
Expert Systems With Applications 96 (2018) 1–13

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

I-TWEC: Interactive clustering tool for Twitter

İnanç Arın

∗, Mert Kemal Erpam , Yücel Saygın

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 15 May 2017

Revised 28 November 2017

Accepted 29 November 2017

Available online 1 December 2017

Keywords:

Tweet clustering

Short text clustering

Suffix tree based clustering

LCS based clustering

a b s t r a c t

Social media provides a medium for people to express themselves on different issues. Twitter has gained

a lot of popularity in the past decade as a social media platform where people create micro-blogs pro-

viding a valuable data source to understand trends and public opinion. However, the volume of tweets

even on specific topics may reach millions creating a big challenge for the analyst. Clustering is a tech-

nique which can be utilized to better understand such large volumes of data. The main idea of cluster-

ing is to group similar tweets into batches in order to find patterns, to summarize, and to compress a

large dataset. Though clustering is a natural technique for the analysis of tweets, there is no clustering

tool specifically designed for Twitter data that utilizes lexical and semantic similarities; and that can be

readily used by non-technical experts such as social scientists. I-TWEC is a web based tweet clustering

tool where users can upload their data and the resulting clusters are presented with different visualiza-

tions which further enable the user to interactively select and merge clusters based on their semantic

similarity. I-TWEC has the lexical and semantic clustering components implemented as two consecutive

phases. For the lexical clustering of tweets, Longest Common Subsequence is a widely accepted similarity

metric, however it is also very costly, and therefore not applicable to large data sets such as the ones

collected through Twitter. In order to overcome that challenge, we have implemented a suffix tree based

index structure in I-TWEC to efficiently cluster tweets based on the Longest Common Substring similarity

which is an approximation of the Longest Common Subsequence. Experiments we have conducted show

that lexical clustering phase of I-TWEC can produce results with comparable clustering quality in a frac-

tion of the time required by the baseline methods which use Longest Common Subsequence and Suffix

Tree. We have also experimented with a k-means document clustering as well as a state-of-the-art word-

based suffix tree clustering algorithm and the results show that I-TWEC outperforms the state-of-the-art

in terms of time with comparable clustering quality.

© 2017 Elsevier Ltd. All rights reserved.

1

t

t

b

T

o

p

p

a

(

2

t

i

t

t

s

l

i

o

s

T

a

h

0

. Introduction

Twitter was founded in 2006 and its creator Jack Dorsey sent

he very first tweet on March 21 st 2006 saying “just setting up my

wttr”. After that day, Twitter continued to be used in an incredi-

ly increasing manner. Three years after the first tweet was sent,

witter reached one billionth tweet. 1 As of 2015, average number

f tweets per second reached 60 0 0 (Sayce, 2016), which means ap-

roximately 500 millions tweets are generated in a single day.

There are two different account types in Twitter: public , and

rotected . A user can follow any user with a public account without

ny permission needed which allows users to follow and share all
∗ Corresponding author.

E-mail addresses: inanc@sabanciuniv.edu (̇I. Arın), merterpam@sabanciuniv.edu

M.K. Erpam), ysaygin@sabanciuniv.edu (Y. Saygın).
1 Twitter. #numbers. (2011). https://blog.twitter.com/2011/numbers Accessed

017.01.18.

o

t

c

/

ttps://doi.org/10.1016/j.eswa.2017.11.055

957-4174/© 2017 Elsevier Ltd. All rights reserved.
he tweets from these accounts. Permission of the owner is needed

n order to follow a protected account. However, only 11.84% of

he accounts are protected on Twitter 2 which means that most of

he tweets are visible and shareable. In fact, people are constantly

haring their feelings, opinions, and reactions towards events and

ife in general on Twitter, hence it may be considered as the dig-

tal reflection of our society. Therefore, analyzing tweets has a lot

f benefits such as giving significant insights about society for re-

earchers in social sciences and other related fields.

Tweets generated by people contain a variety of information.

here are distinct tweets, while many other tweets are duplicates

nd therefore, they do not contribute much information in terms

f content analysis. One way of eliminating duplicate or similar

weets and reducing the number of tweets for analysis is lexical

lustering where textual data items are grouped based on a lex-
2 Beevolve. An Exhaustive Study of Twitter Users Across the World. (2012) http:

/www.beevolve.com/twitter-statistics/ Accessed 2017.01.18.

https://doi.org/10.1016/j.eswa.2017.11.055
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.11.055&domain=pdf
mailto:inanc@sabanciuniv.edu
mailto:merterpam@sabanciuniv.edu
mailto:ysaygin@sabanciuniv.edu
https://blog.twitter.com/2011/numbers
http://www.beevolve.com/twitter-statistics/
https://doi.org/10.1016/j.eswa.2017.11.055

2 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

o

S

r

2

i

m

d

a

c

n

m

m

m

b

c

c

d

w

j

D

e

s

T

v

T

s

c

t

o

i

n

a

g

t

i

s

t

a

s

a

e

a

l

F

n

t

u

b

w

l

S

a

a

o

m

2
ical similarity metric. By clustering tweets, it is possible to ob-

tain a cleaner dataset containing only singular tweets represent-

ing a group with similar content, which reduces the time for

more complex data processing algorithms. However, standard doc-

ument clustering algorithms cannot be directly applied to tweets,

because they have two distinct characteristics which differentiate

them from other documents such as blogs, and news: (1) Tweets

are very short, therefore standard document clustering algorithms

which use word-based similarity metrics will not work well for

tweets; (2) Twitter has no writing format, and people can use in-

formal language, emoticons, abbreviations, and misspellings. As a

result, Twitter needs a specific clustering methodology based on

lexical clustering to identify similar tweets in terms of content.

Following the lexical clustering, more complex semantic cluster-

ing techniques can be employed as a further post-processing step.

To the best of our knowledge, there is no clustering tool designed

specifically for Twitter data which utilizes lexical and/or semantic

similarity.

In this paper, we propose two tweet clustering techniques and

describe an open source clustering tool we developed. The first

clustering technique is lexical threshold based clustering using

Longest Common Subsequence (LCS) similarity metric, which we

call LCS-Lex . We consider LCS-Lex as a benchmark since we observe

that LCS-Lex clustering is quite effective in constructing high qual-

ity clusters. However the high computational complexity of LCS-

Lex makes it ineffective to deal with a large number of tweets.

The second technique we propose (ST-TWEC) is based on suffix

trees. We implemented a customizable and extendable Interactive

Tweet Clustering Tool (I-TWEC) which can be used by researchers

from social sciences as well as researchers from more techni-

cal areas. For this tool, we implemented the ST-TWEC clustering

method with a heuristic function for optimization and merging of

clusters for Twitter domain. We also utilize word embeddings as

a semantic tool for guiding users in interactive clustering. Basic

word embedding methods adapt well to short phrases as stated

in Mikolov, Chen, Corrado, and Dean (2013) and this makes word

embeddings compatible with our suffix tree clustering algorithm.

I-TWEC exploits the semantic information provided by word em-

beddings as well as efficient lexical grouping of tweets by a suf-

fix tree. In order to show the benefits of suffix tree based cluster-

ing algorithm, we have experimented with Twitter data collected

on different topics. We compared these two algorithms and re-

sults show that ST-TWEC performs well in terms of time complex-

ity. Additionally, we conducted further experiments with two state-

of-the-art methods: (1) New suffix tree document clustering algo-

rithm (NSTC) developed by Chim and Deng (2007) , and (2) A k-

means based document clustering algorithm. I-TWEC outperforms

both methods in terms of time performance with comparable or

superior cluster qualities.

I-TWEC has been developed and shared on our GitHub page 3

with the research community. Additionally, we deployed our tool

to a web server 4 (note that this server is not the same machine

where we run all the experiments in Section 6). We also provide

a short video tutorial about using I-TWEC on YouTube 5 to demon-

strate the visual and interactive components of our system.

The rest of the paper is organized as follows. We first dis-

cuss the related work for short text clustering in Section 2 . Back-

ground information about traditional clustering algorithms and

Longest Common Subsequence (LCS) are provided in Section 3 . In

Section 4 , LCS-Lex, ST-TWEC , and Interactive Merging methodologies

are explained in detail. We provide the interactive system design
3 https://github.com/merterpam/I-TWEC .
4 http://sky.sabanciuniv.edu:8080/I-TWEC/ .
5 https://youtu.be/ _ QWP5t5zPGw .

Z

m

b

t

w
f I-TWEC in Section 5 and experimental results are presented in

ection 6 . Finally, Section 7 concludes our work with some future

esearch directions.

. Related work

There is existing work on clustering documents and analyz-

ng the data collected from social networking platforms. However,

ost of these works use vector space model to represent textual

ocuments which is then used for similarity calculation. For ex-

mple, Ma, Wang, and Jin (2014) propose a topic based document

lustering technique with three phases where conventional tech-

iques are used in each phase which are LDA, k-means++, and k-

eans respectively. Similarly, Jun, Park, and Jang (2014) propose a

odel that converts the text data into vector space model. Their

odel works on this sparse data structure, reducing the num-

er of dimensions and then performing the clustering task. The

lustering method they use is k-means based on support vector

lustering and the Silhouette measure. Rangrej, Kulkarni, and Ten-

ulkar (2011) convert text documents into vector space format

ith tf-idf values and then use k-means clustering with cosine and

accard distances in order to group short text documents. Tu and

ing (2012) and Li, Sun, and Datta (2012) represent tweets and

vent segments respectively with tf-idf weights and then use co-

ine similarity metric to calculate the distance between tweets.

ang, Xia, Wang, Lau, and Zheng (2014) represent tweets as word

ectors but they enrich these vectors with Wikipedia concepts.

hey focus on tweet representation, which maps each tweet to a

pace of Wikipedia concepts. Similar to tf-idf values, they count

f-itf (concept frequency and inverse tweet frequency) to fill vec-

or representations. Becker, Naaman, and Gravano (2011) focus on

nline identification of real-world events from Twitter and use an

ncremental clustering algorithm where the number of clusters is

ot pre-determined. They also represent tweets with tf-idf vectors

nd use cosine similarity approach. In this work, our aim is to

roup tweets which are very similar in content with small addi-

ions, deletions, and updates. Therefore, we do not convert tweets

nto vector representations, instead we utilize longest common sub-

equence and longest common substring methods to identify similar

weets.

Other related work assigns documents (or tweets) into

 set of pre-defined categories. For instance, Miller, Dickin-

on, Deitrick, Hu, and Wang (2014) consider two categories: spam

nd not spam and assign each tweet to one of these two cat-

gories. Nishida, Banno, Fujimura, and Hoshide (2011) propose

 new method for classifying an unseen tweet as being re-

ated to an interesting topic or not. Zubiaga, Spina, Martínez, and

resno (2015) categorize tweets into 4 different classes that are

ews, ongoing events, memes, or commemoratives. Saraço ̆glu, Tu-

uncu, and Allahverdi (2008) developed a tool for clustering doc-

ments; however, their task is to determine the documents which

elong to more than one class using fuzzy clustering. In our work,

e do not have a predefined set of categories.

It is worth mentioning related work on clustering

ong-text documents such as news articles. Among those,

ong, Qiao, Park, and Qian (2015) propose a hybrid evolution-

ry computation approach to optimize text clustering. Their

pproach takes advantage of quantum-behaved particle swarm

ptimization (QPSO) and genetic algorithm (GA). Their experi-

ents are conducted on 4 subsets of standard Reuter-21578 and

0Newsgroup datasets which are quite different than Twitter data.

amora, Mendoza, and Allende (2016) propose an efficient docu-

ent clustering method based on locality-sensitive hashing (LSH),

ut their experiments were only based on formal language, long

exts like 20Newsgroup and DOE (Department of Energy) datasets

hich contain abstracts about energy documents. The methodol-

https://github.com/merterpam/I-TWEC
http://sky.sabanciuniv.edu:8080/I-TWEC/
https://youtu.be/_QWP5t5zPGw

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 3

o

w

F

p

f

M

d

t

t

g

h

h

i

d

e

i

b

S

(

G

n

a

a

t

m

o

h

e

T

c

s

H

s

b

t

o

d

i

t

S

m

L

t

t

i

r

i

e

m

m

u

e

t

B

t

i

a

o

t

s

i

t

3

o

s

d

w

T

r

a

g

o

a

a

l

C

n

f

b

D

A

t

S

p

s

u

I

p

t

t

l

X

i

t

E

L

i

d

L

q

t

a

t

fi

t

i

t

s

4

gy used in long-text clustering is different than tweet clustering

hich considers short text containing informal language.

There are some studies on clustering in social media platforms.

or instance, Dominguez, Redondo, Vilas, and Khalifa (2017) pro-

ose a method for clustering geolocated data from Instagram

or outlier detection. However, their focus is not textual data.

artinez-Romo and Araujo (2013) worked on Twitter text data to

etect malicious tweets in trending topics. They split the data into

wo groups (spam and not spam) as in text categorization, and

hen predict whether the tweets are spam using statistical lan-

uage analysis. Cheong and Lee (2010) studied patterns in Twitter,

owever their work is mainly based on clustering users who ex-

ibit some patterns and they only use data sets of size 13K tweets

n their experiments.

We propose ST-TWEC for lexical clustering and the underlying

ata structure of this method is suffix tree. In literature, there is

xisting work based on suffix trees for document clustering. STC

s a popular algorithm (Zamir & Etzioni, 1999) which uses word-

ased suffix tree for clustering. Chim and Deng (2007) improved

TC by developing a new suffix tree document clustering algorithm

NSTC) that employs a novel suffix tree similarity measure with

roup-average Agglomerative Hierarchical Clustering (GAHC) tech-

ique. It is important to stress out differences between ST-TWEC

nd STC as most state-of-the-art suffix tree clustering algorithms

re based on STC. STC uses a word-based suffix tree to create clus-

ers and then merges clusters based on the overlap of their docu-

ent sets. To achieve linearity, STC can only merge k clusters with

ther clusters, hence it returns only top-k clusters. On the other

and, ST-TWEC uses a character-based suffix tree and achieves lin-

arity for datasets of fixed size documents such as tweets. ST-

WEC is able to return all clusters and it is also able to capture

haracter variations when comparing two tweets.

In Twitter domain, currently there are three papers which use

uffix trees for clustering. Thaiprayoon, Kongthon, Palingoon, and

aruechaiyasak (2012) use Carrot2 framework for its generalized

uffix tree implementation. 6 They generate initial cluster labels

ased on frequently occurring substrings in a set of tweets using

he generalized suffix tree, and then create a two level hierarchy

f cluster labels. During the construction of first level, a label is

iscarded if it is a substring of another label, and the second level

s formed by including those labels overlapping with a label at

he first level. Poomagal, Visalakshi, and Hamsapriya (2015) use

TC along with semantic similarity to cluster tweets and deter-

ine topics of interest. On the other hand, Fang, Zhang, Ye, and

i (2014) use suffix tree to detect the common phrases between

weets and use them as features to detect popular events. Al-

hough these methods use suffix tree to employ different cluster-

ng techniques, the main limitation of these methods is that they

eturn top-k clusters/events, discarding the rest. Atefeh and Khre-

ch (2015) compare event detection methods for Twitter. Authors

xplain both event detection methods in Twitter and in traditional

edia. One of the event detection methods explained in traditional

edia uses an n-gram approach for event detection in news and

ses suffix tree to speed up the retrieval of n-gram words, how-

ver clustering was not considered.

One of our contributions is an interactive tool (I-TWEC),

herefore it is also worth mentioning existing clustering tools.

ozkir and Sezer (2013) developed a desktop software, called FUAT,

o analyze, explore and visualize aspects of clusters created by us-

ng fuzzy c-means algorithm. Argyrou and Andreev (2011) designed

 semi-supervised tool which clusters accounting databases. Both

f these tools are quite useful; however, none of them works on

extual data. Our clustering tool has been designed to find out
6 http://project.carrot2.org/index.html .

w
imilar tweets from Twitter in an efficient way and helps analysts

n quick assessment of the general trends in large collections of

weets.

. Preliminaries and background

Document clustering is the task of grouping documents based

n a similarity measure. There are traditional clustering algorithms

uch as K-means, DBScan, and hierarchical clustering. These tra-

itional clustering algorithms do not work well in large datasets

hich contain unknown number of clusters such as the case in

witter where users may talk about similar topics, give similar

esponses or retweet each other. Therefore, clustering algorithms

nd tools tailored for Twitter are needed. In general, clustering al-

orithms can be categorized in many aspects such as methodol-

gy, complexity or cluster definition. In our work, we differenti-

te clustering algorithms based on the similarity metric they use

nd roughly divide them in two categories: (1) Clustering based on

exical similarity, and (2) Clustering based on semantic similarity.

alculation of semantic similarity between documents is usually a

on-linear operation, which makes semantic clustering unsuitable

or large amounts of data.

Lexical similarity between tweets is generally calculated

y Named Entity Recognition (NER) based approaches as in

erczynski et al. (2015) , Jung (2012) , and Liu and Zhou (2013) .

nother way of calculating lexical similarity is by looking at the

extual representation of tweets and finding the Longest Common

ubsequence (LCS) between tweets. LCS is a long studied com-

uter science problem. Given a set of sequences, LCS is the longest

ubsequence which exists in all the given sequences. It has been

sed before as a similarity measure for documents by Islam and

nkpen (2008) and Banerjee and Ghosh (2001) .

Finding LCS of an arbitrary number of sequences is an NP-hard

roblem. However, LCS of two sequences can be found in O (m

∗n)

ime and space using dynamic programming where m and n are

he length of the input sequences. The problem of finding the

ength of LCS can be divided into overlapping sub-problems. Let

 and Y be two strings and X i = x 1 x 2 . . . x i be the prefix of X until

 th character and Y j = y 1 y 2 . . . y j be the prefix of Y until j th charac-

er, then the length of the LCS for X and Y can be obtained using

q. (1) :

CS(X i , Y j) =

{

0 if i = 0 or j = 0

LCS(X i −1 , Y j−1) + 1 if x i = y j
max (LCS(X i −1 , Y j) , LCS(X i , Y j−1)) if x i � = y j

(1)

LCS is a significant measure for the detection of lexical similar-

ty, however its non-linear complexity makes it unsuitable for large

atasets such as Twitter. In our work, we use an approximation for

CS that uses the common substring notion instead of the subse-

uence between tweets as the similarity measure which enables us

o develop a linear-time clustering algorithm through a suffix tree.

Suffix tree is a data structure which represents the suffixes of

 given string. In a suffix tree, each edge represents a substring of

he string and each path from the root to a leaf represents one suf-

x of the given string. The construction of a suffix tree has linear

ime complexity and the suffix tree itself has linear space complex-

ty, enabling linear time and space string operations such as pat-

ern, regular expression matching and finding the longest common

ubstring.

. Methodology

We propose two different methods for tweet clustering in this

ork. In both methods, our aim is to create a set of clusters C =

http://project.carrot2.org/index.html

4 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

t

fi

w

o

t

w

w

h

T

o

d

4

a

i

w

fi

w

a

t

S

s

s

s

e

q

a

{

t

m

t

t

s

i

a

t

t

t

d

fi

t

i

t

a

a

r

c

w

t

t

w

s

c
{ c 1 , c 2 , . . . , c m

} for a given set of tweets T = { t 1 , t 2 , . . . , t n } where

m ≤ n . Proposed methods are explained in the following subsec-

tions.

4.1. LCS-Lex: Longest Common Subsequence based lexical clustering of

tweets

LCS-Lex is based on Longest Common Subsequence (LCS), and

we use the normalized LCS score defined in Eq. (2) for similarity

calculation between two tweets.

NormalizedScore (t i , t j) =

2 ∗ LCS(t i , t j)

Length (t i) + Length (t j)
(2)

A naive algorithm for LCS based tweet clustering process is

given in Algorithm 1 . In this algorithm, for each unclustered tweet

Algorithm 1: LCS based tweet clustering algorithm.

C = {} ;
for i ← 1 to n do

t i .isC lust ered ← false; � Initially, all tweets are marked as

unclustered ;

end

for i ← 1 to n do

if t i .isClustered = false then

c = { i } ;
for j ← (i + 1) to n do

if t j .isClustered = false and

NormalizedScore (t i , t j) ≥ threshold then

c ← c ∪ j; � Find first unclustered similar tweet

end

end

if | c | ≥ k then

C ← C ∪ c; � If cluster size is big enough, add this

cluster to set of clusters foreach index ∈ c do

t index .isC lust ered ← true ; � Mark these tweets as

clustered
end

end

end

end

(referred to as tweet i), we go through all remaining unclustered

tweets (referred to as tweet j). If the normalized score defined

above, between tweet i and tweet j is higher than the threshold,

then we include indexes of these tweets (which are i and j) in the

same cluster c . However, not all clusters are included into the set

of clusters C ; instead only the clusters whose sizes are greater than

or equal to k are included into C where k is defined as the mini-

mum number of tweets a cluster must have. The very first tweet

(t i) included in c becomes the representative tweet of cluster c .

Once we include the cluster c into the set C , then we remove the

tweets that are clustered in c from the dataset. This algorithm en-

sures that the cluster sizes are greater than or equal to k .

For any c m

∈ C , let’s call the first index in c m

as c m 0
. We guaran-

tee that

∀ c m i
∈ c m

, NormalizedScor e (t c m 0
, t c m i

) ≥ thr eshold

This means that every tweet which belongs to a cluster is

similar to the representative tweet of that cluster more than the

threshold. We should note that there is no guarantee that the sim-

ilarity between any two tweets in a cluster is above the threshold.

However, experiments show that tweets belonging to even very

large clusters are similar to each other in content as well as to the

representative tweet.

There are two different parameters (threshold and k) in LCS-Lex

to be defined by the user. In this work, we assume that at least 2
weets are required to compose a cluster. In other words, we de-

ne a cluster as a group of two or more tweets. For that reason,

e selected k as 2 in our experiments in Section 6 . For thresh-

ld parameter, we did not define any specific threshold, instead we

ested the performance (both time and cluster quality) of LCS-Lex

ith different threshold values.

Although LCS based clustering algorithm (LCS-Lex) performs

ell in terms of cluster qualities, the time performance is pro-

ibitive for large number of tweets (even for tens of thousands).

he complexity of Algorithm 1 is O (N

2 ∗L 2) where N is the number

f tweets (| T |), and L is the maximum tweet length which is 140

ue to the characteristics of Twitter.

.2. ST-TWEC: Suffix tree based tweet clustering method

LCS-Lex is not a scalable algorithm. Therefore, we designed an

lternative suffix tree based algorithm which we call ST-TWEC . We

mplemented ST-TWEC in a tool which we call I-TWEC , together

ith the semantic representations of tweets for clustering. We de-

ne a tweet, t , as a sequence of characters that someone wrote

here | t | is the length of t . Given two tweets t i and t j , we define

 common substring of t i and t j as a string which occurs in both

weets.

Note that substrings and subsequences are different concepts.

ubstrings are special cases of subsequences where characters

hould be consecutive. For example, for the string abc , the sub-

trings are a, b, c, ab, bc, abc , and the empty substring. For the

ame string, the subsequences are a, b, c, ab, ac, bc, abc , and the

mpty subsequence. We would like to stress that ac is a subse-

uence but not a substring since a and c are not consecutive char-

cters in abc .

With ST-TWEC , we would like to create a set of clusters C =
 c 1 , c 2 , . . . , c m

} such that the length of the common substring of

weets inside a cluster is above a threshold. We define the com-

on substring of all tweets in the cluster as the cluster label and

his label represents the cluster. ST-TWEC has a linear space and

ime complexity for data points with fixed maximum length which

uits well for Twitter.

As the first step of ST-TWEC , we preprocess tweets to standard-

ze and remove components with no clear semantic context such

s links, usernames, retweet tags and punctuation marks. We also

ransform all tweets to lower case and adjust white spaces. Af-

er the preprocessing phase, we remove tweets which contain less

han 5 characters. Then, we construct a generalized suffix tree to

etect the common substrings between tweets. A generalized suf-

x tree for a given set of tweets is a data structure which stores

he suffixes in an efficient manner where a path from root to an

nternal node represents a unique substring while a path from root

o each leaf represents a unique suffix of a tweet (or tweets). In our

lgorithm, we use each node as a basis for clusters and we define

 cluster corresponding to each node. Given a node n and its cor-

esponding cluster c n , we define a tweet to be a member of the

luster c n , iff:

1. Tweet contains the string which node n represents (denoted as

n.string)

2. length (n.string) / length (tweet) > thrCluster , where thrCluster

is a user-defined threshold.

These cluster membership rules allow us to create clusters

hich share common substrings. With the second rule, we ensure

hat the ratio of the common substring’s length and the length of

weets inside a cluster is above a threshold.

The nodes of a character-based suffix tree, especially the nodes

hich have parental relations, show similarity in terms of the sub-

tring they represent and tweets they contain. Because of that,

lusters that are created based on the nodes of a character-based

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 5

s

o

b

t

W

p

S

t

n

w

t

s

n

m

t

p

T

c

t

i

c

w

c

t

s

w

w

fi

l

A

f

4

s

s

s

t

m

m

t

l

A

“

c

n

d

p

a

-

t

c

s

m

r

w

o

p

s

p

t

5

t

a

s

S

s

fi

w

t

o

e

s

a

e

i

J

t

5

s

e

t

t

p

t

c

T

a

b

s

p

c

t

c

e

i

a

c

a

i

p

t

7 Google Code. word2vec. (2013). https://code.google.com/archive/p/word2vec/

Accessed 2016.11.22.
uffix tree have a high overlapping ratio. We aim to reduce this

verlapping ratio by introducing an overlapping detection method

efore the cluster creation phase. We use nodes to approximate

he overlapping and examine nodes with parental relationships.

e mark a child node as a duplicate node and merge it with its

arent, if it satisfies any of the following conditions:

• The ratio of the number of tweets in an ancestral node to the

number of tweets in its child node is below 1.2
• The ratio of the length of the substring of an ancestral node to

the length of the substring of its child is above 0.8

The rationale for choosing those ratios will be explained in

ection 6 . In the suffix tree, an ancestor node also contains all of

he tweets its children contain; therefore, when we compare the

umber of tweets a parent and a child node contains, implicitly

e look at the overlap of the tweet sets of these nodes and mark

he node with smaller tweet set as duplicate if the difference is

mall. Similarly, when we compare the substring length between

odes with parental relationships, we actually compare the com-

on substring between nodes. In the Twitter domain, we observe

hat there are many tweets which are similar in content, but ap-

ear on different nodes in the suffix tree due to small variations.

he second condition for overlapping elimination method tries to

apture similar tweets into one cluster by allowing small varia-

ions. At the end of the cluster creation phase, if a tweet appears

n more than one cluster, then it is allowed to stay in the biggest

luster and it is removed from the rest of the smaller clusters. This

ay we favor large clusters to form.

At the end of the lexical clustering, we assign labels to each

luster. Remember that each cluster has a corresponding node in

he suffix tree and each node represents a substring. We use these

ubstrings as labels for clusters. If the substring contains partial

ords at the beginning or at the end making it incomprehensible,

e complete the string based on the tweets inside the cluster by

nding the position of the string inside a tweet and extending the

abel from the beginning and the end until we encounter a space.

 more detailed explanation of ST-TWEC ’s lexical clustering can be

ound in Erpam (2017) which is technical report.

.3. Interactive merging

After lexical clustering, we obtain clusters of tweets which have

imilar contents, however there may be tweets which convey the

ame meaning with different words. These tweets may be as-

igned to different clusters, because in ST-TWEC , tweets are clus-

ered based on their string similarity, not considering their se-

antics. If these clusters are semantically similar, they need to be

erged. Therefore, we introduce the interactive merging phase af-

er ST-TWEC where users can merge clusters based on semantic re-

atedness which measures how related are a given set of words.

n example for semantic relatedness could be “bus”, “road”, and

driver”.

Word embeddings is a technique used in natural language pro-

essing where words or phrases are represented as a vector of real

umbers. The vector representations obtained by word embed-

ings retain their semantic relatedness and it is even possible to

erform arithmetic operations on them. Mikolov et al. (2013) gives

 famous example where the arithmetic operation of vector(King)

 vector(Man) + vector(Woman) gives a vector which is closest to

he vector representation of Queen.

To compute the relatedness score between labels, we first cal-

ulate the mean of word embeddings for each label and use cosine

imilarity. Given two clusters c i and c j , we define m i and m j as the

ean word embeddings of their respective labels and calculate the
elatedness score as:

rScore (c i , c j) = cosinesimilarity (m i , m j) =

m i · m j

|| m i || 2 || m j || 2 (3)

For word embeddings, we use Google’s pre-trained model 7

hich was trained over 3 million words and phrases using the data

btained by Google News. The dimensionality of each vector in the

re-trained model is 300.

Depending on the content of cluster labels and relatedness

core, the user decides to merge a cluster or not. The process of

resenting clusters for merging continues until the user stops or

here are no further clusters for merging.

. Interactive system design

I-TWEC is a hybrid tool for clustering large amounts of

weets based on string similarity. With I-TWEC , users are also

ble to merge similar clusters based on semantic relatedness

cores. For clustering, we implemented the algorithm explained in

ection 4 which uses a generalized suffix tree as the base data

tructure and has a linear time complexity for data points with

xed maximum length. For interactive merging of clusters, we use

ord embeddings to calculate the semantic relatedness score be-

ween clusters and guide the user through the merging process.

Using suffix tree and word embeddings as the base method-

logies, I-TWEC is a web-based interactive system designed for the

nd-user. At the server side, resource intensive operations such as

uffix tree and cluster creation are made; while at the client side,

 visualization of the clusters is presented to the end-user and the

nd-user is able make adjustments to the threshold based on the

nformation provided. We use Java Servlets at the server side and

avaScript for the client side operations. The communication be-

ween server and client is made through Ajax queries.

.1. Server side implementation

At the back-end of our tool, we make the computations neces-

ary for cluster creation, labelling, refinement, and semantic relat-

dness calculations. The pipeline starts when the end-user uploads

he Twitter data for clustering. In order to parse the data correctly,

he uploaded file should have a specific format with one tweet

er line. I-TWEC also allows the user to evaluate the formed clus-

ers based on intra-cluster similarity and cluster purity. To evaluate

lusters on cluster purity, each tweet requires a pre-defined label.

he user can optionally upload tweet labels by appending them

t the end of each tweet in the uploaded file. The tweet and la-

el should be separated by a tab character and therefore, tweets

hould not contain any tab character.

After the upload, tweets are stored at an in-memory list and

reprocessed. After the preprocessing, tweets which are below a

haracter limit are removed from the list. With the preprocessed

weets, a suffix tree and then clusters based on this suffix tree are

reated. Fig. 1 illustrates the complete pipeline on the server side.

The threshold for the cluster creation phase is determined by

nd-user and it can be changed after clusters are created, trigger-

ng the reconstruction of clusters. Suffix tree is constructed once,

nd the user is able to change the threshold to obtain different

lusters in which case we use the already constructed suffix tree,

nd re-execute the cluster creation phase and the phases following

t. Fig. 2 illustrates the mechanics of the re-clustering phase in the

ipeline.

After the cluster labelling phase, semantic relatedness score be-

ween clusters need to be calculated for interactive merging. This

https://code.google.com/archive/p/word2vec/

6 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

Fig. 1. Complete pipeline of clustering process.

Fig. 2. Pipeline of visualization and re-clustering process.

i

i

a

r

T

z

s

s

t

w

d

t

t

t

d

c
calculation is also a resource intensive operation and it is done on

the server side asynchronously. The result of the calculation is de-

serialized to the file system and serialized when the client side re-

quests.

I-TWEC is a multi-user system. We isolate each operation inside

the pipeline on user-level. When the end-user uploads the Twitter

data, we create a unique session between the user and server. By

using the session, we store the serialized suffix tree and semantic

relatedness calculations in a directory unique to each user. When

the session ends, we remove the serialized files unique to the user.

5.2. Client side implementation

The front-end of our tool has the functionality of uploading

datasets for clustering, visualizing the clustering results, adjusting

the clustering threshold, and merging clusters with the help of se-

mantic relatedness. After uploading the data, the initial clustering

is performed with a default threshold of 0.4 (we will explain why

default threshold is 0.4 in Section 6) and then the user is able to
nteractively adjust the cluster threshold to obtain a better cluster-

ng scheme.

After clustering, the results are displayed by using a histogram

nd a bubble chart, as shown in Fig. 3 . Each bar in the histogram

epresents a cluster and the histogram is sorted by cluster size.

o obtain a better visualization, the histogram can be zoomed-in,

oomed-out and scrolled. In the bubble chart, each bubble repre-

ents a cluster and the size of each bubble is proportional to the

ize of a cluster. By hovering on a bubble, it is possible to obtain

he label and size of the cluster it represents. In a cluster, tweets

ith the exact same content are grouped together and we sort the

istinct tweets inside clusters by the size of these groups. When

he user clicks a bubble in the bubble chart, the first 10 tweets of

he cluster sorted by the size is displayed to the user.

By examining the resulting clusters, the end-user can adjust

he clustering threshold, and re-cluster the dataset. This option is

isplayed on a dynamic dropdown menu and it invokes the re-

lustering pipeline shown in Fig. 2 . In the re-clustering pipeline,

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 7

Fig. 3. Lexical clustering GUI.

Fig. 4. Interactive merging GUI when merging a cluster.

t

n

f

a

p

w

c

l

t

i

d

p

i

A

a

f

6

o

t

(

(

b

6

w

t

w

i

s

t

t

k
he suffix tree is deserialized and new clusters are created with the

ew cluster threshold. Then, overlapping clusters are eliminated

rom new clusters and for the remaining clusters, their labels are

ssigned.

In the interactive merging part of I-TWEC , cluster labels are dis-

layed on a wheel chart. Each label occupies a fixed space on the

heel chart and if the semantic relatedness score between two

luster labels is greater than a threshold, a path is drawn between

abels. By selecting connected cluster labels, it is possible to merge

hem into one cluster. Fig. 4 illustrates the wheel chart and a merg-

ng example.

The threshold for semantic relatedness score can be changed

ynamically on the drop down-menu. In addition to the threshold,

arameters such as the length of the cluster labels and the max-

mum number of clusters shown on the wheel can be adjusted.

djusting these two parameters require the reselection of clusters

nd recalculation of the semantic relatedness scores which are per-

ormed at the server-side.
. Experimental evaluation

We evaluated both LCS-Lex and ST-TWEC using a combination

f four datasets collected from Twitter Streaming API using hash-

ags. Our dataset consists of tweets related to Charlie Hebdo event

#jesuisCharlie), Christmas in 2016 (#christmas), NBA organisation

#nba), and US President Trump (#trump). We limited the num-

er of tweets of each dataset to 15K. Thus we have a total of

0K tweets for 4 different domains and before starting evaluations

e applied some preprocessing on tweets like eliminating hash-

ags and transforming letters into lowercase. We experimented

ith these 60K tweets in order to compare the two tweet cluster-

ng algorithms; LCS-Lex , and ST-TWEC , however we also performed

calability experiments for ST-TWEC with much higher number of

weets which are reported in this section.

Given the dataset D = { t 1 , t 2 , . . . , t n } , we create a set of clus-

ers C = { c 1 , c 2 , . . . , c m

} such that every cluster c i contains at least

 tweets. In the experimental evaluation, we set k to 2 and mea-

8 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

Fig. 5. Time performance of ST-TWEC for 60K tweets with different thresholds.

Fig. 6. Time performance of LCS-Lex for 60K tweets with different thresholds.

Fig. 7. Number of clusters for 60K tweets with different thresholds.

m

S

t

c

t

0

i

s

w

W

d

e

f

s

t

0

v

s

b

v

h

i

o

c

o

t

n

t

e

o

o

F
sure the intra-cluster similarity and cluster purity. Because we are

focusing on the textual representations of tweets, we define the

intra-cluster similarity measure based on LCS. Using Eq. (2) , we

calculate intra-cluster similarity of a cluster using the pairwise

similarity of each tweet inside the cluster as:

intraCSim (c) =

2

| c| ∗ (| c| − 1)
∗

| c| ∑

i =0

| c| ∑

j= i +1

NormalizedSc ore (t i , t j)

(4)

Eq. (4) allows us to find the intra-cluster similarity of a given

cluster. Using the Eq. (4) , we find the average intra-cluster similar-

ity in Eq. (5) and the weighted average intra-cluster similarity of

the cluster set in Eq. (6) . We take the size of each cluster into con-

sideration to calculate the weighted average intra-cluster similarity

measure.

a v gISim (C) =

1

m

∗
m ∑

i =0

intraC Sim (c i) (5)

wA v gISim (C) =

1 ∑ m

i =0 | c i |
∗

m ∑

i =0

| c i | ∗ intraCSim (c i) (6)

Since we have collected four different datasets using four hash-

tags, we assume that the tweets have four possible categories cor-

responding to each of the four hashtags. Therefore we assigned a

label to each tweet depending on its hashtag. In total, we have four

labels: #christmas, #nba, #trump, and #jesuischarlie. We use these

labels as a gold standard to calculate the purity of clusters with

Eq. (7) :

purity (C) =

1 ∑ m

i =0 | c i |
∗

m ∑

i =0

| max label in c i | (7)

Experimental results with different similarity thresholds in

terms of time performance, number of constructed clusters,

number of unclustered tweets, average intra-cluster similarity,

weighted average intra-cluster similarity, and purity are shown in

Fig. 5 through Fig. 11 , respectively.

LCS-LEX uses common subsequence and ST-TWEC uses common

substring to determine cluster membership. Because of that, both

algorithms cannot be compared directly by using the same thresh-

olds. However, because a substring is a subsequence with consec-

utive characters, ST-TWEC is expected to produce better clusters

at lower thresholds compared to LCS-LEX which we have also ob-

served in our experiments. We have verified this observation by

experimenting with different datasets from different domains with

different thresholds. For that reason, LCS-Lex was experimented

with the thresholds of 0.5, 0.6, 0.7 , and 0.8 while ST-TWEC was ex-

perimented with the thresholds of 0.3, 0.4, 0.5, 0.6 , and 0.7 .
From the experiments we can easily observe that there is a dra-

atic time improvement with ST-TWEC . The clustering time with

T-TWEC ranges from 23.8 to 25.5 s in Fig. 5 . On the other hand,

he clustering process with LCS-Lex takes form 6825 to 45,472 s as

an be seen in Fig. 6 (all the experiments were tested on a sys-

em with 32 processor, model name Intel(R) Xeon(R) CPU E5-2690

 @ 2.90 GHz , and 128GB RAM). It is worth noting that ST-TWEC

s able to cluster 1 million tweets in about 1500 s. Later in this

ection, we will mention about the time performance of ST-TWEC

ith increasing dataset sizes with a threshold of 0.4 in Fig. 22 .

e need to look at average intra-cluster similarity values to un-

erstand why we selected 0.4 as threshold in ST-TWEC. The av-

rage intra-cluster similarity values are 0.79, 0.84, 0.87, 0.89, 0.91

or thresholds 0.3, 0.4, 0.5, 0.6, and 0.7 respectively as it can be

een in Fig. 9 . Although greater the threshold value means greater

he average intra-cluster similarity, changing threshold from 0.3 to

.4 made the biggest improvement. Note that increasing threshold

alue also increases number of unclustered tweets as it can be ob-

erved in Fig. 8 , and we want to keep this number as low as possi-

le. For that reason, we have chosen 0.4 as a reasonable threshold

alue for our experiments.

Other results given in Figs. 7–11 vary for different thresholds,

owever we can observe that the differences in terms of cluster-

ng quality and the number of clusters produced are very low. In

ther words, similar cluster qualities in terms of the number of

lusters, the average intra-cluster similarity, and the purity can be

btained by ST-TWEC . However, clustering time is the major fac-

or that distinguishes these methods which proves the effective-

ess of ST-TWEC for large datasets. In order to show that the clus-

ers composed by ST-TWEC and LCS-LEX are not significantly differ-

nt, we have selected 100 random subsets of size 5K tweets from

ur original dataset of 60K tweets. We ran ST-TWEC and LCS-LEX

n each subset and recorded the corresponding cluster qualities.

or the statistical significance tests, the null hypothesis states that

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 9

Fig. 8. Number of unclustered tweets for 60K tweets with different thresholds.

Fig. 9. Average intra-cluster similarity for 60K tweets with different thresholds.

Fig. 10. Weighted average intra-cluster similarity for 60K tweets with different

thresholds.

Fig. 11. Purity for 60K tweets with different thresholds.

t

L

n

t

L

i

r

o

o

a

e

v

v

d

t

s

l

0

f

t

v

o

T

t

a

p

a

l

F

v

o

t

W

s

m

S

a

t

l

s

i

d

F

b

a

o

t

0

a

t

t

r

o

c

t

t

1

t

t

1

h

s

h

t
here is no significant difference in cluster qualities produced by

CS-LEX and ST-TWEC . However, we cannot perform statistical sig-

ificance tests on the cluster results generated by the exact same

hreshold values for the two algorithms. This is due to the fact that

CS-LEX and ST-TWEC use different similarity measures for cluster-

ng, therefore the threshold values are not comparable. For that

eason, we have modified our null hypothesis to a more specific

ne. Our modified null hypothesis states that for a given thresh-

ld value for LCS-LEX and a cluster evaluation metric, we can find

 threshold value for ST-TWEC where there is no significant differ-

nce in cluster quality results. We have chosen a fixed threshold

alue of 0.7 for LCS-LEX and experimented with varying threshold

alues for ST-TWEC . This was a practical choice since ST-TWEC pro-

uces results in a very short time. We have observed that for a

hreshold value of 0.55 for ST-TWEC , the cluster qualities are not

ignificantly different in terms of the average intra-cluster simi-

arity and number of clusters produced by LCS-LEX with threshold

.7. We obtained p = .07 for the number of clusters, and p = .68

or the average intra-cluster similarity using a two-tailed paired t-

est. These results favor our null hypothesis since the obtained p-

alues are greater than .05. In terms of the purity score, we also

bserved that the difference of clustering qualities produced by ST-

WEC with threshold of 0.68 is not statistically significant when

he threshold is 0.7 for LCS-LEX since we obtained p = .09 using

 two-tailed paired t-test. This result also supports our null hy-

othesis since the obtained p-value is greater than .05. We used

 normal probability plot in order to show that the datasets fol-

ow normal distribution to ensure that t-tests can be performed.

or instance, Figs. 13 and 14 show the number of cluster results

ersus the normal scores for LCS-Lex and ST-TWEC respectively. We

bserve that the data points lie more or less on a straight line;

herefore, we can say that the datasets follow normal distribution.

e observed that this is also valid for other datasets; however

ince we have too many datasets, we cannot show all of the nor-

al probability plots for the sake of readability.

We mentioned about two ratios for ST-TWEC in

ection 4.2 which are the ratio of the number of tweets in

n ancestral node to the number of tweets in its child node and

he ratio of the length of the substring of an ancestral node to the

ength of the substring of its child. Those ratios were intuitively

pecified as 1.2 and 0.8 respectively. In order to understand the

mpact of those ratio values, we conducted experiments on the

ataset of size 60K tweets when threshold is 0.6 for ST-TWEC .

igs. 15 and 16 show the change in the cluster qualities measured

y the number of clusters, the number of unclustered tweets, the

verage intra-cluster similarity, and purity score for different ratios

f the length of the substring of an ancestral node to the length of

he substring of its child. We detected an observable increase until

.6–0.7 range for these metrics and then they were less sensitive

fter the ratio of 0.7. For that reason, we specified a value of 0.8 for

his ratio. On the other hand, there was no observable change in

he average intra-cluster similarity, and purity metrics for different

atios of the number of tweets in an ancestral node to the number

f tweets in its child node as shown in Fig. 17 . This was also the

ase for the number of clusters and the number of unclustered

weets. However, we observed a considerable improvement in the

iming performance of ST-TWEC when we increase the ratio from

.1 to 1.2. Therefore, 1.2 was chosen for this ratio. We repeated

he timing experiment 10 times, and Fig. 18 shows the average of

hese timing results for different ratios.

Fig. 8 shows that the number of unclustered tweets is between

0K and 20K which can be considered a little high. However, we

ave used Twitter Stream API while collecting tweets regarding

pecific hashtags. Some of the tweets are not related to others (or

ave important difference) although they contain the same hash-

ag. Therefore, it is expected that some tweets are outliers. We

10 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

Fig. 12. Time performance for NSTC with different maxClusters values.

t

T

Fig. 13. Normal probability plot for the dataset of obtained cluster numbers from

100 subsets when the threshold is 0.7 for LCS-Lex.

Fig. 14. Normal probability plot for the dataset of obtained cluster numbers from

100 subsets when the threshold is 0.55 for ST-TWEC.

Fig. 15. Cluster number and unclustered tweets number results for different ratios

of the length of the substring of an ancestral node to the length of the substring of

its child when threshold is 0.6.
have also checked the similarity between each unclustered tweet

and the composed clusters. For the similarity between an unclus-

tered tweet t and a composed cluster c , we calculated the average

similarity between t and each tweet in c . Thus, we are able to find

the closest composed cluster to t . Finally, we checked the average

of the similarities between each unclustered tweet and the cor-

responding closest cluster. Results show that this score is always

smaller than the threshold. For instance for the threshold 0.7 of

LCS-Lex , this score is 0.48; the same situation is valid for the other

thresholds as well. We can conclude that unclustered tweets are

really not related to the composed clusters.

In order to show the effectiveness of ST-TWEC , we also com-

pared it with new suffix tree document clustering algorithm (NSTC)

which was developed by Chim and Deng (2007) . NSTC mainly uti-

lizes word based STC, but then it maps all nodes in the suffix tree

to M dimensional vector space model where M is the total num-

ber of nodes. In other words, each document d is represented as in

Eq. (8) .

d = { w (1 , d) , w (2 , d) , w (3 , d) , . . . , w (M, d) } (8)

In Eq. (8) , w (n, d) represents the weight of node n in document

d and it is calculated by the t f i − df formula as in Eq. (9) where

tf (n, d) refers to the total traversed times of document d through

node n ; and df (n) refers to the number of the different documents

that have traversed node n . Then NSTC uses Group-average Ag-

glomerative Hierarchical Clustering (GAHC) and cosine similarity

metric to calculate the similarity between documents.

f idf (n, d) = (1 + log (t f (n, d))) · log

(
1 +

N

df (n)

)
(9)

In order to apply NSTC to our dataset which contains 60K

tweets, we used a publicly available implementation

8 of the al-

gorithm. We used default values in the implementation for clus-

terOverlapDegree (the minimum overlapping degree for two clus-

ters to be combined into a single one) and minClusterWeight (the

minimum weight of a cluster to be considered) parameters which

are 0.3 and 0.01 respectively. However, we used different values

(10, 10 0, and 50 0) for the maxClusters parameter which is the max-

imum number of clusters (this value was selected as 500 in the

original STC algorithm).

Fig. 12 shows that the time performance of NSTC varies between

910 and 938 s for different maxClusters values. Remember that ST-

WEC takes 23.8–25.5 s to cluster the same data. Limiting maxi-

mum number of clusters causes to have higher number of unclus-

tered tweets in NSTC as shown in Fig. 19 .

The average intra-cluster similarity for NSTC increases with

higher maxClusters values as shown in Fig. 20 ; however, ST-TWEC

has better average intra-cluster similarity results as shown in
8 https://github.com/gratianlup/DocumentClustering .

Fig. 16. Average intra-cluster similarity and purity results for different ratios of the

length of the substring of an ancestral node to the length of the substring of its

child when threshold is 0.6.

https://github.com/gratianlup/DocumentClustering

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 11

Fig. 17. Average intra-cluster similarity and purity results for different ratios of the

number of tweets in an ancestral node to the number of tweets in its child node

when threshold is 0.6.

Fig. 18. Timing results for different ratios of the number of tweets in an ancestral

node to the number of tweets in its child node when threshold is 0.6.

Fig. 19. Number of unclustered tweets for NSTC with different maxClusters values.

Fig. 20. Average intra-cluster similarity for NSTC with different maxClusters values.

Fig. 21. Purity for NSTC with different maxClusters values.

Fig. 22. Time performance for ST-TWEC with threshold 0.4 and NSTC-500 with dif-

ferent number of tweets (y-axis was scaled logarithmically).

F

A

m

t

C

2

a

r

8

L

f

I

v

m

l

a

h

p

p

d

t

c

a

b

S

t

a

ig. 9 . Similar result is also observed in Fig. 21 for Purity scores.

dditionally, we tested NSTC with increasing dataset sizes when

axClusters value is 500 and compared it with ST-TWEC when the

hreshold 0.4. We call NSTC method as NSTC-500 when we set max-

lusters value to 500. We observed that NSTC-500 takes 2607, 9003,

0,165, 33,230, 54,684, 79,823, 97,128, and 122,272 s when there

re 10 0K, 20 0K, 30 0K, 40 0K, 50 0K, 60 0K, 70 0K and 80 0K tweets

espectively. Note that ST-TWEC takes 54, 131, 241, 368, 531, 702,

47, and 1060 s on the same datasets as shown in Fig. 22 .

We have also conducted experiments to compare ST-TWEC, LCS-

EX, NSTC-500 , and k-means document clustering in terms of per-

ormance and cluster qualities using Precision, Recall and F-Score.

n order to apply k-means algorithm, we represented all tweets in

ector space model with tf-idf values and used cosine similarity

easure to find similarity between vectors. Since our data was col-

ected using 4 different hashtags, we specified k value of k-means

s 4. We have 60K tweets in our data set that resulted in a large

igh dimensional vector space representation causing poor time

erformance for k-means. Using k-means took 72,013 s to com-

lete clustering. Remember that LCS-Lex spends 6825–45,472 s for

ifferent thresholds and ST-TWEC spends 23.8–25.5 s for different

hresholds to cluster the same data. Time performance of k-means

an be improved by reducing vector dimensions, however this will

ffect the cluster qualities in a negative way. As we mentioned

efore, we compare cluster qualities with Precision, Recall and F-

core values as in Eqs. (10) –(12) where tp represents “true posi-

ive”, tn represents “true negative”, fp represents “false positive”,

nd fn represents “false negative”.

P recision =

tp

tp + fp
(10)

Recall =

tp

tp + fn

(11)

12 İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13

Fig. 23. Precision, Recall and F-Score results for “charlie” cluster.

Fig. 24. Precision, Recall and F-Score results for “#christmas” cluster.

Fig. 25. Precision, Recall and F-Score results for “#nba” cluster.

Fig. 26. Precision, Recall and F-Score results for “#trump” cluster.

L

i

f

p

i

s

S

f

s

n

F

a

g

f

c

c

T

T

m

S

n

c

t

i

g

t

e

t

f

h

b

t

m

I

w

w

b

7

t

s

s

i

a

d
F - Score =

2tp

2tp + fp + fn

(12)

While analyzing k-means results, we assume that the most fre-

quent real class label (hashtag) in any cluster is true positive for

that cluster. Remember that we had many (much more than 4)

clusters from LCS-Lex, ST-TWEC and NSTC-500 . In order to make a

good comparison with k-means, let’s assume that there are 4 big

clusters (referring to #jesuisCharlie, #christmas, #nba and #trump)

as k-means has and each of these clusters belongs to one of the 4

big clusters depending on the most frequent real class label again.

Comparisons of k-means, NSTC-500, LCS-Lex (with different thresh-

olds), and ST-TWEC (with different thresholds again) for each big

cluster are given in Figs. 23–26 respectively. In these charts, for in-

stance “LCS-Lex (0.5) ” means LCS-Lex has been applied with thresh-

old 0.5 .

As it can be seen from Figs. 23–26 ; LCS-Lex and ST-TWEC mostly

outperforms NSTC-500 and k-means document clustering algorithm

in terms of Precision, Recall and F-Score values (except from LCS-
ex (0.5)). It is also worth to note that there are unclustered tweets

n LCS-Lex, ST-TWEC and NSTC-500 as shown in Figs. 8 and 19 be-

ore, however k-means clusters all tweets in one of the 4 groups.

We already mentioned that LCS-Lex is quite effective to com-

ose good quality clusters, however its high complexity makes it

neffective to deal with large numbers of tweets. Thus, it is not a

urprise that LCS-Lex achieves good results in Figs. 23–26 . However,

T-TWEC also achieves the same or very similar (only 0.02-0.03 dif-

erence) results with LCS-Lex for the same thresholds. It may first

eem that LCS-Lex (0.7) outperforms ST-TWEC (0.3) , however this is

ot a fair comparison since we only look at the Precision, Recall,

-Score in these figures; but the number of unclustered tweets is

lso an important factor. When we use 0.3 as threshold, the al-

orithms tend to cluster more number of tweets, assigning tweets

rom different classes to the same cluster which decreases the Pre-

ision, Recall, and F-Score results. Instead, it is more rational to

ompare higher thresholds of LCS-Lex with higher thresholds of ST-

WEC . On the other hand, k-means is only competitive with ST-

WEC when the threshold is 0.3 (and this is only valid for #christ-

as and #nba clusters). If we use any threshold higher than 0.3,

T-TWEC clearly outperforms k-means.

Spina, Gonzalo, and Amigó (2014) state that links, hashtags and

amed entities carry semantic content; and it might be useful to

onsider them for similarity analysis. We have experimented with

he same data without removing links, usernames and hashtags

n terms of Precision, Recall and F-Score; but results just slightly

ot better for lower thresholds or didn’t change at all for higher

hresholds, and the running time almost doubled to 42 s on av-

rage. In other words, using links and hashtags did not improve

he cluster qualities so much, however it affected our timing per-

ormance in a negative way. Thus, we decided to filter links and

ashtags in our work.

Other alternative algorithms to be used as baseline are density

ased algorithms. For density based clustering which was used in

ext clustering, we need to identify core points with epsilon and

inimum points thresholds whose complexity is also very high.

n fact, we implemented a density based clustering algorithm as

ell but the time performance was worse than LCS-Lex , therefore

e have decided to continue using the LCS-Lex algorithm as the

aseline.

. Conclusion

Clustering is a widely used data mining method to understand

rends and patterns in large collections of data. As a widely used

ocial media platform, Twitter provides a vast data resource for re-

earchers to detect events or to understand public opinion regard-

ng various issues. However, the volume of the data is a challenge

nd standard text clustering tools do not work well for short-text

ata with informal language generated in Twitter. In this paper, we

İ. Arın et al. / Expert Systems With Applications 96 (2018) 1–13 13

p

w

d

a

b

f

e

S

L

i

s

i

t

t

w

t

t

w

c

c

v

s

o

t

u

f

m

t

t

t

d

o

e

t

g

a

a

c

W

K

t

t

n

a

R

A

A

B

B

B

C

C

D

D

E

F

I

J

J

K

L

L

M

M

M

M

N

P

R

S

S

S

S

T

T

T

Z

Z

Z

resented a suffix tree based tweet clustering algorithm, ST-TWEC ,

hich is able to efficiently cluster tweets in large scales. In or-

er to prove its quality, we compared ST-TWEC with a benchmark

lgorithm (LCS-Lex) which is a lexical tweet clustering algorithm

ased on Longest Common Subsequence (LCS) similarity metric. In

act, LCS is a good similarity metric for comparing tweets, how-

ver, it has a high time complexity. Our experiments revealed that

T-TWEC is capable of constructing high quality clusters as LCS-

ex constructs in terms of avgISim, wAvgISim, and Purity cluster-

ng evaluation measures. We also show that while constructing

ame quality clusters, ST-TWEC dramatically outperforms LCS-Lex

n terms of time performance. This outcome enables us to clus-

er tweets in a more efficient way and to work in scales of million

weets which experts need to handle in real life. Apart from that,

e also showed that ST-TWEC runs more efficiently than state-of-

he-art NSTC and k-means based document clustering methods in

erms of time performance and cluster qualities.

We designed and implemented a customizable and expandable

eb based interactive tweet clustering tool (I-TWEC) where users

an upload their tweet dataset, perform clustering, and see the

onstructed clusters in a graphical user interface. I-TWEC takes ad-

antage of ST-TWEC and semantic similarities of tweets as two con-

ecutive steps to construct high quality clusters. To the best of

ur knowledge, this is the only publicly available tweet clustering

ool utilizing both lexical and semantic similarities which can be

sed by technical as well as non-technical experts through a user

riendly interface. A limitation of I-TWEC is the memory require-

ent of the constructed suffix tree. As the tweet size grows up,

he memory size consumed by suffix tree also increases. Our suffix

ree consume 475 MB memory for 60K tweets and its size propor-

ionally changes with the total number of characters in the tweet

ata set. Still, the memory requirement is comparable with state-

f-the-art STC method but with superior time performance. How-

ver, in order to process a much higher number of tweets, we plan

o extend I-TWEC with batch clustering and store a portion of the

enerated suffix tree in the secondary storage as future work.

In the current version of I-TWEC , the clustering threshold is

djusted by the end user. We plan to develop and implement

utomatic threshold adjustment in the future. Our tool (espe-

ially semantic similarity part) can also be extended by adding

ord Mover’s Distance distance function that is explained in

usner, Sun, Kolkin, and Weinberger (2015) .

We have performed experiments with some end-users about

he usability of the tool, and had positive feedback. However, in

he future we would like to conduct formal user studies. Last but

ot least, I-TWEC is publicly available, and developers may extend

nd/or modify it depending on their requirements.

eferences

rgyrou, A., & Andreev, A. (2011). A semi-supervised tool for clustering accounting

databases with applications to internal controls. Expert Systems with Applica-
tions, 38 (9), 11176–11181. doi: 10.1016/j.eswa.2011.02.163 .

tefeh, F., & Khreich, W. (2015). A survey of techniques for event detection in Twit-
ter. Computational Intelligence, 31 (1), 132–164. doi: 10.1111/coin.12017 .

anerjee, A. , & Ghosh, J. (2001). Clickstream clustering using weighted longest com-
mon subsequences. In Proceedings of the web mining workshop at the 1st SIAM

conference on data mining: 143 (p. 144). Citeseer .

ecker, H. , Naaman, M. , & Gravano, L. (2011). Beyond trending topics: Real-world
event identification on Twitter. Fifth international AAAI conference on weblogs

and social media .
ozkir, A. S., & Sezer, E. A. (2013). {FUAT} a fuzzy clustering analysis tool. Expert

Systems with Applications, 40 (3), 842–849 . FUZZYSS11: 2nd International Fuzzy
Systems Symposium 17–18 November 2011, Ankara, Turkey. 10.1016/j.eswa.2012.

05.038 .

heong, M., & Lee, V. (2010). A study on detecting patterns in Twitter intra-topic
user and message clustering. In 2010 20th international conference on pattern

recognition (pp. 3125–3128). doi: 10.1109/ICPR.2010.765 .
him, H., & Deng, X. (2007). A new suffix tree similarity measure for document

clustering. In Proceedings of the 16th international conference on World Wide Web .
In WWW ’07 (pp. 121–130). New York, NY, USA: ACM. doi: 10.1145/1242572.
1242590 .

erczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., et al.
(2015). Analysis of named entity recognition and linking for tweets. Information

Processing & Management, 51 (2), 32–49. doi: 10.1016/j.ipm.2014.10.006 .
ominguez, D. R., Redondo, R. P. D., Vilas, A. F., & Khalifa, M. B. (2017). Sensing

the city with Instagram: Clustering geolocated data for outlier detection. Expert
Systems with Applications, 78 , 319–333. doi: 10.1016/j.eswa.2017.02.018 .

rpam, M. K. (2017). Tweets on a tree: Index-based clustering of tweets. Technical

Report . Istanbul, Turkey: Sabanci University .
ang, Y. , Zhang, H. , Ye, Y. , & Li, X. (2014). Detecting hot topics from Twitter: A mul-

tiview approach. Journal of Information Science, 40 (5), 578–593 .
slam, A., & Inkpen, D. (2008). Semantic text similarity using corpus-based word

similarity and string similarity. ACM Transactions on Knowledge Discovery from
Data, 2 (2), 10:1–10:25. doi: 10.1145/1376815.1376819 .

un, S., Park, S.-S., & Jang, D.-S. (2014). Document clustering method using dimen-

sion reduction and support vector clustering to overcome sparseness. Expert
Systems with Applications, 41 (7), 3204–3212. doi: 10.1016/j.eswa.2013.11.018 .

ung, J. J. (2012). Online named entity recognition method for microtexts in social
networking services: A case study of Twitter. Expert Systems with Applications,

39 (9), 8066–8070. doi: 10.1016/j.eswa.2012.01.136 .
usner, M. , Sun, Y. , Kolkin, N. , & Weinberger, K. (2015). From word embeddings to

document distances. In F. Bach, & D. Blei (Eds.), Proceedings of the 32nd inter-

national conference on machine learning . In Proceedings of Machine Learning Re-
search: 37 (pp. 957–966). Lille, France: PMLR .

i, C., Sun, A., & Datta, A. (2012). Twevent: Segment-based event detection from
tweets. In Proceedings of the 21st ACM international conference on information and

knowledge management . In CIKM ’12 (pp. 155–164). New York, NY, USA: ACM.
doi: 10.1145/2396761.2396785 .

iu, X., & Zhou, M. (2013). Two-stage {NER} for tweets with clustering. Information

Processing & Management, 49 (1), 264–273. doi: 10.1016/j.ipm.2012.05.006 .
a, Y., Wang, Y., & Jin, B. (2014). A three-phase approach to document cluster-

ing based on topic significance degree. Expert Systems with Applications, 41 (18),
8203–8210. doi: 10.1016/j.eswa.2014.07.014 .

artinez-Romo, J., & Araujo, L. (2013). Detecting malicious tweets in trending topics
using a statistical analysis of language. Expert Systems with Applications, 40 (8),

2992–30 0 0. doi: 10.1016/j.eswa.2012.12.015 .

ikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. CoRR . abs/1301.3781 .

iller, Z., Dickinson, B., Deitrick, W., Hu, W., & Wang, A. H. (2014). Twitter spammer
detection using data stream clustering. Information Sciences, 260 , 64–73. doi: 10.

1016/j.ins.2013.11.016 .
ishida, K., Banno, R., Fujimura, K., & Hoshide, T. (2011). Tweet classification by data

compression. In Proceedings of the 2011 international workshop on detecting and

exploiting cultural diversity on the social web . In DETECT ’11 (pp. 29–34). New
York, NY, USA: ACM. doi: 10.1145/2064 4 48.2064 473 .

oomagal, S. , Visalakshi, P. , & Hamsapriya, T. (2015). A novel method for cluster-
ing tweets in Twitter. International Journal of Web Based Communities, 11 (2),

170–187 .
angrej, A., Kulkarni, S., & Tendulkar, A. V. (2011). Comparative study of cluster-

ing techniques for short text documents. In Proceedings of the 20th international
conference companion on World Wide Web . In WWW ’11 (pp. 111–112). New York,

NY, USA: ACM. doi: 10.1145/1963192.1963249 .

araço ̆glu, R., Tutuncu, K., & Allahverdi, N. (2008). A new approach on search for
similar documents with multiple categories using fuzzy clustering. Expert Sys-

tems with Applications, 34 (4), 2545–2554. doi: 10.1016/j.eswa.20 07.04.0 03 .
ayce, D. (2016). Number of tweets per day? . http://www.dsayce.com/social-media/

tweets-day/ . Accessed 2017.02.15.
ong, W., Qiao, Y., Park, S. C., & Qian, X. (2015). A hybrid evolutionary computation

approach with its application for optimizing text document clustering. Expert

Systems with Applications, 42 (5), 2517–2524. doi: 10.1016/j.eswa.2014.11.003 .
pina, D., Gonzalo, J., & Amigó, E. (2014). Learning similarity functions for topic de-

tection in online reputation monitoring. In Proceedings of the 37th international
ACM SIGIR conference on research & development in information retrieval .

In SIGIR ’14 (pp. 527–536). New York, NY, USA: ACM. doi: 10.1145/2600428.
2609621 .

ang, G. , Xia, Y. , Wang, W. , Lau, R. , & Zheng, F. (2014). Clustering tweets using

Wikipedia concepts. In N. C. C. Chair), K. Choukri, T. Declerck, H. Loftsson,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of

the ninth international conference on language resources and evaluation (LREC’14) .
Reykjavik, Iceland: European Language Resources Association (ELRA) .

haiprayoon, S. , Kongthon, A. , Palingoon, P. , & Haruechaiyasak, C. (2012). Search re-
sult clustering for Thai Twitter based on suffix tree clustering. In Electrical engi-

neering/electronics, computer, telecommunications and information technology (EC-

TI-CON), 2012 9th international conference on (pp. 1–4). IEEE .
u, H., & Ding, J. (2012). An efficient clustering algorithm for microblogging hot

topic detection. In 2012 international conference on computer science and service
system (pp. 738–741). doi: 10.1109/CSSS.2012.189 .

amir, O. E. , & Etzioni, O. (1999). Clustering web documents: A phrase-based method
for grouping search engine results . University of Washington .

amora, J., Mendoza, M., & Allende, H. (2016). Hashing-based clustering in high

dimensional data. Expert Systems with Applications, 62 , 202–211. doi: 10.1016/j.
eswa.2016.06.008 .

ubiaga, A., Spina, D., Martnez, R., & Fresno, V. (2015). Real-time classification of
Twitter trends. Journal of the Association for Information Science and Technology,

66 (3), 462–473. doi: 10.1002/asi.23186 .

https://doi.org/10.1016/j.eswa.2011.02.163
https://doi.org/10.1111/coin.12017
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0004
https://doi.org/10.1016/j.eswa.2012.05.038
https://doi.org/10.1109/ICPR.2010.765
https://doi.org/10.1145/1242572.1242590
https://doi.org/10.1016/j.ipm.2014.10.006
https://doi.org/10.1016/j.eswa.2017.02.018
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0011
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1016/j.eswa.2013.11.018
https://doi.org/10.1016/j.eswa.2012.01.136
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0015
https://doi.org/10.1145/2396761.2396785
https://doi.org/10.1016/j.ipm.2012.05.006
https://doi.org/10.1016/j.eswa.2014.07.014
https://doi.org/10.1016/j.eswa.2012.12.015
http://arxiv.org/abs/1301.3781
https://doi.org/10.1016/j.ins.2013.11.016
https://doi.org/10.1145/2064448.2064473
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0023
https://doi.org/10.1145/1963192.1963249
https://doi.org/10.1016/j.eswa.2007.04.003
http://www.dsayce.com/social-media/tweets-day/
https://doi.org/10.1016/j.eswa.2014.11.003
https://doi.org/10.1145/2600428.2609621
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0030
https://doi.org/10.1109/CSSS.2012.189
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30811-4/sbref0032
https://doi.org/10.1016/j.eswa.2016.06.008
https://doi.org/10.1002/asi.23186

	I-TWEC: Interactive clustering tool for Twitter
	1 Introduction
	2 Related work
	3 Preliminaries and background
	4 Methodology
	4.1 LCS-Lex: Longest Common Subsequence based lexical clustering of tweets
	4.2 ST-TWEC: Suffix tree based tweet clustering method
	4.3 Interactive merging

	5 Interactive system design
	5.1 Server side implementation
	5.2 Client side implementation

	6 Experimental evaluation
	7 Conclusion
	 References

