
Information Processing Letters 113 (2013) 430–433
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A linear time algorithm for consecutive permutation pattern
matching

M. Kubica a, T. Kulczyński a, J. Radoszewski a,∗, W. Rytter a,b,1, T. Waleń c,a

a Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
b Faculty of Mathematics and Computer Science, Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
c Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2012
Received in revised form 10 March 2013
Accepted 22 March 2013
Available online 26 March 2013
Communicated by A. Muscholl

Keywords:
Permutation pattern matching
Pattern matching
Knuth–Morris–Pratt algorithm
Analysis of algorithms

We say that two sequences x and w of length m are order-isomorphic (of the same
“shape”) if w[i] � w[j] if and only if x[i] � x[j] for each i, j ∈ [1,m]. We present a simple
linear time algorithm for checking if a given sequence y of length n contains a factor which
is order-isomorphic to a given pattern x. A factor is a subsequence of consecutive symbols
of y, so we call our problem the consecutive permutation pattern matching. The (general)
permutation pattern matching problem is related to general subsequences and is known to
be NP-complete. We show that the situation for consecutive subsequences is significantly
different and present an O (n + m) time algorithm under a natural assumption that the
symbols of x can be sorted in O (m) time, otherwise the time is O (n + m log m). In
our algorithm we use a modification of the classical Knuth–Morris–Pratt string matching
algorithm.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The problem of consecutive permutation pattern match-
ing is a natural extension of the classical permutation
pattern matching and a special variant of the so-called
generalized permutation patterns. Several combinatorial
results for this problem were known, see e.g. Elizalde and
Noy [9], Warlimont [17,18]; see also Chapter 5 in [12].
However, there was no previous study of algorithmics of
this problem. We present a linear time algorithm for con-
secutive permutation pattern matching.

Patterns in permutations are actively studied mostly
from the combinatorial point of view. This field of study
is concentrated on pattern avoidance, that is, counting

* Corresponding author. Tel.: +48 22 55 44 484; fax: +48 22 55 44 400.
E-mail addresses: kubica@mimuw.edu.pl (M. Kubica),

tomasz.kulczynski@students.mimuw.edu.pl (T. Kulczyński),
jrad@mimuw.edu.pl (J. Radoszewski), rytter@mimuw.edu.pl (W. Rytter),
walen@mimuw.edu.pl (T. Waleń).

1 The author is supported by grant No. N206 566740 of the National
Science Centre.
0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.03.015
the number of permutations not containing a subsequence
which is order-isomorphic to a given pattern. Knuth con-
sidered permutations avoiding the pattern 312 [13], Lovász
considered permutations avoiding the pattern 213 [14],
and Rotem those that do not contain 231 nor 312 [15],
just to mention a few most famous examples.

There are several algorithmic results related to pat-
tern matching in permutations. Bose et al. [4] showed
this problem to be NP-complete. Denote by m and n the
length of the pattern and the text. A general algorithm
with O (n0.47m+o(m)) time complexity was given in [1], and
an O ∗(1.79n) time algorithm was recently given in [6].
For several special cases polynomial time algorithms are
known. In [4] an O (mn6) time and O (mn4) space algo-
rithm for the case of a separable pattern is given. A permu-
tation is separable if it avoids the patterns 2413 and 3142.
Afterwards, Ibarra [11] improved this result to O (mn4)

time and O (mn3) space. If both the text and the pattern
avoid the permutation 321, an O (m2n6) time algorithm is
known [10]. Note that the case of an increasing pattern
can be reduced to searching for the longest increasing sub-
sequence, which can be done in O (n log log n) time for

http://dx.doi.org/10.1016/j.ipl.2013.03.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kubica@mimuw.edu.pl
mailto:tomasz.kulczynski@students.mimuw.edu.pl
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
http://dx.doi.org/10.1016/j.ipl.2013.03.015
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.03.015&domain=pdf

M. Kubica et al. / Information Processing Letters 113 (2013) 430–433 431
permutations [7]. Another simpler case, when the permu-
tation pattern has length 4, was shown in [2] to be solv-
able in O (n log n) time.

Generalized permutation patterns (also called vincular
patterns, see [12]) were introduced by Babson and Stein-
grímsson [3] and have proved to have connections to a va-
riety of other combinatorial structures, see the survey [16].
A generalized pattern is a sequence in which two adjacent
symbols may or may not be separated by a dash. The ab-
sence of a dash between two adjacent symbols in a pattern
imposes an additional requirement that the corresponding
symbols in the text must be adjacent. Thus an ordinary
permutation pattern p1 p2 p3 . . . pk corresponds to a gener-
alized pattern of the form p1-p2-p3- · · · -pk . On the other
hand, a generalized permutation pattern without dash rep-
resents a consecutive pattern, that must form a factor of
the text (less common names: segmented pattern, seg-
mental pattern, subword pattern, see [12]). Combinatorial
properties of consecutive permutation patterns were con-
sidered in [9,17,18]. No previous algorithmic results related
to consecutive patterns were known (as for the general-
ized patterns, only a W[1]-completeness result was given
in [5]).

We present a linear time algorithm for permutation
pattern matching of consecutive patterns. Our algorithm
is based on a simple, yet non-trivial, modification of the
Morris–Pratt pattern matching algorithm for strings.

2. Order-isomorphism

We consider sequences over an integer alphabet Σ ,
x ∈ Σ∗ . The positions in x are numbered from 1 to |x|.
Two sequences x, y of the same length are called order-
isomorphic (or simply isomorphic), written x ≈ y, if

(∀1 � i, j � |x|) x[i] � x[j] ⇔ y[i] � y[j].
For example, 4 1 4 7 3 5 2 3 4 ≈ 8 1 8 10 6 9 4 6 8. In this sec-
tion we show a linear time algorithm for checking isomor-
phism of two sequences.

For i = 1, . . . , |x| define

LMaxx[i] = j

if x[j] = max
{

x[k]: k ∈ [1, i − 1], x[k] � x[i]},
if there is no such j then LMaxx[i] = 0, similarly define

LMinx[i] = j

if x[j] = min
{

x[k]: k ∈ [1, i − 1], x[k] � x[i]},
and LMinx[i] = 0 if no such j exists. If several equally good
values of j exist, an arbitrary one can be selected (we
select the greatest good value of j). The LMax and LMin
tables are called location tables, see Table 1. If the pattern
is unambiguous then we omit the index in the notation.

In Lemma 1 we show that location tables can be com-
puted as fast as sorting all the symbols of the pattern.

Lemma 1. Let x be a sequence of length m and let sort(x) be the
time required to sort all the elements of x. Then location tables
of x can be computed in O (sort(x)) time.
Table 1
The location tables for the pattern x = 4 1 4 7 3 5 2 3 4.

i 1 2 3 4 5 6 7 8 9

x[i] 4 1 4 7 3 5 2 3 4
LMax[i] 0 0 1 3 2 3 2 5 3
LMin[i] 0 1 1 0 3 4 5 5 3

Table 2
Computation of the LMax table for the pattern from Table 1, as in the
proof of Lemma 1.

x[S[i]] 1 2 3 3 4 4 4 5 7
S[i] 2 7 5 8 1 3 9 6 4

LMax[S[i]] 0 2 2 5 0 1 3 3 3

Proof. Let us sort positions of x with respect to their con-
tents (the symbols they contain). In case of equal contents
the smaller positions come first. Let S be the resulting se-
quence of positions. Then LMax[j] is the nearest smaller
value to the left of S[i] = j (if there is no such value,
LMax[j] = 0), see Table 2. The LMin table is computed
similarly, by taking nearest smaller value to the right in
a sequence S ′ constructed exactly as the sequence S but
with a reversed order of positions with equal contents.

It is folklore knowledge that the problem of computing
nearest smaller values for all elements of a sequence, also
known as the “all nearest smaller values” problem, can be
solved in linear time by a stack-based algorithm. �

The following lemma provides a justification for intro-
ducing the location tables in the context of consecutive
permutation pattern matching.

Lemma 2. Assume that

x[1 . . t] ≈ y[1 . . t], t < |x|, |y|
and a = LMaxx[t + 1], b = LMinx[t + 1].

Then

x[1 . . t + 1] ≈ y[1 . . t + 1] ⇔ y[a] � y[t + 1] � y[b].
In case a or b is equal to 0, we omit the respective inequality in
the condition.

Proof. (⇒) By the definition of the location tables, we
have x[a] � x[t + 1] � x[b]. Now order-isomorphism of
x[1 . . t + 1] and y[1 . . t + 1] implies that y[a] � y[t + 1] �
y[b].

(⇐) We need to show that x[1 . . t + 1] ≈ y[1 . . t + 1].
We have x[1 . . t] ≈ y[1 . . t], hence it suffices to prove that,
for i � t ,

x[i] � x[t + 1] ⇔ y[i] � y[t + 1].
Assume that x[i] � x[t + 1] for some i ∈ {1, . . . , t}. By
the definition of the LMax table, we have x[i] � x[a];
by the order-isomorphism of x[1 . . t] and y[1 . . t], we
have y[i] � y[a]; finally, by the assumption of the lemma,
y[a] � y[t + 1], hence y[i] � y[t + 1]. In a similar way
we show that x[i] � x[t + 1] implies y[i] � y[t + 1], which
yields the requested equivalence. �

Let us make a natural assumption that the symbols of x
can be sorted in O (m) time, e.g. they are elements of the

432 M. Kubica et al. / Information Processing Letters 113 (2013) 430–433
Table 3
The order-borders table P for the pattern x = 2 5 1 4 7 3 6 8.

i 1 2 3 4 5 6 7 8

x[i] 2 5 1 4 7 3 6 8
P [i] 0 1 1 2 2 3 4 5

Fig. 1. An order-occurrence of the pattern 2 1 4 5 3 in the text 5 6 3 8 10
7 1 9 10 8. There is also a second order-occurrence of this pattern formed
by the last 5 symbols of the text.

set {1, . . . ,mO (1)}. Under this assumption, Lemma 2 (to-
gether with Lemma 1) implies an O (1) time incremental
criterion for checking if a sequence is isomorphic to a pre-
fix of the pattern. This is the basic tool used in the pattern
matching algorithm presented in the next section:

Lemma 3. Let x be a pattern of length m whose symbols can
be sorted in O (m) time. After O (m) time preprocessing one can
answer queries of the following form: “assuming that x[1 . . t] ≈
y[1 . . t], check if x[1 . . t + 1] ≈ y[1 . . t + 1]” for any sequence
y in constant time.

3. Consecutive permutation pattern matching

Let x be a pattern of length m. The order-borders table P
for x is defined as follows:

P [1] = 0,

P [i] = max
{

j < i: x[1 . . j] ≈ x[i − j + 1 . . i]} for i � 2,

see Table 3 as an example.
The algorithm computing the order-borders table is

similar to the algorithm computing (regular) borders in the
Morris–Pratt algorithm.

Algorithm Compute the table P
P [0] := −1; t := −1;
for i := 1 to m do

invariant: x[1 . . t] ≈ x[i − t . . i − 1]
while t � 0 and x[1 . . t + 1]
≈ x[i − t . . i] do

t := P [t];
t := t + 1; P [i] := t;

The test x[1 . . t + 1] ≈ x[i − t . . i] can be done in O (1)

time due to Lemma 3 and the invariant of the while-loop.
The number of such tests is linear which follows from
the complexity analysis of the Morris–Pratt algorithm (note
that t decreases after each comparison). Consequently we
obtain the following lemma.

Lemma 4. The order-borders table can be computed in linear
time.

A pattern x of length m order-occurs at position i of
a text y if x ≈ y[i + 1 . . i + m], see also Fig. 1. Let n be
the length of y. We can find all order-occurrences of x
in y in linear time using the algorithm below (the pseu-
docode resembles the implementation of Morris–Pratt pat-
tern matching algorithm as given in [8]).

Algorithm Modified algorithm of Morris and Pratt
i := 0; j := 0;
while i � n − m do begin

invariant: x[1 . . j] ≈ y[i + 1 . . i + j]
while j < m and x[1 . . j + 1] ≈ y[i + 1 . . i + j + 1]

do j := j + 1;
if j = m then write i;
i := i + (j − P [j]); j := max(0, P [j]);

end

Theorem 5 summarizes the linear time algorithm for
consecutive permutation pattern matching.

Theorem 5. All order-occurrences of a pattern in a given text
can be computed in linear time.

Proof. By Lemma 4, the order-borders table for the pattern
can be computed in linear time. Recall that this algorithm
involves the computation of location tables, see Lemma 1.

The procedure for finding order-occurrences mimics the
Morris–Pratt pattern matching algorithm, but instead of
testing equality of symbols of the pattern and the text we
check order-isomorphism of a prefix of the pattern and
a factor of the text. Due to the invariant in the pseu-
docode, each such test can be done in constant time using
Lemma 3. The number of remaining operations in the pat-
tern matching is linear just as in the original Morris–Pratt
algorithm. �
References

[1] S. Ahal, Y. Rabinovich, On complexity of the subpattern problem,
SIAM J. Discrete Math. 22 (2) (2008) 629–649.

[2] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, D.A. Holton, Algorithms for
pattern involvement in permutations, in: P. Eades, T. Takaoka (Eds.),
ISAAC, in: Lecture Notes in Comput. Sci., vol. 2223, Springer, 2001,
pp. 355–366.

[3] E. Babson, E. Steingrímsson, Generalized permutation patterns and
a classification of the Mahonian statistics, Sem. Lothar. Combin. 44
(2000).

[4] P. Bose, J.F. Buss, A. Lubiw, Pattern matching for permutations, In-
form. Process. Lett. 65 (5) (1998) 277–283.

[5] M.-L. Bruner, M. Lackner, A W[1]-completeness result for generalized
permutation pattern matching, CoRR, arXiv:1109.1951, 2011.

[6] M.-L. Bruner, M. Lackner, A fast algorithm for permutation pattern
matching based on alternating runs, in: F.V. Fomin, P. Kaski (Eds.),
SWAT, in: Lecture Notes in Comput. Sci., vol. 7357, Springer, 2012,
pp. 261–270.

[7] M.-S. Chang, F.-H. Wang, Efficient algorithms for the maximum
weight clique and maximum weight independent set problems on
permutation graphs, Inform. Process. Lett. 43 (1992) 293–295.

[8] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific,
2003.

[9] S. Elizalde, M. Noy, Consecutive patterns in permutations, Adv. in
Appl. Math. 30 (2003) 110–125.

[10] S. Guillemot, S. Vialette, Pattern matching for 321-avoiding permu-
tations, in: Y. Dong, D.-Z. Du, O.H. Ibarra (Eds.), ISAAC, in: Lecture
Notes in Comput. Sci., vol. 5878, Springer, 2009, pp. 1064–1073.

[11] L. Ibarra, Finding pattern matchings for permutations, Inform. Pro-
cess. Lett. 61 (6) (1997) 293–295.

M. Kubica et al. / Information Processing Letters 113 (2013) 430–433 433
[12] S. Kitaev, Patterns in Permutations and Words, Monogr. Theoret.
Comput. Sci. EATCS Ser., 2011.

[13] D.E. Knuth, The Art of Computer Programming, vol. I: Fundamental
Algorithms, second ed., Addison–Wesley, 1973.

[14] L. Lovász, Combinatorial Problems and Exercises, North-Holland,
1979.

[15] D. Rotem, Stack sortable permutations, Discrete Math. 33 (2) (1981)
185–196.
[16] E. Steingrímsson, Generalized permutation patterns – a short survey,
in: S. Linton, N. Ruskuc, V. Vatter (Eds.), Permutation Patterns, in:
London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 2010,
pp. 137–152.

[17] R. Warlimont, Permutations avoiding consecutive patterns, Ann. Univ.
Sci. Budapest. Sect. Comput. 22 (2003) 373–393.

[18] R. Warlimont, Permutations avoiding consecutive patterns, II, Arch.
Math. 84 (2005) 496–502.

	A linear time algorithm for consecutive permutation pattern matching
	1 Introduction
	2 Order-isomorphism
	3 Consecutive permutation pattern matching
	References

