(k + πq(n, i, j, k)) time where πp(n) is the 
preprocessing time for top-k RMQ, πs(n) is the size of top-k RMQ data structure, and πq(n, i, j, k) is the query time for top-k RMQ.

We obtain the next corollary by plugging the result of Theorem 6 into Theorem 7.

Corollary 1. Given a string T of length n, we can construct a data structure of size O(n) in O(n log n) time that can answer any internal 
top-k longest palindrome query in O(k) time.

5. Conclusions and open problems

In this paper, we considered three variants of the longest palindrome problem on the input string T of length n and 
proposed algorithms for them. The problems are the followings.

1. The internal longest palindrome query, which requires returning the longest palindrome appearing in substring T [i.. j].
2. The top-k longest palindrome query, which requires returning the top-k longest palindrome appearing in T .
3. The internal top-k longest palindrome query, which requires returning the top-k longest palindrome appearing in sub-

string T [i.. j].

Note that every problem is a generalization of the longest palindrome problem, which can be solved in O(n) time [27]. Our 
proposed data structures are of size O(n) and can answer every query in optimal time, i.e., in O(1) time for the internal 
longest palindrome query and in O(k) time for the top-k queries. Construction time is O(n) for the first and the second 
problem, and O(n log n) time for the third problem. Note that this O(n log n) term is dominated by the preprocessing time 
for the top-k RMQ [13].

Open problems Our results achieved optimal time in terms of order notations. It will be an interesting open problem to 
develop a time-space tradeoff algorithm for variants of the longest palindrome problem. For example, for some parameter 
τ > 1, can we design a data structure (except for the input string) of size O(n/τ ) which can answer the internal longest 
palindrome query in O(τ ) time? One of the other possible directions to reduce space is designing a data structure of size 
O(d) where d is the number of distinct palindromes occurring in T . It is known that d is at most n + 1 [17] and thus 
O(d) = O(n) in the worst case. However, in most cases, d is much smaller than n. So, it is worthwhile to design such data 
structures. For example, the size of the palindromic tree is actually O(d) rather than O(n). Whether the space usage of our 
data structure can be reduced to O(d) is open.
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