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In this paper we propose the Maximal Average Shift (MAS) algorithm that finds a pattern 
scan order that maximizes the average shift length. We also present two extensions of 
MAS: one improves the scan speed of MAS by using the scan result of the previous 
window, and the other improves the running time of MAS by using q-grams. These 
algorithms show better average performances in scan speed than previous string matching 
algorithms for DNA sequences.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

String matching is one of fundamental problems in computer science [8]. The string matching problem is to find all 
occurrences of a pattern P of length m in a text T of length n. String matching is widely used in applications such as text 
editing and DNA sequence analysis.

Many string matching algorithms have been proposed over the years [5]. Knuth, Morris, and Pratt [18] proposed the 
KMP algorithm, which compares the pattern against the text from left to right. Boyer and Moore [4] proposed the Boyer–
Moore algorithm (BM for short) which makes comparisons from right to left and uses the good-suffix heuristic and the 
bad-character heuristic. Horspool [16] gave a variant of the Boyer–Moore algorithm (BMH for short) that uses only the bad-
character heuristic. A string matching algorithm typically works with a sliding window; it makes comparisons in a window 
and then moves the window to the right by some shift length. A Boyer–Moore family algorithm (BM-family algorithm for 
short) is an algorithm that 1) computes the shift length by using the scan result of the current window only, and 2) moves 
the window when the first mismatch is found in the current window [28]. In this paper we will divide string matching 
algorithms into two groups: BM-family algorithms and those that are not.

The performance evaluation of string matching algorithms is an important issue in string matching. There are basically 
two analysis methods: one is the worst-case analysis that finds the maximum number of comparisons over all possible 
patterns and texts [7,14,6], and the other is the average-case analysis. The average-case analysis finds the average number 
of text characters scanned for random patterns [2,3,17,20,15,23] or measures the average running time [17,20,12]. In this 
paper we use two measures of average-case analysis: 1) scan speed, which is the average ratio of the text length to the 
number of text characters scanned for random patterns, and 2) running time, which is the average running time for random 
patterns. The scan speed is an important measure in some special settings, e.g., when characters are encrypted [17].

To improve the average performance of string matching algorithms, many researchers have attempted to change the 
pattern scan order. Sunday [26] proposed the Optimal Mismatch algorithm (OM for short) that determines a pattern scan 
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order according to character frequencies, and Külekci [19] presented a variant of the OM algorithm for DNA sequences. In 
order to make the shift length longer, Sunday [26] designed the Maximal Shift algorithm (MS for short) that improves the 
pattern scan order of the BM algorithm. Lu, Lu, and Lee [22] gave an algorithm that optimizes the average shift function 
by using a branch and bound. Didier and Tichit presented an algorithm to find a pattern scan order that optimizes the 
asymptotic speed [10]. Ryu and Park [25] proposed the Greedy Shift algorithm (GS for short) and the High-order Maximal 
Shift algorithm (HS for short) that improves the shift length using the scan result of the current window.

In this paper we propose a BM-family algorithm called the Maximal Average Shift (MAS for short) algorithm that finds a 
pattern scan order that maximizes the average shift length. We also give two extensions of MAS: TMAS and QMASq . TMAS 
improves the scan speed of MAS by using the scan result of the previous window, and QMASq improves the running time 
of MAS by using q-grams.

To evaluate the average performance of MAS, we compare it with other BM-family algorithms (BM, BMH, OM, MS, GS, HS) 
in scan speed and running time. In the experiments, the text is Human chromosomes 1, 10, and 20 downloaded from the 
1000 Genomes Project website [27], and the pattern lengths are 4, 8, 16, 32, 64, and 128. MAS shows the best performances 
in both scan speed and running time for all pattern lengths.

We also compare TMAS and QMASq with other state-of-the-art algorithms which are not BM-family algorithms. Some 
are non-BM-family algorithms because they use the scan result of the previous windows, e.g., the Shift Vector Matching 
algorithm (SVM for short) due to Peltola and Tarhio [24] remembers the scan results of all previous windows using the 
bit-parallel approach. Some others are non-BM-family algorithms because they do not make a shift as soon as they find the 
first mismatched character. The Backward Oracle Matching algorithm (BOM for short) by Allauzen, Crochemore, and Raffinot 
[1], an efficient variant of the Backward Oracle Matching algorithm (EBOM for short) by Faro and Lecroq [11], and the 
Turbo Reverse Factor algorithm (TRF for short) by Crochemore, Czumaj, Gasieniec, Jarominek, Lecroq, Plandowski, and Rytter 
[9] are such algorithms based on suffix automata. BOM, EBOM, and TRF make comparisons in a window until they find a 
text substring which is not a pattern substring (even though there is a mismatch). The HASHq algorithm by Lecroq [21]
works with q-grams rather than characters, and applies a hash function to q-grams. In scan speed, TMAS shows the best 
performances among non-BM-family algorithms when pattern length m is 64 or less. SVM shows comparable performances 
in scan speed when m is 16 or less, but it cannot run when m is 32 or more due to its bit parallelism. When m = 128, TRF 
is the best performer in scan speed. In running time, EBOM is the fastest when m is 4. When m is 8 or more, HASHq is the 
best performer in running time, and QMASq is the runner-up.

This paper is organized as follows. Section 2 describes basic notations and definitions of string matching algorithms. In 
Sections 3 and 4, we present the MAS algorithm and show the experimental results of MAS and BM-family algorithms. 
Section 5 presents two extensions of the MAS algorithm and shows the experimental results. We conclude in Section 6.

2. Preliminaries

For a string S , S[i] denotes the ith character of S , and S[i.. j] denotes the substring of S starting from i and ending at j. 
The text T and the pattern P are strings of lengths n and m, respectively, over an alphabet �. Let f T (x) for x ∈ � be the 
probability that a text character in T is x, assuming that the distributions for all text characters in T are independent and 
identical.

A string matching algorithm reads the text in a window whose size is m. When the window is on position w in T , the 
algorithm compares T [w + 1..w + m] against P [1..m]. A pattern scan order (scan[1], scan[2], . . . , scan[m]) is a permutation 
of (1, 2, . . . , m). That is, T [w + scan[1]] and P [scan[1]] are compared first, and then T [w + scan[2]] and P [scan[2]] are 
compared, etc. Text positions w + scan[1], . . . , w + scan[m] are called scan positions of window w . The text characters in 
scan positions which are accessed in a window are called the scan result of the window.

A string matching algorithm first places the window at position 0, and makes comparisons in the window by a pattern 
scan order. If there is a mismatch in the window or the whole pattern is matched, it determines the shift length and moves 
the window to the right by the shift length, and it repeats the same process. A BM-family algorithm is an algorithm that 1) 
computes the shift length by using the scan result of the current window only, and 2) moves the window when the first 
mismatch is found in the current window [28].

3. Maximal average shift algorithm

To reduce the number of text characters accessed (i.e., scanned) by a string matching algorithm, we first need to reduce 
the number of text characters scanned in one window, and second we need to increase the shift length. Therefore, Sunday 
proposed the OM algorithm to find a scan order to reduce the number of text characters scanned in one window and 
the MS algorithm to find a scan order to increase the shift length [26]. In general, it is difficult to find an optimal string 
matching algorithm that has the smallest number of text characters scanned for arbitrary patterns because the shift length 
increases as the number of text characters scanned in a window increases. It is difficult to consider all the elements of 
string matching simultaneously, such as the pattern scan order, the condition of moving the window, and whether the scan 
result of the previous window is used or not when calculating the shift length. Therefore, we will focus on the problem of 
finding a pattern scan order that maximizes the shift length in the BM-family algorithms.
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Fig. 1. shift2[8][b] is 5 when P = abbaabbb and scan[1] = 4.

Table 1
First and second scan positions of MAS when P = abbaabbb and f T (a) = f T (b) = 0.5.

l 1 2 3 4 5 6 7 8

P [l] a b b a a b b b

shift1[l][a] 1 1 2 3 1 1 2 3
shift1[l][b] 1 2 1 1 2 3 1 1
avr_shift1[l] 1 1.5 1.5 2 1.5 2 1.5 2

shift2[l][a] 3 3 3 . 4 5 3 3
shift2[l][b] 3 3 3 . 3 3 4 5
avr_shift2[l] 3 3 3 . 3.5 4 3.5 4

To find a pattern scan order that maximizes the shift length, we determine scan[1], scan[2], . . . , scan[m] in this order. 
To determine scan[1], we need to compute the shift length when scan[1] = l for each value of 1 ≤ l ≤ m, and select l
that maximizes the shift length as scan[1]. Hence, we define shifti[l][s] as the shift length of a BM-family algorithm when 
scan[i] = l and the text character in the ith scan position is s. When a BM-family algorithm accesses the ith scan position, 
it must have matches in all previous scan positions. Therefore, shifti[l][s] is computed as follows.

shifti[l][s] = min{k ≥ 1 | P [scan[ j]] = P [scan[ j] − k] for all 1 ≤ j < i, and s = P [l − k]}, (1)

where P [l] for l ≤ 0 is a special character that matches any text character. The jth scan position for any j < i must have a 
match (i.e., P [scan[ j]] = T [w + scan[ j]]), and in order for k to be a shift length, T [w + scan[ j]] should match P [scan[ j] −k]. 
Thus, we have P [scan[ j]] = P [scan[ j] − k] for all 1 ≤ j < i in Equation (1). Fig. 1 shows the calculation of shift2[8][b] when 
P = abbaabbb and scan[1] = 4. In this case, the minimum number k that satisfies Equation (1) is 5, and thus shift2[8][b]
is set to 5.

Ryu and Park proposed the GS algorithm that determines a pattern scan order to maximize the shift length when the 
ith scan position is a mismatch, and the HS algorithm that determines a pattern scan order to maximize the shift length 
when the ith scan position is a match [25]. However, if we assume that the text character s follows the distribution f T (s), 
the average shift length avr_shifti[l] when the ith scan position is l can be defined as follows:

avr_shifti[l] =
∑

s

( f T (s) × shifti[l][s]).

The Maximal Average Shift (MAS) algorithm is a BM-family algorithm that finds a pattern scan order that maximizes 
the average shift length. That is, we select l such that avr_shifti[l] is the largest as scan[i] for i = 1, 2, . . . , m. The case that 
multiple positions have the largest average shift length will be discussed later (for the moment we assume that we choose 
the leftmost position in such a case). Table 1 shows an example where P = abbaabbb and f T (a) = f T (b) = 0.5. Since 
shift1[4][a] = 3 and shift1[4][b] = 1, we have avr_shift1[4] = 2. Since it is the largest (and the leftmost) among avr_shift1[l], 
we set scan[1] = 4. Then shift2[6][a] = 5 and shift2[6][b] = 3 by Equation (1), and so avr_shift2[6] = 4. Hence, we set 
scan[2] = 6.

For string matching, there should be a shift length table as well as a scan order. The shift length table of MAS, 
mas_shift[l][s], is defined as the shift length when the scan position is l and the text character in the scan position is 
s. That is,

mas_shift[l][s] = min{k ≥ 1 | P [scan[ j]] = P [scan[ j] − k] for all 1 ≤ j < scan−1(l), and s = P [l − k]},
because a BM-family algorithm must have matches in all previous scan positions. By Equation (1), we get

mas_shift[l][s] = shifti[l][s] such that scan[i] = l. (2)
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Algorithm 1 Preprocessing of MAS.
1: procedure MAS_Preprocessing(P , m, f T )
2: U ← {1, 2, . . . , m}
3: for all l ∈ U do
4: for all s ∈ � do
5: shift[l][s] ← 1
6: for k ← 1 to m do
7: safe[k] ← 0
8: for i ← 1 to m do
9: for all l ∈ U do

10: avr_shift[l] ← 0
11: for all s ∈ � do
12: for k ← shift[l][s] to m do
13: if safe[k] = 0 and s = P [l − k] then
14: shift[l][s] ← k
15: break
16: avr_shift[l] ← avr_shift[l] + f T (s) × shift[l][s]
17: Pick the largest l in U such that avr_shift[l] is maximum
18: Remove l from U
19: scan[i] ← l
20: for k ← 1 to l − 1 do
21: if P [l] �= P [l − k] then
22: safe[k] ← 1
23: return (scan, shift)

Fig. 2. Preprocessing of MAS.

Fig. 3. safe1[k] when P = abbaabbb and scan[1] = 4.

Fig. 2 shows the preprocessing of MAS for an arbitrary pattern P , which computes scan order scan[i] and shift length 
table mas_shift[l][s] by using shifti[l][s]. Because it takes too much time to compute shifti[l][s] by Equation (1), we use the 
notion of safe shift length:

safei[k] =
{

1 if ∃ j such that P [scan[ j]] �= P [scan[ j] − k] for 1 ≤ j ≤ i

0 otherwise.

Fig. 3 shows the calculation of safe1[k] when P = abbaabbb and scan[1] = 4. When k = 1, 2, safe1[k] is set to 1 because 
P [scan[1]] �= P [scan[1] − k]. Then, Equation (1) can be expressed as

shifti[l][s] = min{k ≥ 1 | safei−1[k] = 0 and s = P [l − k]}.
If safei−1[k] = 0, then safei−2[k] must be 0 by definition of safe shift length. Thus we have shifti[l][s] ≥ shifti−1[l][s], and 
the equation above can be changed to

shifti[l][s] = min{k ≥ shifti−1[l][s] | safei−1[k] = 0 and s = P [l − k]}. (3)

The preprocessing of MAS in Fig. 2 computes shifti[l][s] by Equation (3).

• U in Fig. 2 is the set of positions which are not yet determined as pattern scan positions, and it is implemented as an 
array of size m. Initially, U is {1, 2, . . . , m}, shift[l][s] is set to 1 (which is the minimum shift length), and safe[k] is set 
to 0.
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Table 2
Preprocessing of MAS when P = abbaabbb and f T (a) = f T (b) = 0.5.

i avr_shifti [l] scan[i] safei [k] shifti [scan[i]]
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 [a] [b]

1 1 1.5 1.5 2 1.5 2 1.5 2 4 1 1 0 0 0 0 0 0 3 1
2 3 3 3 . 3.5 4 3.5 4 6 1 1 0 0 1 0 0 0 5 3
3 3 3 3 . 3.5 . 3.5 4.5 8 1 1 1 1 1 0 1 0 3 6
4 6 6 6 . 6 . 7 . 7 1 1 1 1 1 1 1 0 6 8
5 8 8 8 . 8 . . . 1 1 1 1 1 1 1 1 0 8 8
6 . 8 8 . 8 . . . 2 1 1 1 1 1 1 1 0 8 8
7 . . 8 . 8 . . . 3 1 1 1 1 1 1 1 0 8 8
8 . . . . 8 . . . 5 1 1 1 1 1 1 1 0 8 8

Table 3
mas_shift[l][s] when P = abbaabbb and f T (a) = f T (b) = 0.5.

l 1 2 3 4 5 6 7 8

P [l] a b b a a b b b

mas_shift[l][a] 8 8 8 3 8 5 6 3
mas_shift[l][b] 8 8 8 1 8 3 8 6

Algorithm 2 String Matching Algorithm MAS(P , m, T , n, f T ).
1: (scan, mas_shift) ←MAS_Preprocessing(P , m, f T )

2: w ← 0
3: while w ≤ n − m do
4: i ← 1
5: while i ≤ m and T [w + scan[i]] = P [scan[i]] do
6: i ← i + 1
7: if i > m then
8: Output an occurrence at position w + 1
9: w ← w + mas_shift[scan[m]][T [w + scan[m]]]

10: else
11: w ← w + mas_shift[scan[i]][T [w + scan[i]]]

Fig. 4. String matching algorithm MAS.

• At the ith iteration of the for loop in line 8, we compute shifti[l][s], avr_shifti[l], scan[i], and safei[k]. Thus, shift[l][s] in 
line 14, avr_shift[l] in line 16, and safe[k] in line 22 mean shifti[l][s], avr_shifti[l], and safei[k], respectively. Note that 
shift[l][s] in line 12 and safe[k] in line 13 mean shifti−1[l][s] and safei−1[k], respectively.

• Since shifti[l][s] is minimum k that satisfies the condition in Equation (3), we get out of the loop in line 15 as soon as 
we find such a k.

• Picking the largest l in U such that avr_shift[l] is maximum in line 17 is implemented as the usual procedure to find 
the maximum. Then scan[i] is set to l. Since l is removed from U in line 18, the value of shift[l][s] will not be changed 
any more. Since the value of shift[l][s] is shifti[l][s] such that scan[i] = l, it is mas_shift[l][s] by Equation (2). That is, 
the shift array which the preprocessing of MAS returns is in fact the mas_shift array.

• Finally, we compute safei[k]. Since we have determined scan[i] = l, safei[k] becomes 1 if P [l] �= P [l − k] for k < l.

Table 2 shows the preprocessing of MAS for pattern P = abbaabbb and f T (a) = f T (b) = 0.5. As we determine scan[i]
for i = 1, . . . , m, we can see that the values of safei[k] changes. For example, when scan[1] is set to 4, the values of safe1[1]
and safe1[2] become 1. As the values of safei[k] change (as i increases), the values of avr_shifti[l] for a fixed l increase as 
well. Therefore, we need to calculate avr_shifti[l] again whenever we set the ith scan position. Table 3 shows mas_shift[l][s]
after the preprocessing for pattern P = abbaabbb and f T (a) = f T (b) = 0.5. It can be seen that shifti[scan[i]][s] in Table 2
is equal to mas_shift[l][s] such that scan[i] = l in Table 3.

The time complexity of the preprocessing of MAS is O (m2|�|). For fixed l and s, the value of shifti[l][s] monotonically 
increases from 1 to m as i increases, and we spend the time proportional to shifti[l][s] − shifti−1[l][s] to compute shifti[l][s]. 
For fixed l and s, therefore, computing shifti[l][s] for all i takes O (m) time. Hence, the total time to compute shifti[l][s] for 
all i, l, and s is O (m2|�|). Since the computation of safei[k] at the ith iteration takes O (m), the total time to compute safei[k]
is O (m2). For fixed i and l, computing avr_shifti[l] requires O (|�|) time, and so the total time to compute avr_shifti[l] is 
O (m2|�|). The space complexity of the preprocessing of MAS is O (m|�|), because shift[l][s] is of O (m|�|), and scan[i], 
avr_shift[l], and safe[k] are of O (m).

Fig. 4 shows the string matching algorithm MAS. First, the preprocessing of MAS is performed on a pattern P to compute 
the pattern scan order scan[i] and the shift length table mas_shift[l][s]. Then it places the window at the leftmost position of 
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Table 4
Pattern scan orders depend on character frequencies.

f T (a) f T (b) l 1 2 3 4 5 6 7 8

P [l] a b b a a b b b

shift1[l][a] 1 1 2 3 1 1 2 3
shift1[l][b] 1 2 1 1 2 3 1 1

0.75 0.25 avr_shift1[l] 1 1.25 1.75 2.5 1.25 1.5 1.75 2.5
0.25 0.75 avr_shift1[l] 1 1.75 1.25 1.5 1.75 2.5 1.25 1.5

Table 5
Scan speed of BM-family algorithms on Human chromosomes 1, 10, and 20.

m BM BMH OM MS GS HS MAS
4 1.21 1.07 1.37 1.37 1.45 1.24 2.11
8 1.78 1.52 1.90 1.94 1.96 1.68 3.30
16 2.31 1.79 2.44 2.62 2.62 2.49 4.84
32 2.73 1.88 2.93 3.25 3.30 3.56 6.76
64 3.26 1.96 3.54 3.94 4.03 4.92 9.71
128 3.62 1.94 3.96 4.56 4.82 6.89 13.25

Table 6
Running time of BM-family algorithms on Human chromosomes 1, 10, and 20 (in milliseconds per 
1,000,000 text characters).

m BM BMH OM MS GS HS MAS
4 4.91 3.31 3.40 3.41 3.68 4.04 3.17
8 3.46 2.55 2.59 2.49 2.80 2.98 2.18
16 2.83 2.37 2.15 1.92 2.23 2.12 1.63
32 2.48 2.33 1.87 1.60 1.84 1.57 1.29
64 2.18 2.29 1.65 1.38 1.60 1.23 1.04
128 2.02 2.34 1.54 1.26 1.43 1.01 0.90

the text and scans the text in the window according to the pattern scan order. If there is a mismatch in scan position scan[i], 
it moves the window to the right by mas_shift[scan[i]][T [w + scan[i]]]. If there are all matches in the current window, it 
outputs an occurrence of the pattern and it moves the window to the right by mas_shift[scan[m]][T [w + scan[m]]].

Since MAS selects position l with the largest avr_shifti[l] as the ith scan position, the pattern scan order varies according 
to the distribution of text characters even for the same pattern. Table 4 shows the values of avr_shift1[l] as the distribution 
f T (s) changes for the same pattern P = abbaabbb. When the text distribution is f T (a) = 0.75 and f T (b) = 0.25, the largest 
(and leftmost) entry in avr_shift1[l] is avr_shift1[4] = 2.5 and so the first scan position is 4. When the text distribution is 
f T (a) = 0.25 and f T (b) = 0.75, the largest entry is avr_shift1[6] = 2.5 and the first scan position is 6.

4. Experimental results of MAS

We compare the performances of BM-family algorithms by experiments. The text used in the experiments is Human 
chromosomes 1, 10, and 20 downloaded from the 1000 Genomes Project website [27]. The lengths of Human chromo-
somes 1, 10, and 20 are 249250621, 135534747, and 63025520, but after removing several chunks of character N’s in each 
chromosome, the lengths of the text are 225280621, 131314738, and 59505520, respectively. The probability distribution 
of characters in the human genome is f T (A) = 0.293, f T (C) = 0.207, f T (G) = 0.207, and f T (T) = 0.293 [29]. The pattern 
lengths are 4, 8, 16, 32, 64, and 128, and for each pattern length m, 100 patterns of length m are randomly extracted from 
the text. For each pattern length, we compute two values in the experiments:

• Scan speed: the ratio of the text length to the number of text scanned by an algorithm, averaged over 100 patterns.
• Running time: the running time of an algorithm / text length × 1,000,000 (i.e., running time per 1,000,000 text charac-

ters), averaged over 100 patterns.

Experiments are conducted on a machine with an Intel E5300 CPU with 2.60 GHz and 4 GB memory running CentOS. The 
other BM-family algorithms were obtained from the String Matching Algorithms Research Tool [13].

Table 5 shows the scan speed of BM, BMH, OM, MS, GS, HS, and MAS, averaged over Human chromosomes 1, 10, and 20. 
MAS shows the best performances in scan speed for all pattern lengths. Specifically, MAS is 45.5% faster than GS when the 
pattern length is 4, and 92.3% faster than HS when the pattern length is 128 (GS and HS, respectively in each case, show 
the best performances among previous BM-family algorithms). The general trend is that the longer the pattern length is, 
the larger is the performance improvement of MAS over other algorithms.

Table 6 shows the running time of BM, BMH, OM, MS, GS, HS, and MAS, averaged over Human chromosomes 1, 10, and 
20. Again MAS shows the best performances in running time for all pattern lengths. Table 7 shows the preprocessing time 
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Table 7
Preprocessing time of HS and MAS on Human 
chromosomes 1, 10, and 20 (in milliseconds).

m HS MAS
4 0.013 0.014
8 0.014 0.020
16 0.017 0.033
32 0.029 0.071
64 0.073 0.209
128 0.237 0.703

Table 8
Scan speed with different criteria for pattern scan order.

1 2 3 4

priority1 avr_sh avr_sh avr_sh avr_sh
priority2 left right freq freq
priority3 left right

m 4 2.084 2.062 2.091 2.078
8 3.254 3.211 3.270 3.241
16 4.896 4.864 4.901 4.888
32 6.775 6.758 6.785 6.768
64 9.599 9.598 9.603 9.598
128 13.044 13.040 13.045 13.044

of HS and MAS, averaged over 100 patterns and then averaged over Human chromosomes 1, 10, and 20. Since the time 
complexities of the preprocessing of HS and MAS are O (m2) and O (m2|�|), respectively, the preprocessing time of MAS is 
longer than that of HS. However, the preprocessing time of MAS is less than 1% of the total execution time (preprocessing 
time + running time) for all pattern lengths.

In addition to the average shift length, we can consider other criteria when we determine the pattern scan order, which 
are freq and left/right in the order of decreasing importance.

• freq: If the average shift lengths are the same for several positions, we choose the position where the frequency of 
the pattern character is smaller so that the probability of a mismatch with a text character gets higher. That is, if 
avr_shifti[l] = avr_shifti[l′] for two positions l and l′ , and f T (P [l]) < f T (P [l′]), then we choose l as scan[i].

• left/right: If other criteria are the same, left and right mean that we choose the leftmost position and the rightmost 
position, respectively.

Table 8 shows the scan speed of MAS with combinations of the three criteria for Human chromosome 1, where case 3 
shows the best results. Therefore, we used three criteria, avr_shift, freq, left, in this order in our algorithm MAS. Since added 
criteria, freq and left, can be checked in line 17 of Algorithm 1 (when finding maximum avr_shift), the preprocessing time 
of MAS does not change.

5. Extending the MAS algorithm

In this section we present two extensions of MAS: one improves the scan speed of MAS by using the scan result of the 
previous window, and the other improves the running time of MAS by using q-grams.

5.1. Tuned MAS algorithm

The MAS algorithm computes the shift length using the scan result of the current window only. If we use the scan 
result of the previous window, we can increase the shift length. However, there is a trade-off between the number of text 
characters scanned in the previous window which we remember and the preprocessing time (and space). Therefore, we will 
remember only one text character scanned in the previous window. Since an algorithm scans at least one text character in 
a window, we will remember the first text character scanned in the previous window.

When we shift a window, there are two cases regarding the first scanned text character.

1. The first text character scanned in the previous window is within the current window: Let f be the position in the 
current window corresponding to the first text character scanned in the previous window. Since the shift length from 
the previous window to the current window can be any value between 1 and m, f is not a fixed value, and it is one of 
positions 1 to m − 1 of the current window (because the shift length is at least 1). Since we will shift the window so 
that the scanned text characters in the previous window have matches in the current window as in MAS, position f of 
the current window will have a match. In Fig. 5, the first scan position is 5 and it has a match in the previous window; 
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Fig. 5. The position f in the current window.

the second scan position is 7 and it has a mismatch. Then the window is shifted by 3 positions. In the current window, 
therefore, the value of f is 2.

2. The first text character scanned in the previous window is to the left of the current window: In this case, we set f = 0.

Now we describe the tuned MAS (TMAS) algorithm. TMAS will use different scan orders and different shift length tables, 
depending on the value of f , i.e., it will use scan[ f ][i] and tmas_shift[ f ][l][s] for 0 ≤ f < m. When f = 0, scan[0][i]
and tmas_shift[0][l][s] are exactly the same as scan[i] and mas_shift[l][s] of MAS, respectively. When f ≥ 1, position f
of the current window w already has a match (i.e., P [ f ] = T [w + f ]). When f ≥ 1 (i.e., the first text character scanned 
in the previous window is in position f of the current window), we define scan[ f ][i], shifti[ f ][l][s], avr_shifti[ f ][l], and 
tmas_shift[ f ][l][s] for each value of f as follows.

• scan[ f ][i]: ith scan position, where i = 1, 2, . . . , m − 1 and scan[ f ][i] �= f for any i because position f already has a 
match.

• shifti[ f ][l][s]: shift length when scan[ f ][i] = l and the text character in the ith scan position is s.
• avr_shifti[ f ][l] = ∑

s( f T (s) × shifti[ f ][l][s]).
• tmas_shift[ f ][l][s]: shift length of TMAS when the scan position is l and the text character in the scan position is s.

Like Equation (1), shifti[ f ][l][s] can be formulated as follows.

shifti[ f ][l][s] = min{k ≥ 1 | P [scan[ f ][ j]] = P [scan[ f ][ j] − k] for all 1 ≤ j < i, P [ f ] = P [ f − k], and s = P [l − k]}.
If we define safei[ f ][k] as follows:

safei[ f ][k] =
{

1 if ∃ j such that P [scan[ f ][ j]] �= P [scan[ f ][ j] − k] for 1 ≤ j ≤ i or P [ f ] �= P [ f − k]
0 otherwise,

the equation above can be changed to:

shifti[ f ][l][s] = min{k ≥ shifti−1[ f ][l][s] | safei−1[ f ][k] = 0 and s = P [l − k]}. (4)

For f = 1, 2, . . . , m − 1, TMAS does the following. Just as Algorithm 1 of MAS computes shifti[l][s] using safei[k], TMAS 
computes shifti[ f ][l][s] efficiently using safei[ f ][k] by Equation (4). Then, TMAS selects l such that avr_shifti[ f ][l] is the 
largest as scan[ f ][i] for i = 1, 2, . . . , m − 1. As in MAS, tmas_shift[ f ][l][s] is computed as follows.

tmas_shift[ f ][l][s] = shifti[ f ][l][s] such that scan[ f ][i] = l.

For each value of 1 ≤ f ≤ m −1, scan[ f ][i] is defined for i = 1, 2, . . . , m −1. Hence, the entry scan[ f ][m] is empty, and so 
we assign scan[ f ][m] = f to simplify the text search of TMAS. That is, we make the mth comparison at position f , though 
it is not necessary because we know that it will be a match. Since TMAS makes a shift as soon as it finds a mismatch, the 
probability that it will make the mth comparison is very low, while the simplification in the text search will improve the 
running time of TMAS.

Since scan[ f ][m] is set to f , we need to give the shift length when TMAS makes the mth comparison. Since the mth 
comparison will be a match, it is the shift length when the whole pattern matches, which is mas_shift[scan[m]][P [scan[m]]]
of MAS because it is the shift length when MAS makes the mth comparison and the text character in scan position 
scan[m] is P [scan[m]] (i.e., the mth comparison is a match). Since mas_shift[scan[m]][P [scan[m]]] of MAS is stored in 
tmas_shift[0][scan[0][m]][P [scan[0][m]]], we assign it to tmas_shift[ f ][ f ][P [ f ]], which is the shift length when TMAS 
makes the mth comparison.

The preprocessing of TMAS computes the scan order and the shift length table for each value of 0 ≤ f < m. Therefore, the 
space and time complexities of the preprocessing of TMAS are m times those of MAS. Consequently, the space complexity 
and the time complexity of the preprocessing of TMAS are O (m2|�|) and O (m3|�|), respectively.

Tables 9 and 10 show part of scan[ f ][i] and tmas_shift[ f ][l][s] for pattern P = abbaabbb and f T (a) = f T (b) = 0.5. 
We can see that TMAS uses different scan orders and different shift lengths, depending on the value of f . Especially, 
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Table 9
scan[ f ][i] when P = abbaabbb and f T (a) = f T (b) = 0.5.

l 1 2 3 4 5 6 7 8

P [l] a b b a a b b b

scan[0][i] 4 6 8 7 1 2 3 5
. . . . . .

scan[2][i] 5 7 6 8 1 3 4 2
scan[3][i] 2 6 8 7 1 4 5 3

. . . . . .

Table 10
tmas_shift[ f ][l][s] when P = abbaabbb and f T (a) = f T (b) = 0.5.

l 1 2 3 4 5 6 7 8

P [l] a b b a a b b b

tmas_shift[0][l][a] 8 8 8 3 8 5 6 3
tmas_shift[0][l][b] 8 8 8 1 8 3 8 6

. . . . . .

tmas_shift[2][l][a] 8 . 8 8 4 5 6 4
tmas_shift[2][l][b] 8 8 8 8 2 4 4 8
tmas_shift[3][l][a] 8 1 . 8 8 5 6 3
tmas_shift[3][l][b] 8 3 8 8 8 3 8 6

. . . . . .

Fig. 6. Division of the pattern into q-grams.

scan[0][i] and tmas_shift[0][l][s] are equal to scan[i] and mas_shift[l][s] of MAS in Tables 2 and 3. When f ≥ 1, we can see 
that scan[ f ][m] is set to f (e.g., scan[2][8] = 2 in Table 9) and tmas_shift[ f ][ f ][P [ f ]] is set to tmas_shift[0][scan[0][m]]
[P [scan[0][m]]] (e.g., tmas_shift[2][2][b] = tmas_shift[0][5][a] = 8 in Table 10).

The text search of TMAS is essentially the same as that of MAS except for the following differences.

• TMAS maintains variable f . Initially, f = 0. When TMAS makes a shift by shift length sh, the new value of f is set to 
scan[ f ][1] − sh; it is set to 0 if scan[ f ][1] − sh < 1, because scan[ f ][1] is the first scan position in the previous window 
and so scan[ f ][1] − sh is the position in the current window corresponding to scan[ f ][1] of the previous window.

• scan[i] and mas_shift[scan[i]][T [w + scan[i]]] in Algorithm 2 of MAS are replaced by scan[ f ][i] and
tmas_shift[ f ][scan[ f ][i]][T [w + scan[ f ][i]]], respectively.

5.2. q-gram MAS algorithm

We now extend MAS to the q-gram MAS (QMASq) algorithm using q-grams. A q-gram is a substring (of P or T ) of q
characters. Given a q-gram s0s1 · · · sq−1 over �, we define its fingerprint h(s0s1 · · · sq−1) as follows:

h(s0s1 · · · sq−1) =
q−1∑
i=0

|�|i · si .

In this way, a fingerprint represents a character sq of a larger alphabet �q . Let f q
T (sq) for sq ∈ �q be the probability that 

a q-gram in T is sq . When h(s0s1 . . . sq−1) = sq , f q
T (sq) is equal to f T (s0) · f T (s1) · · · f T (sq−1) because we assumed that 

the distributions for all text characters in T are independent and identical. For a string S , let G S (l, q) denote the q-gram 
S[l − q + 1..l].

Let r = m mod q. In order to apply the q-gram to MAS, we divide the pattern (or a window) into 
m
q � q-grams and the 

rest: G P (q + r, q), G P (2q + r, q), . . . , G P (
m
q � · q + r, q), and the rest P [1..r] as illustrated in Fig. 6. As in MAS, we define the 

following.

• The scan order is (scanq[1], scanq[2], . . . , scanq[
m
q �]), where scanq[i] = l means that the ith scan position is l (in terms 

of q-grams). When we consider scanq[i] = l, we compare pattern q-gram G P (lq + r, q) against text q-gram G T (w + lq +
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Table 11
First scan position of QMAS3 when P = abbaabbb
and f T (a) = f T (b) = 0.5.

l 1 2

G P (lq + r,q) baa bbb

shiftq
1[l][h(aaa)] 3 6

shiftq
1[l][h(aab)] 3 2

shiftq
1[l][h(aba)] 3 6

shiftq
1[l][h(abb)] 2 1

shiftq
1[l][h(baa)] 3 3

shiftq
1[l][h(bab)] 3 6

shiftq
1[l][h(bba)] 1 4

shiftq
1[l][h(bbb)] 3 6

avr_shiftq
1[l] 2.625 4.250

r, q). If the two q-grams match, we go on to scanq[i + 1]; if there is any mismatch between the two q-grams, we shift 
the window.

• shiftq
i [l][sq]: shift length when scanq[i] = l and the text q-gram in the ith scan position is sq .

• avr_shiftq
i [l] =

∑
sq ( f q

T (sq) × shiftq
i [l][sq]).

• qmas_shift[l][sq]: shift length of QMASq when the scan position is l and the text q-gram in the scan position is sq (i.e., 
h(G T (w + lq + r, q)) = sq).

Then, shiftq
i is formulated as follows.

shiftq
i [l][sq] = min{k ≥ 1 | G P (scanq[ j] · q + r,q) = G P (scanq[ j] · q + r − k,q) for all 1 ≤ j < i,

and sq = h(G P (lq + r − k,q))},
where G P (l, q) for l ≤ q −1 is a special q-gram that matches any q-gram. Note that shift length k can be any integer between 
1 and m − q + 1 rather than a multiple of q.

QMASq selects l such that avr_shiftq
i [l] is the largest as scanq[i] for i = 1, 2, . . . , 
m

q �. As in MAS, QMASq computes 
shiftq

i [l][sq] using safeq
i [k] defined as follows:

safeq
i [k] =

{
1 if ∃ j such that G P (scanq[ j] · q + r,q) �= G P (scanq[ j] · q + r − k,q) for 1 ≤ j ≤ i

0 otherwise.

Table 11 shows an example of QMAS3 when P = abbaabbb and f T (a) = f T (b) = 0.5. Since m = 8 and q = 3, the pattern 
is divided into two q-grams G P (5, 3) = baa and G P (8, 3) = bbb, and the rest P [1..2] = ab. Since avr_shiftq

1[1] = 2.625 and 
avr_shiftq

1[2] = 4.250, we set scanq[1] = 2. The shift length table qmas_shift[l][sq] of QMASq is computed as follows:

qmas_shift[l][sq] = shiftq
i [l][sq] such that scanq[i] = l.

The time complexity of the preprocessing of QMASq is O (m2|�|q). For fixed l and sq , computing shiftq
i [l][sq] for all i

takes O (mq) time, because reading a q-gram takes O (q) time. Since the number of l is O (m
q ), the total time to compute 

shiftq
i [l][sq] for all i, l, and sq is O (m2|�|q). For fixed i and l, computing avr_shifti[l] requires O (|�|q) time, and so the 

total time to compute avr_shifti[l] is O (m2

q2 |�|q). Therefore, the time complexity is O (m2|�|q). The space complexity of the 
preprocessing of QMASq is O (m + m

q |�|q), because shiftq[l][sq] is of O (m
q |�|q), scanq[i] and avr_shiftq[l] are of O (m

q ), and 
safeq[k] is of O (m).

The text search of QMASq is essentially the same as that of MAS except that it works by q-grams rather than by char-
acters. Initially, it computes r = m mod q. If all of 
m

q � q-grams of the pattern match against the text, it compares the rest 
P [1..r] against T [w + 1..w + r] character by character. When it moves the window, the window is shifted to the right by 
qmas_shift[scanq[i]][h(G T (w + scanq[i] · q + r, q))].

5.3. Experimental results

We compare the performances of state-of-the-art non-BM-family algorithms by experiments. We selected the algorithms 
that show good performances for DNA sequences in the review papers [20,12], and obtained the source codes from the 
String Matching Algorithms Research Tool [13]. All experimental settings are the same as in Section 4.
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Table 12
Scan speed of non-BM-family algorithms on Human chromosomes 1, 10, and 20.

m HASH3 HASH5 BOM EBOM TRF SVM MAS TMAS QMAS2 QMAS4

4 0.65 – 1.86 1.23 1.94 2.22 2.11 2.29 1.29 –
8 1.86 0.79 3.15 2.56 3.23 3.84 3.30 3.82 2.67 1.23
16 3.97 2.32 5.25 4.70 5.46 6.64 4.84 6.29 4.66 3.13
32 7.25 5.17 8.80 8.24 9.33 – 6.76 10.11 7.12 6.73
64 11.61 10.21 15.07 14.46 16.25 – 9.71 16.26 10.00 13.20
128 15.77 18.13 26.23 25.56 28.76 – 13.25 24.91 13.39 23.74

Table 13
Running time of non-BM-family algorithms on Human chromosomes 1, 10, and 20 (in milliseconds per 1,000,000 text characters).

m HASH3 HASH5 BOM EBOM TRF SVM MAS TMAS QMAS2 QMAS4

4 3.32 – 5.88 2.26 5.48 3.60 3.17 4.44 2.66 –
8 1.41 1.74 3.80 1.71 3.19 2.25 2.18 2.83 1.48 1.71
16 0.87 0.85 2.50 1.23 1.97 1.50 1.63 1.98 1.03 0.90
32 0.68 0.62 1.69 0.89 1.34 – 1.29 1.48 0.85 0.64
64 0.62 0.60 1.19 0.69 0.96 – 1.04 1.21 0.75 0.60
128 0.62 0.65 1.01 0.66 0.92 – 0.90 1.10 0.70 0.66

Table 14
Preprocessing time of HASH5 and 
QMAS4 on Human chromosomes 1, 
10, and 20 (in milliseconds).

m HASH5 QMAS4

4 – –
8 0.012 0.025
16 0.012 0.064
32 0.012 0.226
64 0.012 0.869
128 0.012 3.166

Table 12 shows the scan speed of the algorithms, averaged over Human chromosomes 1, 10, and 20. TMAS shows the 
best performances among the algorithms, except SVM which remembers the scan results of all previous windows by using 
the bit-parallel approach, when pattern length m is 64 or less. Since SVM uses the bit parallelism and it can use 31 bits 
in the 32-bit word, it cannot run when m is 32 or more. Although TMAS remembers only one character in the previous 
window, it shows performances comparable to SVM when m is 16 or less. TRF is very close to TMAS when m = 64, and TRF 
is the best performer in scan speed when m = 128.

Table 13 shows the running time of the algorithms, averaged over Human chromosomes 1, 10, and 20. When pattern 
length m is 4, EBOM is the fastest. When m is 8 or more, HASHq is the best performer, and QMASq is the runner-up in 
general. Note that QMAS4 matches HASH5 when m = 64. While QMAS4 has better scan speeds than HASH5, HASH5 is faster 
than QMAS4 in running time due to its simplicity. Table 14 shows the preprocessing time of HASH5 and QMAS4. Since the 
time complexities of the preprocessing of HASH5 and QMAS4 are O (mq) and O (m2|�|q), respectively, the preprocessing 
time of QMAS4 is much longer than that of HASH5. When the pattern lengths are 64 and 128, the preprocessing times of 
QMAS4 are 1.37% and 4.33%, respectively, of the total execution time (preprocessing time + running time).

6. Conclusion

We have proposed the Maximal Average Shift (MAS) algorithm that finds a pattern scan order that maximizes the average 
shift length. Experiments show that MAS outperforms other BM family algorithms in both scan speed and running time. 
Additionally, we presented two extensions of MAS: TMAS improves the scan speed of MAS by using the scan result of the 
previous window, and QMASq improves the running time of MAS by using q-grams. In particular, TMAS shows the best 
performances in general among non-BM-family algorithms in scan speed.
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