
Information Processing Letters 113 (2013) 265–270
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Prefix transpositions on binary and ternary strings

Amit Kumar Dutta, Masud Hasan ∗, M. Sohel Rahman

Department of Computer Science & Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2012
Received in revised form 15 January 2013
Accepted 21 January 2013
Available online 7 February 2013
Communicated by Ł. Kowalik

Keywords:
Algorithms
Combinatorial problems
Prefix transposition
Ternary strings
Binary strings
Genome rearrangement

The problem of sorting by prefix transpositions asks for the minimum number of prefix
transpositions required to sort the elements of a given permutation. In this paper, we study
a variant of this problem where the prefix transpositions act not on permutations but
on strings over an alphabet of fixed size. Here, we determine the minimum number of
prefix transpositions required to sort the binary and ternary strings, with polynomial time
algorithms for these sorting problems.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The transposition distance between two permutations
(and the related problem of sorting by transposition) is
used to estimate the number of global mutations between
genomes and can be used by molecular biologists to infer
evolutionary and functional relationships. A transposition
involves swapping two adjacent substrings of the permu-
tation. In a prefix transposition, one of them must be a
prefix. Sorting by prefix transposition is the problem of find-
ing the minimum number of prefix transpositions needed
to transform a given permutation into the identity permu-
tation. In the literature, other interesting problems include
sorting by other operations like reversals, prefix reversals,
block interchange etc.

A natural variant of the aforementioned sorting prob-
lems is to consider them not on permutations but on
strings over fixed size alphabets. This shift is inspired
by the biological observation that multiple “copies” of
the same gene can appear at various places along the
genome [4]. Indeed, recent works by Christie and Irv-
ing [2], Radcliffe et al. [5] and Hurkens et al. [4] ex-

* Corresponding author.
E-mail address: mhasan2010@gmail.com (M. Hasan).
0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.01.017
plore the consequences of switching from permutations to
strings. Notably, such rearrangement operations on strings
have been found to be interesting and important in the
study of orthologous gene assignment [1], especially if the
strings have only low level of symbol repetitions.

Chen et al. [1] presented for both reversals and trans-
positions, polynomial-time algorithms for computing the
minimum number of operations to sort a given binary
string. They also gave exact constructive diameter results
on binary strings. Radcliff et al. [5] on the other hand gave
refined and generalized reversal diameter results for non-
fixed sized alphabets. Additionally, they gave a polynomial-
time algorithm for optimally sorting a ternary (3 letter
alphabet) string with reversals. Finally, Hurkens et al. [4]
introduced grouping (a weaker form of sorting), where
identical symbols need only be grouped together, while a
group can be in any order. In the sequel, they gave a com-
plete characterization of the minimum number of prefix
reversals required to group (and sort) binary and ternary
strings.

In this paper, we follow up the work of [4] and consider
prefix transposition to group and sort binary and ternary
strings. Notably, as a future work in [4], the authors raised
the issue of considering other genome arrangement oper-
ators. In particular, here, we find the minimum number of

http://dx.doi.org/10.1016/j.ipl.2013.01.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:mhasan2010@gmail.com
http://dx.doi.org/10.1016/j.ipl.2013.01.017
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.01.017&domain=pdf

266 A.K. Dutta et al. / Information Processing Letters 113 (2013) 265–270
prefix transpositions required to group and sort binary or
ternary strings. It may be noted that, apart from being a
useful aid for sorting, grouping itself is a problem of inter-
est in its own right [3].

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the preliminary concepts and discuss
some notations we use. Section 3 is devoted to grouping,
where we present and prove the corresponding bounds. In
Section 4, we present an algorithm to group the strings
and in Section 5, we classify the strings along two differ-
ent dimensions. Section 6 extends the results on grouping
to get the corresponding bounds for sorting. Finally, we
briefly conclude in Section 7.

2. Preliminaries

We follow the notations and definitions used in [4],
which are briefly reviewed below for the sake of complete-
ness. We use [k] to denote the first k non-negative integers
{0,1, . . . ,k −1}. A k-ary string is a string over the alphabet
Σ = [k]. Moreover, a string s = s[1]s[2] . . . s[n] of length n
is said to be fully k-ary, or to have arity k, if the set of
symbols occurring in it is [k].

A prefix transposition f (1, x, y) on a string s of length n,
where 1 < x < y � (n + 1), is a rearrangement event that
transforms s into [s[x] . . . s[y−1]s[1] . . . s[x−1]s[y] . . . s[n]].
The prefix transposition distance ds(s) of s is defined as
the number of prefix transpositions required to sort the
string. Note that, after a transposition operation is per-
formed, the two adjacent symbols of the corresponding
string may become identical. We consider two strings to
be equivalent if one can be transformed into the other
by repeatedly duplicating (by transposing) symbols and
eliminating adjacent identical symbols. This elimination of
adjacent identical symbols gives us a reduced string, i.e., a
string of reduced length and this process is referred to as
the reduction. A string having no identical adjacent sym-
bols is said to be a normalized string. As representatives of
the equivalence classes we take the shortest string of each
class. Clearly, these are normalized strings where adjacent
symbols always differ.

For example, let s = bababab and we want to apply
operation f (1,3,6). Now, s[x] . . . s[y − 1] = s[3] . . . s[5] =
bab, s[1] . . . s[x − 1] = s[1] . . . s[2] = ba, s[y] . . . s[n] =
s[6] . . . s[7] = ab. Therefore, after applying the operation,
we get, s = s[3] . . . s[5]s[1] . . . s[2]s[6] . . . s[7] = babbaab =
babbaab = babab = babab.

A transposition that decreases the string length by p
(possibly after some reduction) is called a p-transposition.
So, if p = 0, then we have a 0-transposition. The above
example illustrates a 2-transposition.

3. Grouping

The task of sorting a string can be divided into two sub-
problems, namely, grouping the identical symbols together
and then putting the groups of identical symbols in the
right order. The grouping distance dg(s) of a fully k-ary
string s is defined as the minimum number of prefix trans-
positions required to reduce the string to one of length k.
In what follows, we deduce different bounds for the group-
ing distance of fully binary and ternary strings and our
bounds are deduced in terms of normalized strings. How-
ever, note that, the bounds deduced are equally applicable
to a general (i.e., non-normalized) string having identical
adjacent symbols, because, such a string can be easily re-
duced to a normalized string through reduction and the
process of reduction (i.e., elimination of adjacent identical
symbols) does not increase or decrease the number of pre-
fix transpositions.

3.1. Grouping binary strings

As strings are normalized, only 2 kinds of binary strings
are possible, namely, 010101 . . . 010 and 101010 . . . 101.
The grouping of binary strings seems to be quite easy and
obvious. The following bound is easily achieved.

Theorem 1 (Bound for Binary strings). Let s be a fully binary
normalized string and |s| > 2. Then, dg(s) = �n−2

2 �.

Proof. We can always have a 2-transposition if |s| is even.
However, if |s| is odd, we need an extra 1-transposition.
So, the upper bound is dg(s) = �n−2

2 �. �
We illustrate the above result with the help of an ex-

ample. Let s = ababab. Then we can continue as follows:
s = ababab = ababab = aabbab = abab = abab = aabb = ab.
Here, we need two 2-transpositions to group this string.
So, dg(s) = 2.

3.2. Grouping ternary strings

In this section, we focus on ternary strings. As it seems,
grouping ternary strings is not as easy as grouping binary
strings. We start with the following theorem.

Lemma 1. In a fully ternary normalized string, we can always
perform a 1-transposition.

Proof. We take a ternary string s of length n > 3. Now,
we take a prefix a[1 . . .k] of length k. If a[1] occurs at the
suffix at position i, we can transpose a[1] . . .a[i − 1] with
a[i]. Then, a[1] and a[i] are adjacent and we can elimi-
nate one of the two. Otherwise, if a[k] occurs at the suf-
fix at position i, then we can transpose a[1] . . .a[k] with
a[k + 1] . . .a[i − 1]. Then a[k] and a[i] are adjacent and as
before, we can eliminate one of them. Since, one of the
above cases always occurs for ternary strings, the result
follows. �

To perform a 2-transposition we take a prefix of length
at least 2. So, instead of taking a prefix of length at least 2,
we can always take a prefix of length 1 (i.e. with the
first character), and perform a 1-transposition. Thus, pres-
ence of a 2-transposition always ensures that there is also
a 1-transposition. For example, let us take 01201. There
is a 2-transposition: 01201 ⇒ 201. We could also get a
1-transposition as follows: 01201 ⇒ 1201.

3.3. Grouping distance for Ternary strings

The lower bound for the grouping of a ternary string
remains the same as that of binary strings; but, as can be

A.K. Dutta et al. / Information Processing Letters 113 (2013) 265–270 267
1

10

101

1010 1012

102

1021 1020

12

120

1201 1202

121

1210 1212

Fig. 1. Tree diagram for all strings starting with 1.

seen from Theorem 2 below, the upper bound differs. We
first give an easy but useful lemma.

Lemma 2. Suppose s[1..n] is a fully ternary normalized string. If
we have a prefix s[1..i], 1 < i � n − 2, such that s[1] = s[n − 1]
and s[i] = s[n], then we have a 2-transposition.

The proof of Lemma 2 is very easy and hence is omit-
ted.

Theorem 2 (Bound for Ternary strings). Let s be a fully ternary
normalized string. Then, �n−3

2 � � dg(s) � �n−3
2 � + 1 where n

is the length of the string and n �= 4.

Proof. For lower bounds, we consider the best cases where
we will be able to give 2-transpositions in every step of the
reduction. If |s| is odd, the string length will reduce to 3
(e.g. for |s| = 7, we get 7 ⇒ 5 ⇒ 3 length strings in each
step). If |s| is even, string length will reduce to 4 and we
require an additional 1-transposition (e.g. for |s| = 8, with
2 transposition in each step, we get 8 ⇒ 6 ⇒ 4 and then,
an extra 1-transposition).

Let us now concentrate on the upper bound. As strings
are fully ternary, we don’t need to work with n � 3. Now,
if we apply the upper bound for n = 5 and 6, we have
dg(s) = 2 and 3 respectively. It is easy to realize that, by
Lemma 1, we can always satisfy the above upper bound.
Thus the upper bound is proved for n < 7.

Now we consider n � 7. In what follows, we only con-
sider strings starting with 1. This doesn’t lose the general-
ity since we can always use relabeling for strings starting
with 0 or 2. Now, note carefully that for any string start-
ing with 1, we can only have one of the eight prefixes of
length 4 shown in list (1) below.

1012,1010,1021,1020,1201,1202,1210 and 1212.

(1)

In Fig. 1, we give the tree diagram of all strings starting
with 1.

Now note that, the upper bound of Theorem 2 tells
us that we can give at most three 1-transpositions when
n is even (i.e., n − k is odd) and two 1-transpositions
when n is odd (i.e., n − k is even). Note that, if we could
give a 2-transposition at each step, we would get the
bound of �n−k

2 �. For an n length string, if we can give
a 2-transposition, the resulting reduced string may start
with 1, 0 or 2. For the latter two cases, we can use rela-
beling as mentioned before. Therefore we can safely state
1012

101201

1012010 1012012

101202

1012020 1012021

Fig. 2. Strings with prefix 1012.

that the reduced string will have any of the 8 prefixes of
list (1). Hence, it suffices to prove the bound considering
each of the prefixes of list (1). We will now follow the fol-
lowing strategy:

“We will take each of the prefixes of list (1) and expand
it (by adding symbols) to construct all possible strings
of length greater than or equal to 7. Strictly speaking,
we will not consider all possible strings; rather we will
continue to expand until we get a 2-transposition, since
afterwards, any further expansion would also guarantee
a 2-transposition. Suppose s is one such string. We will
take s and try to give a 2-transposition with any of its
prefix. If we succeed, then, clearly, we are moving towards
the best case and we only need to work with the reduced
string. If we cannot give a 2-transposition, we specifically
deal with s and show that the bound holds. Now if we
can give a 2-transposition, the reduced string will have any
of the 8 prefixes (using relabeling if needed) and we will
show that all strings of these cases will follow the bound”.

Firstly it is easy to note that, the prefixes 1010 and
1212 themselves have 2-transpositions (Lemma 2). There-
fore, we can safely exclude them from the following dis-
cussion. In what follows, when we refer to the prefixes of
list (1), we would actually mean all the prefixes excluding
1010 and 1212. Now, to expand any of the prefixes, if we
add 10 or 12, it would be able to give a 2-transposition
(Lemma 2). Therefore, in what follows, we consider the
other cases. Now we analyze each of the prefixes below.
In what follows, when we say we ‘add’ to a string we ba-
sically mean to ‘append’ to it.

1012 We first give a tree diagram of strings having the
prefix 1012 in Fig. 2.

If we add 01, we can only add 0 or 2 subsequently. The
resulting expanded string becomes 1012010 or 1012012.
In both cases, we can give a 2-transposition. On the other
hand, if we add 02, we can add 0 or 1 next and the string
becomes 1012020 or 1012021.

The string 1012020 satisfies the bound as follows:
1012020 ⇒ 012020 ⇒ 012020 ⇒ 0120 ⇒ 0120 ⇒ 120.
Here, n = 7 and we need a total of three transpo-
sitions only holding the bound true. Now if we fur-
ther add 1, the string becomes 10120201 (not shown in
Fig. 2). For this one as well the bound holds as follows:
10120201 ⇒ 0120201 ⇒ 0120201 ⇒ 20201 ⇒ 20201 ⇒
201. Here, n = 8 and we need a total of three transpo-
sitions. Now, it can be easily checked that strings like
1012020(20)∗ or 1012020(20)∗1, the bound holds using
the same strategy as shown above. Adding anything with
1012020(20)∗1 will also give a 2-transposition as follows.
Clearly, we first need to add either 0 or 2 and immediately
Lemma 2 would apply.

268 A.K. Dutta et al. / Information Processing Letters 113 (2013) 265–270
Now we consider 1012021. The bound holds for this
one as well as follows: 1012021 ⇒ 012020 ⇒ 012021 ⇒
0121 ⇒ 0121 ⇒ 201. Now, strings like 1012(02)∗1 can also
be handled similarly and hence the bound holds for them
as well. Adding anything with 1012(02)∗1 will also give a
2-transposition (Lemma 2).

1021 This prefix is ending with 1 and adding anything
will give a 2-transposition (Lemma 2).

1020 We first add 21 with this prefix. Subsequently,
adding anything (i.e., adding anything with 102021) will
give a 2-transposition (Lemma 2). Now, for 102(02)+1,
we need a 1-transposition to move the initial 1 at the
end. Now the upper bound holds because the rest of the
string is binary (Theorem 1). Also, adding anything with
102(02)+1 will give a 2-transposition (Lemma 2).

Now, if we add 20 with the prefix we get 102020. Next
we add 1 or 2 and get 1020201 or 1020202 respectively.
For 1020201, the bound holds as follows: 1020201 ⇒
020201 ⇒ 020201 ⇒ 0201 ⇒ 0201 ⇒ 201. All strings like
1020(20)+1 can also be handled similarly and hence the
bound holds for them as well. And adding anything with
1020(20)+1 will give a 2-transposition (Lemma 2).

Now, for 1020202, the bound holds as follows:
1020202 ⇒ 210202 ⇒ 210202 ⇒ 2102 ⇒ 2102 ⇒ 102.
Now, strings like 10202(02)+ can be handled similarly
and hence the bound holds. For 10202(02)+1, we need
a 1-transposition to move the initial 1 at the end. Now the
upper bound holds because the rest of the string is binary
(Theorem 1). Also adding anything with 10202(02)+1 will
give a 2-transposition (Lemma 2).

1201 This prefix is ending with a 1 and adding anything
will give a 2-transposition (Lemma 2).

1202 Here, we can employ relabeling and map 2 to 0
and 0 to 2 to get 1020. Now recall that we have already
considered 1020 before and hence we are done.

1210 Here we can again employ relabeling and map 2
to 0 and 0 to 2 to get 1012. And since we have already
considered 1012, we are done.

This completes the proof. �
Lemma 3. Let s be a fully ternary normalized string of length
n = 4. Then, dg(s) = 1.

Proof. For the fully ternary normalized strings of length 4,
we only require one 1-transposition to reduce it’s length
to three. Hence dg(s) = 1. �
4. An algorithm to group fully binary and ternary strings

In this section we present Algorithm 1 to group fully bi-
nary and ternary strings that satisfy the proposed bound.
We take all possible prefixes and try to find a 2-transpo-
sition in the suffix. If no 2-transposition is found, the al-
gorithm gives a 1-transposition with the current prefix.
Algorithm 1: GroupByPrefixTransposition (s:input
string).

Input: s, a fully binary or ternary string

initialization;
k ⇐ 2 if s is binary;
k ⇐ 3 if s is ternary;
count ⇐ 0;
twoTranspDone ⇐ false;
while |s| >k do

for i = 1; i <| s |; i = i + 1 do
take the first symbol of input string;
take the i-th symbol of the input string;
append these two symbols;
call this string temp;
check whether this string is a substring of the current
suffix;
for j = i + 1; j < (|s| − 1); j = j + 1 do

take the substring named consecutive of input string
from j to j + 2;
if consecutive == temp then

perform a 2-transposition;
count ⇐ count + 1;
twoTranspDone ⇐ true;
break;

end
end
if twoTranspDone == false then

perform a 1-transposition using Algorithm 2;
s ⇐ return value from 2;
count ⇐ count + 1;

end
end
twoTranspDone ⇐ false;

end

It runs until the length is 2 and 3 for fully binary and
fully ternary strings respectively. A variable count is initial-
ized to zero and after the algorithm runs, it contains total
number of prefix transpositions required. Algorithm 1 uses
Algorithm 2 to perform 1-transpositions (which is always
available as discussed in Lemma 1). Algorithm 2 is simple.
It first checks if the first character exists in the suffix. If so,
it performs a 1-transposition. If not, it increases the length
of the prefix and checks if the last character of the prefix
exists in the suffix. If so, it performs a 1-transposition with
that prefix and suffix pair.

Before formally proving the correctness of our algo-
rithm, it will be useful to provide some classifications of
the fully binary and ternary strings. In the following sec-
tion, we will first classify the fully binary and ternary
strings along two different dimensions and then discuss
the correctness of our algorithm. Notably, apart from be-
ing useful in proving the correctness of our algorithm, the
classifications provided below would be interesting in their
own right.

5. Classification

5.1. Classes of ternary strings

In this section, we will identify two classes of fully
ternary strings. We have already shown that it needs at
most �n−3

2 � + 1 prefix transpositions to group ternary
strings. We will discuss two classes; the first one consists

A.K. Dutta et al. / Information Processing Letters 113 (2013) 265–270 269
Algorithm 2: Do1Transposition (s:input string).
Input: s is a fully binary or ternary string passed as a parameter

from Algorithm 1

forward ⇐ false;
take the suffix of input string leaving the initial symbol of s;
if the first symbol exists in the suffix then

perform a 1-transposition to s;
forward ⇐ true;

end
if forward == false then

for p = 1; p < (|s| − 1); p + + do
take a string suffix, substring of input string form (p + 1)

to end;
if p-th symbol occurs at suffix then

perform a 1-transposition;
end

end
end
return s;

of the strings that require �n−3
2 � prefix transpositions

(Class 1) and the other consists of the strings that need
�n−3

2 �+ 1 (Class 2). We are not able to classify all the fully
ternary strings; however below we provide classification of
a significant number of strings:

• From Lemma 3, we find that dg(s) = 1 for all fully
ternary strings of length four. So, these strings satisfy
�n−3

2 � bound, so we put them in Class 1.
• (10)+102, (10)+210, (10)+212, (12)+010, (12)+012,

(12)+120 belong to Class 1. We can apply relabeling
on these to find strings starting with 0 or 2 and they
also belong to Class 1.

• If a ternary string can be reduced to any one of the
previous strings by a series of 2-transpositions, then
that particular string also belongs to Class 1.

In Class 2, we put the strings that need �n−3
2 �+1 prefix

transpositions to be grouped.

• 10120, 10121, 10201, 10202, 12021, 12020, 12101,
12102 and those we get by applying relabeling on
them are in Class 2. There is no 2-transposition avail-
able for these strings.

• (10)+120, (10)+121, (10)+201, (10)+2(02)+ ,
(12)+021, (12)+0(20)+ , (12)+101, (12)+102,
(10)+1201, (10)+2021, (12)+0201, (12)+1021 and
those strings that we get by applying relabeling on
these strings belong to Class 2.

• Ternary strings reduced to any of these by a series of
2-transpositions will also be placed in Class 2.

Now, we will categorize all the fully ternary strings
from a different perspective. We call a string “Good
string” if Algorithm 1 gives the optimal result. All the
strings in Class 1 and Class 2 specified earlier are “Good
strings”. There are strings for which Algorithm 1 will
not give optimal results. Those strings are called “Hard
strings”. (02)+10202, (10)+21010, (21)+02121 are exam-
ples of “Hard strings”. To elaborate, let us take a fully
ternary string 0210202 as an example. Algorithm 1 will
give the following set of prefix transpositions: 0210202 ⇒
10202 ⇒ 2102 ⇒ 102. Here we need 3 prefix transposi-
tions which satisfy the bound. However, an optimal se-
quence will need 2 prefix transpositions to group this
string 0210202 ⇒ 02102 ⇒ 102. So, 0210202 is a “Hard
string”.

5.2. Correctness of Algorithm 1

With the above classification of fully ternary strings at
our hand, we are now ready to prove the correctness of
our algorithm. We prove the following theorem.

Theorem 3. Given a fully binary and ternary normalized string,
Algorithm 1 is always able to group the string satisfying the
bound given in Theorems 1 and 2.

Proof. The proof is simple for fully binary strings be-
cause Algorithm 1 will always give optimal results for
fully binary strings. So we need only to prove that Al-
gorithm 1 will always satisfy the proposed bounds for
ternary strings. Since, by definition, Algorithm 1 pro-
vides optimal results for “Good strings”, we only need to
consider “Hard strings” and prove that Algorithm 1 will
satisfy the upper bound while dealing with the “Hard
strings”. Consider a hard string. Algorithm 1 may choose
a 2-transposition which may not be optimal. Then it
will reduce the string into any one of the following:
(10)+120, (10)+121, (10)+201, (10)+2(02)+ , (12)+021,
(12)+0(20)+ , (12)+101, (12)+102, (10)+1201, (10)+2021,
(12)+0201, (12)+1021 or any fully ternary string of
length 4 and those which we get by applying relabeling
any of these. These strings satisfy the upper bound. So,
overall Algorithm 1 will satisfy the upper bound. �
6. Sorting

The sorting distance ds(s) of a fully k-ary string s is
defined as the minimum number of prefix transpositions
required to sort the string to one of length k.

6.1. Sorting binary strings

Theorem 4 (Bound for Binary strings). Let s be a fully binary
normalized string. Then, ds(s) � �n−2

2 �.

Proof. As binary strings have only 2 letters, after grouping
they are already sorted (in ascending or descending order).
So, the upper bound is ds(s) � �n−2

2 �. �
6.2. Sorting ternary strings

Theorem 5 (Bound for Ternary strings). Let s be a fully ternary
normalized string. Then, upper bound for sorting ternary string
is dg(s) � �n−3

2 + 2�.

Proof. After grouping a ternary string, we have the fol-
lowing grouped strings: 012,021,102,120,201 and 210.
Among these, 012 and 210 are already sorted. We need

270 A.K. Dutta et al. / Information Processing Letters 113 (2013) 265–270
one more 0-transposition to sort 021,102,120 and 201.
Hence the result follows. �
6.3. Algorithm to sort fully binary and ternary strings

We first apply Algorithm 1 of Section 4 on the input
string. Then, if the string is binary, it is already sorted. If
it is ternary and the after grouping we have any one of
021,102,120 and 201, we need 1 more prefix transposi-
tion to sort the string. The algorithm is formally presented
in the form of Algorithm 3.

Algorithm 3: SortByPrefixTransposition (s:input
string).

Input: s is a fully binary or ternary string

run Algorithm 1 on s;
if s is binary then

s is sorted after grouping;
finish;

end
else

if s is in 021, 102, 120, 201 then
perform one 0-transposition to sort s;

end
else

s is already sorted;
end

end
7. Conclusion

In this paper, we have discussed grouping and sorting
of fully binary and ternary strings when the allowed oper-
ation is prefix transposition. Following the work of [4], we
have handled grouping by prefix transpositions of binary
and ternary strings first and extended the results for sort-
ing. In particular we have proved that, for binary strings
the grouping distance is dg(s) = �n−2

2 � and for ternary
string we have �n−3

2 � � dg(s) � �n−3
2 � + 1, where n �= 4

and dg(s) = 1 when n = 4. On the other hand, for sort-
ing binary and ternary strings the sorting distance ds(s) is
upper bounded by �n−2

2 � and �n−3
2 � + 2 respectively. As

has already been mentioned, we are now considering the
higher-arity alphabets as an extension of our work.

References

[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, T. Jiang, As-
signment of orthologous genes via genome rearrangement, IEEE/ACM
Trans. Comput. Biology Bioinform. 2 (4) (2005) 302–315.

[2] D.A. Christie, R.W. Irving, Sorting strings by reversals and by transpo-
sitions, SIAM J. Discrete Math. 14 (2) (2001) 193–206.

[3] H. Eriksson, K. Eriksson, J. Karlander, L.J. Svensson, J. Wästlund, Sorting
a bridge hand, Discrete Math. 241 (1–3) (2001) 289–300.

[4] C.A.J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, J. Tromp,
Prefix reversals on binary and ternary strings, SIAM J. Discrete
Math. 21 (3) (2007) 592–611.

[5] A.J. Radcliffe, A.D. Scott, E.L. Wilmer, Reversals and transpositions over
finite alphabets, SIAM J. Discrete Math. (2006).

	Preﬁx transpositions on binary and ternary strings
	1 Introduction
	2 Preliminaries
	3 Grouping
	3.1 Grouping binary strings
	3.2 Grouping ternary strings
	3.3 Grouping distance for Ternary strings

	4 An algorithm to group fully binary and ternary strings
	5 Classiﬁcation
	5.1 Classes of ternary strings
	5.2 Correctness of Algorithm 1

	6 Sorting
	6.1 Sorting binary strings
	6.2 Sorting ternary strings
	6.3 Algorithm to sort fully binary and ternary strings

	7 Conclusion
	References

