
Revealing Game Dynamics via Word Embeddings of Gameplay Data

Younès Rabii, Michael Cook
Queen Mary University of London

{younes, mike}@knivesandpaintbrushes.org

Abstract

In this paper we show how word embeddings, a technique
used most commonly for natural language processing, can be
repurposed to analyse gameplay data. Using a large study of
chess games and applying the popular Word2Vec algorithm,
we show that the resulting vector representation can reveal
both common knowledge and subtle details about the game,
including relative piece values and the natural spatial flow of
chess play. Our results suggest that word embeddings are a
cheap and simple technique that can provide a broad overview
of a game’s dynamics, helping designers and critics form new
hypotheses about a game’s design, structure and flow.

Introduction
Analysing a game’s design is a vital part of developing, im-
proving and critiquing games. As a result, there are many
different approaches to game analysis, originating in differ-
ent disciplines, and focusing on analysing different aspects
of a game. In order to analyse a game’s feel or aesthetics, for
example, we might perform an in-person playtest and sur-
vey players (Gow et al. 2012). If we want to analyse game
balance, we could log data from testers and apply statistical
methods to analyse patterns (Giovannetti 2019).

Most analytical techniques are designed to answer very
specific questions, and also require us to have already
formed hypotheses that we wish to test. For example,
playtesting uses carefully-designed questionnaires to answer
particular questions about the play experience. Game bal-
ance analysis records and analyses specific data to see if they
match a specific definition of game balance the designer is
interested in. However, it is not always possible to form hy-
potheses in advance. If we are early in a game’s develop-
ment, joining a project we are unfamiliar with, or are not an
experienced designer, we may struggle to know what ques-
tions to ask, or where to go looking for them.

These techniques can also be very narrowly focused on
specific questions. This is what makes them so powerful
when used correctly, but it can also make them limiting. As
Giovanetti puts it in (Giovannetti 2019), ‘sometimes other
factors can cause the data to lie to you’. In developing the
card game Slay The Spire his data-driven analysis suggested

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a particular card was too powerful as its winrate was very
high. However, upon closer examination it was only offered
near the end of the game, and so was mostly encountered by
good players who were already close to winning.

In this paper we present a new way of analysing games, by
repurposing a natural language processing technique called
word embeddings to analyse gameplay data. This technique
is easily applied to data with little preparation, and can
be visualised in easy-to-read two-dimensional matrices that
swiftly reveal complex and nuanced relationships between
game concepts. The resulting analysis provides a big-picture
overview of many different parts of a game’s design without
a narrow focus on one area, and without any detailed hy-
potheses about the design itself. As a result, it not only pro-
vides useful knowledge and insight, but it also helps a user
formulate hypotheses and identify areas for future analysis.

We demonstrate our approach in this paper by applying
it to chess, and show that it is able to rediscover complex
game knowledge such as the accepted relative value of dif-
ferent pieces or the relationship between special game ac-
tions such as castling, simply by parsing and analysing game
events as natural language. In many cases the analysis re-
vealed dynamics that were novel to the authors as beginner
chess players, which led us to our own follow-up investiga-
tions to confirm them. We believe this shows how the tech-
nique can support a high-level overview of a game’s dynam-
ics, as well as supporting the formation of new hypotheses
and further analysis. Furthermore, we report preliminary re-
sults that suggest that this technique can be used on AI play
logs as well as human players, and is sensitive to player skill.

The remainder of this paper is organised as follows: in
Background we introduce word embeddings and some as-
pects of chess and survey related work; in Creating the
Model we describe how we apply word embeddings to
gameplay logs, including data preprocessing; in Using the
Model we report on applying our method to 250,000 games
of chess, showing how it can be interpreted and queried; in
Future Works we discuss further lines of inquiry comparing
average human player data to AI agents and expert players;
finally, in Conclusions we summarise our contributions.

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

187



Background and Related Work
Word Embeddings and Word2Vec
A word embedding is a way of representing a corpus of
words in a high-dimensional vector space, such that words
which appear in similar contexts in the corpus are closer to-
gether in the vector space. As a result, distance in the vector
space becomes a proxy for semantic similarity, allowing us
to measure how similar two words are by how far apart they
are in a word embedding. Because words are represented as
vectors, this allows us to perform other operations on them,
such as adding or subtracting vectors from one another. For
example, a word embedding constructed on a corpus of text
might allow us to calculate Paris−France+Morocco, yield-
ing Rabat, the capital of Morocco. The subtraction extracts
the relationship ‘capital of’, and the addition applies that re-
lationship to Morocco, giving us our result.

Word2Vec is a popular algorithm for creating word em-
beddings, and has been widely studied in the NLP commu-
nity and beyond (Mikolov et al. 2013). Starting from a tex-
tual corpus composed of words, Word2Vec creates a map-
ping from each token in the vocabulary of the corpus to a
scalar vector (Řehůřek and Sojka 2010). Word2Vec’s power
and simplicity has led it to have impact outside of academic
research, used by artists, developers and the general public
(Parrish 2018).

Chess
Chess is a popular board game played in its earliest forms
since the 6th century (Murray 1986). Its popularity can be
partly explained by how easy it is to understand its rules
compared to how complex it is to master its play. In the last
ten centuries, chess has been studied by various scholars (Al-
Suli 941; Murray 1986), generating a lot of expert knowl-
edge around it – most of which, cannot trivially be derived
from simply reading the rules.

Related Work
In (Zhong, Nakashima, and Akiyama 2019) the authors use
Word2Vec to analyse different teams of robots entering the
RoboCup robot soccer tournament. Additional logging is
added to the system to record the actions robots take, such
as passing the ball, and team performances are then analysed
in order to try and measure the similarities between differ-
ent team playstyles. Word2Vec is used in this work primarily
as a means to relate one dataset to another, whereas we pri-
marily use Word2Vec as a tool to analyse a single dataset.
However, we will also compare between datasets later in the
paper as a way to illustrate points about our technique.

A wide variety of work in automated game design uses
metrics to analyse games as they are being designed and
tested. In (Browne and Maire 2010) the authors use a set of
over 50 hand-designed metrics to evaluate different qualities
of a game, for example, including decisiveness and drama.
In all of these cases, the metrics represent prior knowl-
edge from the system’s creators about the desired results
of the system, and focuses primarily on measuring single-
dimensional properties of the game such as winrate. Our

analysis does not require the user to have any prior assump-
tions or beliefs about their design, and rather than focusing
on a specific feature it provides a broader overview of the
game as a whole. We believe these two approaches would
work very well in tandem with one another.

There is also evidence that some tools designed for
analysing game systems can become hard for users to work
with if they require specific analytical metrics to be defined
in advance. In (Cook et al. 2019) the authors describe a tool
for analysing spaces of generative content. Although the tool
is designed for exploratory use by non-experts, it requires
some metrics to be defined before use, which many users
struggled to do. This shows the usefulness of more general
exploratory techniques like our approach, which can help
analyse game systems in order to help the formation of more
specific hypotheses and metrics for future analysis.

Creating the Model
In this section we describe the process of preparing a dataset,
applying Word2Vec to create a model, and subsequently
analysing the resulting model for insights into the game.

Data Gathering
First, we must collect data to analyse, and ensure it con-
tains enough information to provide Word2Vec with mean-
ingful relationships to model. Our worked example uses
chess game logs, because the game’s popularity means game
logs are readily available in large quantities, and the game
is well-studied enough that we can support our analysis
with research carried out by others. We gathered a dataset
of 250,000 chess games from the Lichess Open Database1,
which stores games played on the popular online chess ser-
vice Lichess. Lichess has hosted over 2 billion games of
chess since 2010. We sampled our dataset of 250,000 games
from 2013, covering all skill levels, to simulate a broad sam-
ple of playstyles from a snapshot in time.

Game logs recorded by Lichess are written in the Portable
Game Notation (PGN) format (Steven J. Edwards 1994).
This notation format is a kind of shorthand for recording
chess games in a compact fashion. However, this compact
nature also means a lot of information is omitted, and re-
lies instead on minimally describing the changes caused by
each player action. For example, the PGN notation for a spe-
cific chess move often omits which piece is moving unless
there is an ambiguity, and never mentions which pieces are
captured when a capture is made. This information can be
deduced by re-enacting the game while reading the log, but
is omitted in its textual representation.

Our approach uses Word2Vec to extract contextual rela-
tionships between data, as if the game logs were a language
of their own. Thus, omitting information such as which piece
is being captured is like removing the subject from a sen-
tence – a human might be able to intuit it from context, but
the sentence loses a lot of information. After some initial
experimentation with the PGN format, which yielded poor
results, we decided to preprocess the data by converting it
into a more verbose language, which adds in some of this

1https://database.lichess.org/

188



Turn Black Rook C4
R7 C4 R0 Capture
Knight

Black moved a Rook from
(4,7) to (4,0), capturing a
Knight.

Turn Black Pawn C5
R1 C5 R0 Promote
Queen Check

Black moved a Pawn from
(5,1) to (5,0), promoting it to a
Queen. The game is in check.

Turn White King C4
R7 C2 R7 Castling
Checkmate WhiteWin

White moved its King from
(4,7) to (2,7), with the single-
use castling move. The game
is in checkmate. White wins.

Table 1: Excerpts of chess games in our description language
(left) and their natural language equivalent (right)

implicit data, so that each line of the game log contains a
complete description of the action taking place in the game.

Data Preparation
The custom description language we designed allows us to
describe each game with a series of tokens, where each token
is mapped to a concept in chess. Each game log begins with
the Start token and ends with the End token. For each turn
of the game, we add a new line of tokens with the syntax:

Turn [Player] [Piece] [Start] [Dest] [Actions] [State]

Where [Player] is the player moving this turn; [Piece] is
the chess piece moved; [Start] and [Dest] are two sets of
coordinates indicating where the piece was before and after
its move; [Actions] indicate which additional actions were
done in the turn (e.g.: capturing a piece); and [State] indi-
cate which state the game is in after the move (e.g.: Check-
mate). A sample of logs produced by this conversion process
can be found in Table 1, along with their natural language
equivalent. A comprehensive list of all tokens we defined
for chess can be found in Table 2.

Configuring and Applying Word2Vec
For the models described in this paper, we used the stan-
dard open-source Gensim implementation of Word2Vec
(Řehůřek and Sojka 2010). We used the default settings
for Word2Vec with two exceptions: the size of context win-
dow and the number of dimensions in the model, which we
changed to reflect the difference between the default appli-
cation domain (English text) and our application to chess.

The size of the context window was increased from the
default of 5 words to 20. A small context window is well-
suited to the English language, where the vocabulary size
is extremely large (in the order of 106 tokens for a large
dataset) and a model can easily learn context from a handful
of adjacent tokens (Mikolov et al. 2013). In our dataset, with
just 36 tokens in the vocabulary, the model benefits from
more context to understand the relationship between tokens.

The number of dimensions in the resulting model was re-
duced from 100 to 5. Each token in the resulting model is
represented by a vector of a size equal to the number of di-
mensions, therefore fewer dimensions means a token is rep-

Token Corresponding Chess Concept
Temporal Concepts

Start Beginning of the game
End End of the game

Turn Beginning of a turn
Spatial Concepts

Ri Row number i, with i ∈ [|0; 7|]
Ci Column number i, with i ∈ [|0; 7|]

Piece Concepts
Pawn The ”Pawn” chess piece
Rook The ”Rook” chess piece

Knight The ”Knight” chess piece
Bishop The ”Bishop” chess piece
Queen The ”Queen” chess piece
King The ”King” chess piece

Action Concepts
Capture [P ] The capture of piece [P ]
Promote [P ] The promotion of a pawn to piece [P ]
Castling The single-use ”Castling” move

Game State Concept
Check The game is in ”Check”

Checkmate The game is in ”Checkmate”
Stalemate The game is in ”Stalemate”

Final State Concept
WinBlack Black player victory
WinWhite White player victory

Draw No player victory

Table 2: List of tokens used in our chess game description
language (left) and their corresponding concept (right)

resented by a smaller vector. With only 36 tokens in our vo-
cabulary, too many dimensions would allow Word2Vec to
overfit and produce a model with no meaningful relation-
ships or information in it. For English language datasets with
very large vocabularies, 100 dimensions is still a challenge
for the algorithm. We chose just 5 dimensions for our model,
with the reasoning being that this is approximately log2(36),
and thus the number of bits required to represent a vocabu-
lary of 36 values. Preliminary experimentation with this was
positive enough for us to continue.

Resource Usage
The resources required to use a new analytical technique are
as important as the efficacy of the technique, and affect who
benefits from our research (Cook 2021). This was a consid-
eration for us throughout this work. Fortunately, word em-
bedding approaches such as Word2Vec are relatively fast on
modest consumer hardware.

We ran our experiments on an Intel i7-7700HQ CPU,
using a single thread. Processing the dataset of 250,000
Lichess games into our expanded notation took approxi-
mately 1000 seconds, and applying Word2Vec to the dataset
to train a word embedding model took approximately 2000
seconds. The whole process took under two hours, and the
data preprocessing step only needs to be performed once
(should the user want to reuse the data to produce another

189



Piece Queen Rook King Bishop Knight Pawn
Similarity to ”Checkmate” 0.722 0.714 0.612 -0.019 -0.216 -0.943
Relative value 9 5 4 3 3 1

Table 3: The similarity between each piece token and the
Checkmate token in our model – higher is more similar. Un-
derneath is the piece value assigned by expert players.

Word2Vec model with different parameters).

Using the Model
In the previous section we showed the process of gathering
data, processing it into a form amenable to training, and us-
ing Word2Vec to construct a model. In this section we show
how to use that model to ask and answer questions about the
game design and gameplay data. These represent just a few
ways in which these models can be used – there are many
more exciting applications for this still to be found.

Directly Querying the Model
The simplest way to use the model analytically is to query
it directly. We can retrieve the vector representation of any
token, but a vector in isolation is of limited use. More com-
monly, when analysing a word embedding one looks at how
vectors relate to one another. The similarity of two tokens
can be estimated by measuring how far apart they are in
vector space using cosine distance. The closer they are to
one another, the more similar they are considered to be.

Example 1: Establishing Relative Piece Value As an ex-
ample of this, we directly queried our model to determine
which chess piece is most valuable. This is a common ques-
tion to ask about many games, whether we want to establish
the most powerful cards in a game like Slay The Spire, or
are seeking to balance a competitive game like DOTA 2. To
establish this, we investigated the similarity of each piece
token to the Checkmate token. If a piece is strongly re-
lated to this token, we hypothesised that this would mean it
was more commonly involved in checkmates, and therefore
is both more valuable to players and crucial to victory.

Table 3 shows each piece in Chess, along with its simi-
larity to the Checkmate token. Recall that a higher value
indicates the tokens are more similar to one another. After
we retrieved this information from the model, we sought out
official rankings of chess piece value used by expert play-
ers (Capablanca and de Firmian 2006). This information is
shown in the bottom row of the table, and matches the or-
dering given by our model exactly. We were particularly sur-
prised to see this ordering work even for the King, as most
chess masters do not assign a value to the King. We were
able to find some orderings, such as Julian Hodgson’s, which
assign it a value of 4 (Aagaard 2004; Lasker 1988).

Visually Inspecting the Model
As we have explained above, Word2Vec models represent
each token in the input language as a vector in a multi-
dimensional space. There are many ways to analyse and
visualise high-dimensional data, but a simple and common
starting point is visualising token similarity. As described in

Figure 1: A similarity matrix computed on the 250,000
Lichess dataset from June 2013. Each cell contains a sim-
ilarity score between two token embeddings.

the previous section, token similarity in a word embedding
model is measured by how close two vectors are to one an-
other in vector space.

A simple way to visualise this is to construct a similarity
matrix which allows us to quickly see the similarity between
any pair of tokens in the model. Each row and column of the
matrix represents a token, and each cell is colour-coded to
represent the cosine distance between the two tokens at that
cell, where one colour indicates similarity and another indi-
cates dissimilarity. This process is completely general and
can be applied to any Word2Vec model. Figure 1 shows an
example similarity matrix calculated for our Lichess dataset.

Similarity matrices make it easier to get a ‘birds-eye view’
of the model, which can make it easier to make a quick
visual assessment of the model. Even with no analysis or
insight into the model, we can see from a quick glance
at Figure 1 that there are interesting patterns to dive into,
with some large blocks of colour, some alternating rows or
checkerboard patterns, and some individual points that are
strongly coloured surrounded by very white cells. This vi-
sual inspection can help us formulate new questions and lead
to new queries for the model.

Example 2: Understanding Spatial Relationships Vi-
sual representations of the model can help us more easily de-
tect patterns, especially trends between sets of related data.
For example, in Figure 1 we can see strong positive and neg-
ative relationships between column tokens on either side of
the board, reflecting Chess’ mirrored nature. We decided to
extend our similarity matrix to study the spatial informa-

190

Ann



Figure 2: Sum of the similarities with the Checkmate vector
for each Row vectors (vertical) and Column vectors (hori-
zontal)

tion more closely, by creating a new matrix that combined
row and column information relative to a particular token.
Specifically, we were interested in how each row and col-
umn pairing related to Checkmate, to investigate what parts
of the board contribute to this. Our hypothesis was that the
result would be broadly evenly distributed.

Figure 2 shows our specialised similarity matrix. Instead
of each cell being coloured according to the relative sim-
ilarity of two tokens, we colour this matrix according to
the summed similarity of the row and column with respect
to Checkmate. Specifically, for row ri and column cj , the
heatmap value hij is defined as:

hij = dist(V (m), V (ri)) + dist(V (m), V (cj))

Where m is the Checkmate token, V (x) represents the
vector of the token x, and dist is the cosine distance func-
tion. In other words, a cell (representing a tile on the chess-
board) is coloured according to the combined similarity of
its row and column with the Checkmate token.

We can see in Figure 2 a clear bias towards the right-hand
half of the chessboard. Columns 4-7 generally have a posi-
tive similarity with the Checkmate token, while columns 0-3
have a similarity closer to zero (with the exception of Row
3, which replicates this pattern but is shifted closer towards
dissimilarity). This result was very surprising to us, as we
had anticipated that chess was a largely symmetric game.

However, further research revealed that chess does in-
deed have a bias towards the right-hand side of the board,
as viewed by the White player. We found several data visu-
alisations of chess games, one of a dataset of 400 million
games (Reddit User ‘Atlas Scrubbed’ 2021), another more
in-depth analysis of 2 million games (Fırat 2016). In both
cases, an evident bias can be seen towards the same side
of the board. In his analysis of 2 million games, Fırat also

Piece Name King Queen Rook Bishop Knight Pawn
Similarity to analogy vector 0.983 0.970 0.797 -0.702 -0.819 -0.890

Table 4: A table showing piece similarity for an analogy be-
tween promotion (Queen/Pawn) and castling (King/???).

indicates that in 80% of the games he analysed, castling oc-
curred on the king’s side (the same side of the board we see
checkmate biased towards). This may be one of the key con-
tributing factors to the apparent asymmetry of chess play, as
this draws play towards one side of the board.

Complex Direct Queries
In the previous two examples we have focused only on
the difference between two vectors in the model’s space,
to measure similarity. However, there are many other ways
to use and analyse word embeddings. One technique that
was popularised by Word2Vec models built on English lan-
guage corpora is the use of vector arithmetic to express re-
lationships between words (Allen and Hospedales 2019).
We gave an example of this earlier when we described a
process of extracting the capital of Morocco by manip-
ulating vectors representing Paris, France and Morocco:
Paris - France + Morocco yields a point in space
that is closest to the token Rabat, the capital of Morocco.
The model has captured the ‘capital of’ relationship, and that
can be extracted and reapplied to other tokens.

Example 3: Understanding Special Piece Relationships
Gameplay logs typically record player actions, but do not
specify why the actions were taken, or what other actions
might be possible. For example, castling can only occur us-
ing the king and a rook. However, this rule is never made ex-
plicit in our data (as illustrated in Table 1), and to an observer
with no knowledge of chess there is no particular reason to
believe that castling with a bishop would be disallowed. We
were curious as to whether the model could infer such spe-
cial relationships or constraints simply through exposure.

In order to investigate this, we took a similar approach
to the analogical approach used in the Paris/France exam-
ple above. First, we identified another pair of pieces with
a special relationship: the pawn and the queen. If a pawn
reaches the opposite edge of the board it may be promoted
into any other piece type. In our anecdotal survey of chess
literature, the chosen piece is almost always a queen. In our
notation language this has a special keyword: Promote. We
attempted to extract the notion of a special link through a key
mechanic by performing the following analogy:

Queen - Pawn + King = ?

Our expectation here is that the resulting vector from this
calculation is the closest to the rook token, since the rook
is connected to the king via castling, a similarly special me-
chanic. Considering only pieces as a possible answer, Ta-
ble 4 shows a list of pieces and their similarity to the result
of this query. Disregarding any results contained within the
query (such as Queen) as per (Řehůřek and Sojka 2010), we
can see that the top suggestion for this is indeed rook.

This result is notable for two reasons: first, every other
candidate answer (Bishop, Knight and Pawn) all show

191

Ann



strongly negative similarity, suggesting the analogical rela-
tionship between these pieces is quite strong. Second, al-
though Castling is a keyword in the domain language,
the model has no concept of what castling involves. There
is nothing to suggest a relationship between king and rook
other than the raw gameplay data. Thus, this result is a
promising suggestion that the model has managed to iden-
tify a sense of the connection between these pieces.

Analogies such as this could be used to connect known re-
lationships to speculative ones. For example, we might know
that a particular card in Slay The Spire is only effective when
paired with another card that creates a combo. Using ana-
logical queries such as this, we could extract the notion of
‘combo’ via a vector subtraction, and then ask the model to
suggest synergistic connections between other cards. This is
clearly a very complex kind of query, and relies upon fairly
nuanced ideas about a game’s design that may or may not
be deducible from the gameplay logs via a word embedding.
We expect further research into this type of query will be
needed to establish how widely applicable it is.

Stability of Results
In this section, we investigate how sensible the previous re-
sults are to training parameters such as training data size or
the random number generator’s initial seed. We focus on the
one presented in Example 1: ranking the tokens associated to
each chess piece (King, Queen, Rook, etc) by their simi-
larity to the Checkmate token.

Training Data Size To study the impact of training data
size on these similarity queries, we created several mod-
els with the same parameters and seed, but using different
amount of data. (Fig 3)

Figure 3: Similarity between Checkmate and each chess
Piece, in models with various training data size

100% here represents our original dataset of 250,000
chess games. It appears that the interesting ranking result
presented in Example 1 can be observed in models trained

with only 10% of the original dataset, and that the exact val-
ues for each similarity score between a chess piece token
and the Checkmate token seem to stabilize around using
25% of the dataset.

These scores suggests that the amount of player logs
needed to capture expert chess knowledge within token em-
beddings might be less than the initial 250,000. Even using
around 10,000 game logs (5% of the original dataset) seems
to provide a good approximation of the chess piece valuation
used by chess experts.

Seed The Word2Vec algorithm uses a random number
generator to choose the initial values of each token’s vec-
tor, as well as to shuffle the order in which the game logs are
read (Řehůřek and Sojka 2010).

Figure 4: Similarity between Checkmate and each chess
Piece in 10 models with different seed, each using 10% of
the original training data size

In order to study the generator’s impact on the similarity
queries presented in Example 1, we created 10 models us-
ing the exact same parameters and dataset, but with different
initialisation seeds. Each model uses 10% of the dataset we
used to build the original one, as results presented just above
showed that this amount was enough for models to capture
patterns similar to the ones in the full model.

The results for this experiment are presented in Figure 4.
It appears that the exact values for each similarity score be-
tween Checkmate and each piece token are stable across
different seeds for the more extreme values (Queen, King,
Rook, and Pawn) and a bit more widespread for values in
the middle (Bishop, Knight).

On the 10 orderings presented, 7 of them features the ex-
act same piece ranking as the full model, the only differ-
ence with the other 3 being that the King and Rook token
are swapped. This is explained by the fact that in this con-
text, the associated similarity scores are very close and small
variations can make it so that one token can be considered
slightly closer to Checkmate than the other one. We ex-
pect that averaging a model’s representation across several

192

Ann

Ann



seeds might mitigate this effect.
Overall, this experiment points towards a satisfactory sta-

bility of our model’s results across several seeds, minimising
the impact of the chance factor in its construction.

Future Work
Use of AI Agents
The experiments we describe above use 250,000 player
logs obtained from Lichess. As with many data-driven ap-
proaches, more data tends to produce better results. How-
ever, most game developers do not easily have access to
250,000 player logs. Data collection is a complex task in it-
self, which involves solving lots of technical problems, nav-
igating data protection laws, and having a large player base,
which is only true for a small percentage of games. Even for
large, well-resourced game developers with big playerbases,
analysis of this kind are often most useful prior to release,
where playtest information is limited and expensive.

AI agents are commonly used to evaluate games in the ab-
sence of real players (Hoover et al. 2020). Using AI agents
to generate gameplay logs may produce models that are as
useful as models generated from player data. Some differ-
ences are to be expected – human data will capture a range of
skills and emotional states, for example. But we believe that
AI agents can still help provide important insights. We have
performed some small experiments using game logs gener-
ated by the popular Stockfish chess AI engine, and a small
dataset of 10,000 game logs yielded a model that allowed
us to extract the same information about piece ordering and
spatial relationships listed in the previous section.

A larger study is needed to understand the extent to which
such data can replace player logs, and the impact of the AI
algorithm on the resulting model (for example, a chess en-
gine may already have piece values embedded in it to help it
play the game, whereas a more general game-playing agent
may not demonstrate the same awareness of piece value).
Our hope is that we can conclusively show that AI player
logs are a good substitute for real player data, and that per-
haps it is possible to combine the two to allow AI agents to
support or bootstrap a smaller human dataset. Our initial ex-
periments are promising, and suggest that our approach can
be made widely accessible for all game developers.

Use of Expert Data
Our Lichess dataset is not partitioned by skill – it includes
players who might be playing their first game of chess, as
well as seasoned professionals. It is well understood that for
many games experienced players not only play differently,
but understand the game in a different way (Lantz et al.
2017). Given that our approach aims to reveal the dynam-
ics of games based on the behaviour of players, we might
hypothesise that logs of expert players might reveal differ-
ent information about the game than logs of novice play-
ers. This might allow for the detection and classification of
player understanding, skill and playstyle.

We performed an exploratory experiment by building a
Word2Vec model using a small dataset of 10,000 tourna-
ment games by high-level chess players from the last cen-

tury. Compared to two similar models made from 10,000-
sample slices of the Lichess dataset, the model trained on
high-level players is more different from either of the two
Lichess slices than the slices are from one another, indicat-
ing this approach may be sensitive to player style or skill
level. Through a casual initial analysis we noticed, for exam-
ple, that castling relationships are more strongly expressed
in the tournament model, which makes sense as less experi-
enced players are less likely to use this.

We intend to do a larger-scale study in the future, with
properly partitioned datasets that group player data by their
skill. This could also allow designers to ask separate ques-
tions about high- and low-level play, and to see how player
behaviour changes as they get better at the game, and could
be combined with the use of AI agents to build models
trained on data from different AI strengths.

Conclusions
In this paper we have shown how Word2Vec can be used to
analyse game logs, revealing detailed and nuanced informa-
tion about game dynamics. We showed the process of con-
structing a model, from gathering and preparing data to vi-
sualising and analysing the resulting model. We reported on
an experiment applying Word2Vec to 250,000 Chess game
logs, showing that we were able to rediscover important
game knowledge such as the relative value of pieces, and
complex, unexpected properties of the game, such as the in-
nate asymmetry of Chess’ gameplay.

We believe Word2Vec, when combined with a custom de-
scription language for gameplay, is a very promising analyt-
ical tool for game developers. Unlike statistical analysis, its
aim is not to provide precise measurements of very specific
metrics. Instead, this analysis provides a broad overview of
the whole game, allowing us to explore it, query it, and find
inspiration for further analysis. Our experimentation sug-
gests that this approach can work with light computational
budgets, making it accessible to a wide range of users; and
that data from AI playouts can provide effective insights too,
potentially making it useful even prior to a game’s release.
In the future, we hope to broaden the use of this technique to
provide insight for automated game design systems, as well
as exploring other analytical applications for the models.

Acknowledgements
The authors wish to thank the reviewers for their thoughtful
feedback which helped improve the final version of this pa-
per. The second author is supported by the Royal Academy
of Engineering under the Research Fellowship scheme.

References
Aagaard, J. 2004. Excelling at technical chess. London
Guilford, CT: Gloucester Distributed in North America by
Globe Pequot Press. ISBN 978-1-85744-364-6.

Al-Suli, A. B. 941. Kitāb al-Shitranj al-Nisha al-Awala.
Quoted in Murray, H. J. R. 1913. A History of Chess. Oxford
University Press. ISBN 0-19-827403-3.

193



Allen, C.; and Hospedales, T. M. 2019. Analogies Ex-
plained: Towards Understanding Word Embeddings. CoRR
abs/1901.09813. URL http://arxiv.org/abs/1901.09813.
Browne, C.; and Maire, F. 2010. Evolutionary Game Design.
IEEE Trans. Comput. Intell. AI Games 2(1): 1–16.
Capablanca, J.; and de Firmian, N. 2006. Chess Fundamen-
tals. Random House.
Cook, M. 2021. The Social Responsibility of Game AI. In
Proceedings of the IEEE Conference on Gamees, 1–8.
Cook, M.; Colton, S.; Gow, J.; and Smith, G. 2019. Gen-
eral Analytical Techniques For Parameter-Based Procedural
Content Generators. In Proceedings of the IEEE Conference
on Games, 1–8.
Fırat, B. 2016. A Visual Look at 2 Million Chess Games.
tinyurl.com/ebemunk.
Giovannetti, A. 2019. Slay the Spire: Metrics Driven Design
and Balance. Talk at the Game Developers Conference.
Gow, J.; Baumgarten, R.; Cairns, P. A.; Colton, S.; and
Miller, P. 2012. Unsupervised Modeling of Player Style
With LDA. IEEE Transactions on Computational Intelli-
gence and AI in Games 4(3): 152–166.
Hoover, A. K.; Togelius, J.; Lee, S.; and de Mesen-
tier Silva, F. 2020. The Many AI Challenges of Hearthstone.
Künstliche Intelligenz 34(1): 33–43.
Lantz, F.; Isaksen, A.; Jaffe, A.; Nealen, A.; and Togelius, J.
2017. Depth in Strategic Games. In The Workshops of the
The Thirty-First AAAI Conference on Artificial Intelligence.
Lasker, E. 1988. Lasker’s chess primer. London: Portman
Press. ISBN 0-7134-6241-8.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient Estimation of Word Representations in Vector Space.
arXiv:1301.3781 [cs] URL http://arxiv.org/abs/1301.3781.
ArXiv: 1301.3781.
Murray, H. J. R. 1986. A history of chess. Benjamin Press.
Parrish, A. 2018. Understanding Word Vectors.
github.com/aparrish.
Reddit User ‘Atlas Scrubbed’. 2021. I looked at a
million games played on Lichess and counted how
many times checkmate occurred on each square.
URL www.reddit.com/r/chess/comments/kp7qwe/
i looked at a million games played on lichess and/.

Řehůřek, R.; and Sojka, P. 2010. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, 45–50. Valletta, Malta: ELRA.
Steven J. Edwards. 1994. PGN Standard. Steven J. Edwards.
URL http://archive.org/details/pgn-standard-1994-03-12.
Zhong, J.; Nakashima, T.; and Akiyama, H. 2019. A study
on the analysis of soccer games using distributed represen-
tation of actions and players. ICIC Express Letters.

194


