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Abstract— The Shortest Common Supersequence problem is an 
NP-hard optimization problem that has a vast use in real world 
problems. It is used in data compression and different bio-
informatics analysis. Different types of approaches were used to 
solve this problem. Exact algorithms failed to compute for large 
instances whereas approximation algorithms lack optimality.  In 
this paper, we propose a meta-heuristic approach named as 
Chemical Reaction Optimization Algorithm (CRO-SCS) to solve 
the Shortest Common Supersequence (SCS) Problem. The 
experimental results demonstrate that our proposed method 
takes less time to find SCS than dynamic programming and have 
better performance than other well-known approximation 
algorithms. 
 

Keywords— Shortest Common Supersequence; Chemical 
Reaction Optimization; Meta-heuristic; NP-hard. 

I.  INTRODUCTION 

Shortest Common Supersequence (SCS) problem 
states as for a given set of strings the task is to find the 
supersequence of every string that is minimum in length. The 
term supersequence means the sequence of symbols of a string 
and sequence of symbols of the computed strings are same 
(sequence need not to be adjacent). SCS problem has 
diversified application in probe synthesis during microarray 
production [1], AI planning [2], query optimization in the 
database [3] and data compression [4]. Given a finite set of 
strings L where every string was constructed using an 
alphabet . Now we have to search a string s of minimal 
length that is a supersequence of all strings in L from the set of 
supersequence S. Therefore, 
 
Objective function = min )( Ls  where Ss ∈           (1) 

 
An example of Common sequence is depicted in Fig. 

1. Here, the alphabet  contains four symbols, {a, c, g, t}. 
And, set of strings L has three strings, {S1= tatcg, S2= ctagc 
and S3= agtgc}. From these three strings, we can generate a 
common supersequence S = tactagctgc. 
 

 

 

Fig. 1. An example of common supersequence 

 
From Fig. 1 we can see that, all of the three strings 

are embedded in supersequnce S. Therefore S is a common 
supersequence for L. Similar to S, we can generate some other 
common supersequnce for L. Now, the common 
supersequence having the least length is the SCS for L.  

The SCS problem has shown to be very hard under 
various formulations and restrictions [4]. Therefore no exact 
algorithms were able to compute for bigger instances. To find 
the optimal solution for SCS dynamic programming (DP) 
algorithm [4] and Branch-and-Bound algorithm [5] have been 
proposed. Both dynamic programming and branch-and-bound 
algorithms cannot solve SCS problem unless the number of 
strings is restricted. Some approximate approaches were 
implemented for finding solutions of SCS problem where 
exact algorithms failed to solve. The heuristic approach 
includes Majority Merge (MM) [6] a variant of MM named as 
Weighted Majority Merge (WMM) [7], Deposition and 
Reduction (DR) [8], Reduce and Expand (RE) [9]. MM 
algorithm shortens the strings that have small size rather than 
checking the longer ones [7]. But in practical, shorter strings 
are found embedded in long strings. Worst case approximation 
ration of DP and RE is | | which is not appealing [10].  
Besides, some meta-heuristics approaches like Artificial Bee 
Colony Algorithm (ABC) [11], Probabilistic Beam Search 
(PBS) [12], Ant colony optimization (ACO) [13], Genetic 
Algorithm (GA) [14] and Enhanced Beam search algorithm 
(IBS_SCS) [10] have also been proposed. Objective function 
of ABC algorithm does not cover the constraints of SCS 
whereas, both GA and ACO follow the MM concept which is 
time consuming. PBS algorithm checks all the candidate 

Supersequence t a c t a g c t g c 

           

S1={t, a, t, c, g} • •  •   •  •  

S2={c, t, a, g, c}   • • • • •    

S3={a, g, t, g, c}  •    •  • • • 
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solution which is too time consuming [10]. And IBS_SCS 
algorithm is very much deterministic and does not guaranty 
optimality though it gives much better result than all other 
approaches. 

In this paper, we propose a meta-heuristic algorithm 
Chemical Reaction Optimization Algorithm (CRO-SCS) for 
solving the Shortest Common Supersequence problem. 

Experimental results show that CRO-SCS computes 
SCS in less time than DP and outperforms WMM, RE, DR 
algorithms both in length of returned supersequence and 
execution time. 

II. RELATED WORK 

To find the optimal solution in SCS problem different 
approaches had been proposed and implemented. These 
approaches for solving shortest common supersequence are 
described below. 

A. Dynamic Programming  

Dynamic Programming algorithm was proposed by V.  
Timkovskii [4] and the Branch-and-Bound algorithm was 
proposed by C. Fraser [5]. Dynamic programming algorithm is 
successful if the strings are small in number. But for a large 
number of strings DP needs large spaces and branch-and-
bound takes a lot of time. 

 

B. Weighted Majority Merge 

Failure of implementation of SCS problem for larger 
instances by exact algorithms leads researchers to work with 
approximation algorithms. Out of different approximate 
approaches, one of the earliest heuristic algorithms for SCS 
problem was Majority Merge (MM). The basic idea of the 
algorithm was to build supersequence by adding most frequent 
symbol found at the front of all strings and removing the 
symbol from the respective strings. But MM missed a fact that 
the strings could have different lengths [7].It suggests that 
strings with shorter length can be removed earlier. But it is 
necessary to shorten the length of the long string rather than 
removing symbols from the short string. Based on this concept 
J. Branke et al. [7] proposed Weighted Majority Merge 
(WMM) where string length was considered to be the weight 
of the string. WMM showed better performance than MM 
where the problem has no structure or the structure is 
deceptive [7]. 
 

C. Deposition and Reduction 

Deposition and Reduction (DR) Algorithm was proposed 
by K. Ning et al. [8]. The algorithm includes two processes 
Deposition and Reduction. In deposition process a small set 
of SCS templates is generated. Each template is a common 
supersequence of the given set of strings. To produce 
templates two algorithms (Look Ahead Sum Height (LA-SH) 
algorithm and Alphabet algorithm) have been 
used. The reduction process shortens these templates by 
removing some characters while preserving the common 

supersequence property. Finally, the shortest result obtained 
after this reduction process is selected as the final output of the 
algorithm. The overall performance of the algorithm fully 
depends on generating SCS templates. But the algorithm 
Alphabet that is used to generate the templates has an 
approximation ratio of ||  . That means the worst case 

approximation ratio of DR algorithm is ||   which is not 

satisfactory.  
 

D. Reduce-Expand Algorithm 

Reduce-Expand (RE) algorithm has been proposed by 
Paolo Barone et al. [9]. First of all, RE reduces the sequence 
into basic sequences. Basic sequences means the sequence will 
contain different symbols in adjacent position of SCS. Now, 
expand process tries to add symbols to SCS preserving the 
characteristics of common supersequence. As similar to DR it 
has a worst case approximation ration of | |. 

 

III. CHEMICAL REACTION OPTIMIZATION 

Chemical Reaction Optimization (CRO) is meta-heuristic 
based on mimicking the behavior of chemical reaction. In our 
universe every unstable molecule with higher potential energy 
wants to get stabilized of low potential energy by reacting 
with other unstable molecule or the surroundings. A chemical 
reaction is accomplished by some sub reactions and after 
every sub reaction a more stable product is generated. On the 
same time a checking is done whether the product is at optimal 
point or not. So it is a multi-step optimal point searching. This 
behavior is very similar to many real world optimization 
problems. Researchers mimic this natural phenomenon to 
solve optimization problem. To design the algorithm another 
important principle of thermodynamics has been considered. 
Energy cannot be created or destroyed rather it is transformed 
into one form to another. Researchers use potential energy 
(PE) and kinetic energy (KE) as the energy of a molecule and 
central energy buffer as the energy of the surroundings. The 
potential energy of a reaction is referred as the objective 
function in an optimization problem and kinetic energy as a 
numeric value that quantifies how much a molecule can 
tolerate the worst value. So the acceptance of a change during 
chemical reaction is done by 
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Where popsizem ≤≤1     

 Here m numbers of reactants ( ) collide to form n 
number of products ( ) and popsize is the number of 
population. Energy transformation has a big role for chemical 
reaction. A central energy buffer is used to adjust the energy 
distribution on the basis of conservation of energy principle. 
This allows the algorithm to search different region of the 
search space.  
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CRO is one of the meta-heuristic methods that is 
being used to solve optimization problem efficiently. It is a 
powerful method that mimics the interaction of molecules in 
chemical reaction to search for the global optimum [15]. 

Meta-heuristic methods outperformed over heuristic 
method for solving optimizing problem because of two 
reasons. Firstly meta-heuristic methods can solve a wide range 
problem with little or no knowledge of the search space. So 
they can easily adjust to fit the problem. And it can reach 
optimal or near optimal solutions in a considerable time 
though the optimization problem are intractable and NP-Hard 
and optimal solution cannot be obtained in a polynomial time. 
CRO has been used to solve different optimization problem 
recently such as CROG for 0-1 Knapsack problem [16], both 
Parallel CRO [15] and singular CRO [17] for Quadratic 
Assignment Problem, Artificial CRO for Multiple Choice 
Knapsack problem [18], Population Transition Problem in 
peer live streaming [19], Grid Scheduling problem [20], 
Artificial neural network training [21], Network coding 
optimization problem [22] etc. 

CRO algorithm is designed for SCS problem because of 
the fact that, it has both the diversification and intensification 
properties. So from any sort of generated population it can 
travel the solution space very efficiently. Through the reaction 
operators we can easily traverse the solution space and find 
the near optimal solution very quickly. Besides, being a meta-
heuristic approach it can be fitted to SCS problem having no 
prior information about the problem and its variable 
population size can easily adjust the system for solving the 
problem. Moreover, newly designed reform function also 
ensures the constraints and the quality of solutions of this 
problem. 

A. CRO Algorithm 

The CRO algorithm includes three stages such as 
initialization, iteration, and the final stage. The initialization 
stage generates initial population (pop) along with popSize. 
KElossRate, MoleColl, buffer, InitialKE and two thresholds (α 
and β). In iteration stage, one elementary reaction out of four 
reactions takes place in each iteration. Here, we have to 
determine whether uni-molecular or bi-molecular reaction is 
taken place. The type of reaction is determined by comparing 
a random number t [0, 1] against MolColl. At the end of each 
iteration, we have to check the termination criteria. The CRO 
Algorithm is shown in Algorithm1. 

 
Algorithm1 (CRO Algorithm):  
Input: Problem specific information (Objective Function, 
constraints and the dimension of the problem) 
1: Initialize population with random solutions and set the  
    parameters. 
2: Compute the fitness value of each molecule as PE. 
3: Let the central energy buffer be buffer and initialize     
    Buffer=0 
4: while stopping criteria not met do 
5: Choose one reaction from the four elementary 

collisions according to certain rules. 
6: Select the molecule(s) for reaction 

7: Generate the new molecule(s) 
8: if the new solution acceptance rules satisfied then 
9: Substitute new molecule(s) for original one(s) 
10:      Update the KE for new molecule(s)  
11:      Update the central energy buffer. 
12: else 
13:       Keep the original molecule(s) 
14: end while 
Output: The overall minimum solution and its function value 
 
 

IV. DESIGN CRO FOR SCS PROBLEM 

A. Population Generation 

Initially, the population is generated on the basis of the 
concept of random selection which has been followed from 
[10].  Here the frequency of each symbol of alphabet  is 
calculated in Array1. Then in Array2, the frequency is 
converted to the strings. For example if  = {a, c, g, t} and 
set of strings L = {acctg, cttcg, acact, gtgca} then the structure 
of Array 1 and Array 2 is depicted in Fig. 2. 

 
 
 Array 1 

a c g t 
4 7 4 5 

 
Array2 

1 2 3 4 5 6 7 8 9 10 
a a a a c c c c c c 

 
11 12 13 14 15 16 17 18 19 20 
c g g g g t t t t t 

 
Fig. 2. Population Generation  

 Now the symbols from Array 2 are randomly selected 
to create the population. During selection of symbols 
frequency of the symbols will be considered. Since the 
population size is 20 then 20 common supersequences will be 
created. For example Pop={acctacgatacg, catctgacgtag, …..}. 

B. Solution Representation 

Each symbol in Alphabet  is initialized with a value. 
The integer string of the value of the corresponding symbol 
represents a solution. For example let  = {a, c, g, t} have a 
value of {0, 1, 2, 3}. Fig. 3 represents the solution for the 
above example.  
 

 
 
 
 

Fig. 3. Solution Representation 

a g t c t a c 

0 2 3 1 3 0 2 
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C. Reaction Operators 

We have designed four types of reaction operators in this 
algorithm which are described as follows 

1) On-wall ineffective collision 

 This is a molecular reaction used for the neighborhood search 
in solution. Well known evolutionary algorithm mutation 
operator (Fig. 4) is used here. A position i in solution m will 
be chosen and a small value is added or subtracted from the 
value. A small value will be chosen randomly. Reformation 
function is used to repair the invalid solution after the 
operation. Reformation function is discussed later. 

 
m 0 3 2 1 3 0 2 0 1 2 

 
 

mʹ 0 3 2 2 3 0 2 0 1 2 

 
Fig. 4. Mutation Operator 

2) Decomposition 
The process divides a solution m into two solutions. The 

operator takes a random solution from the pop and creates two 
solutions m1ʹ and m2ʹ dividing from the middle of the solution 
m (Fig. 5). Reform function is incorporated to check the 
validity of new solutions. This operator causes the 
diversification and makes the algorithm explore in the search 
space. 

 
0 3 2 1 3 0 2 0 1 2 

 
 
 

 
 

Fig. 5. Decomposition Operator 

3) Inter-molecular ineffective collision 
The operator takes two solutions m1 and m2 randomly from 

the pop and using two point crossover operators commonly 
used in the genetic algorithm (Fig. 6) produces two new 
solutions m1ʹ and m2ʹ.   

 
 
 
 
 

 
 
 

 

Fig. 6. Two-point crossover operator 

 The procedure is taking two points x1 and x2 randomly 
and then dividing both the solution into three parts.Now 

merging 0 to x1 and x2 to n part of m1 and x1 to x2 part of m2 
will form m1ʹ and merging other three parts will form m2’. 
Neighbourhood search is implemented using inter-molecular 
ineffective collision. 

4) Synthesis 
Synthesis operator combines two molecules into one 

solution. Probabilistic select operator (Fig. 7) is used for 
synthesis reaction. The process is done by taking one random 
variable from 0 to 1 and if the value is less than 0.5 then 
symbol from the m1 will be chosen and appended to the 
supersequence. Otherwise, a symbol from m2 will be chosen. 
It works as the opposite of the decomposition reaction. 
Synthesis reaction implements the global search. Massive 
change in the molecular structure causes exploration 
throughout the solution space and can avoid getting stuck in 
local optima.   

 
 

 
 
 
 

 
 
 

 
 
Fig. 7. Synthesis Operator 

D. Reform Function 

Reform function is used after every reaction to check the 
constraints are violated or not. For that, the newly formed 
solution is checked with every string in the set of strings. If the 
newly formed strings become the common supersequence for 
all the strings then it will be selected and the previous strings 
are removed from the pop. Otherwise, the change made by the 
reaction will be discarded. Besides, if the newly formed 
supersequence is found valid then the symbols having 
frequency zero are removed from the supersequences. 

E. Termination Condition 

After a particular computation time, the algorithm will be 
terminated and the optimal length of the supersequence from 
the population will be considered as the output of the 
algorithm. The computation time is based on the output of the 
others algorithm to compare the length of the supersequence 
for algorithms in a particular time 
 

F. Parameter Settings 

Chemical Reaction Optimization has six parameters 
(KELossRate, InitialKE, MoleColl, Popsize, α and β). Out of 
this seven parameter, first four have been taken from [15] 
where KELossaRate=0.8, InitialKE=100, PopSize=20, 
MoleColl=0.2.  Two thresholds values (α and β) are required 
to check the condition for decomposition reaction and 

0 3 2 1 3 0 2 0 1 2 

  m1 0 3 2 1 3 0 2 0 1 2 

m2 1 3 1 0 2 3 0 2 1 3 

m1ʹ 0 3 1 0 2 3 2 0 1 2 

m2ʹ 1 3 2 1 3 0 0 2 1 3 

 m1 1 3 0 2 3 0 1 2 3 1 

m2 3 1 2 1 0 2 3 1 0 3 

  mʹ 1 1 2 2 0 2 1 2 0 1 
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synthesis reaction. Like [13] we set the value of α as α є 
[10,500] and β є [10,500].  

V. EXPERIMENTAL RESULT 

The experiment has been done on a personal Toshiba 
laptop Model no: Satellite A305-S6905 with Intel Core 2 Due 
T5800 CPU at 2.00 GHz, 3 GB RAM and running on 
Windows 10 (64 bit). All algorithms have been implemented 
on Java SE Development Kit 7 platform and Eclipse Ide.  

The datasets that have been used for all algorithms are 
taken from [23] which are also used by K. Ning et al. for 
implementing DR algorithm [8]. For all cases, ten random 
instances were used and average outcome results of CRO 
algorithm are being compared with DR, WMM, RE and 
Dynamic Programming (DP) algorithm. Due to the 
exponential behavior of DP algorithm, the experiment could 
not be conducted for the number of strings more than 500. 
Moreover, RE and WMM algorithm also take a lot of time for 
the strings those have  lengths over 100. Therefore, the dataset 
is restricted up to a number of strings 500 and length of string 
100.  Standard deviation and execution time are also measured 
as the programs are executed for ten instances and the average 
values are taken as final outputs. Execution times are 
measured in seconds. 

TABLE I.  COMPARISON OF LENGTH, STANDARD 
DEVIATION,EXECUTION TIME OF SUPERSEQUENCE BETWEEN DP, WMM, RE,  

DR AND CRO-SCS ALGORITHM 

 
Algorithm Number 

of 
string 

Length 
of 

string 

Length 
of 

returned 
String 

Standard 
Deviation 

Execution 
Time(s) 

DP 5 10 20 0 5 

WMM 5 10 27.5 1.16 2.4 

RE 5 10 20.97 0.73 1.10 

DR 5 10 20.3 1.12 0.1 

CRO-SCS 5 10 20.3 0.54 0.005 

DP 10 10 24 0 19 

WMM 10 10 32 2.43 13.5 

RE 10 10 26.45 1.25 6.49 

DR 10 10 25.7 1.56 0.7 

CRO-SCS 10 10 24.9 1.11 0.8 

DP 100 10 30 0 38 

WMM 100 10 43.7 1.98 21 

RE 100 10 35.78 1.44 11.76 

DR 100 10 32.1 1.68 8.2 

CRO-SCS 100 10 31.9 0.81 1.1 

DP 5 100 174 0 66 

WMM 5 100 205.8 3.47 32.83 

RE 5 100 190.7 6.23 21.72 

DR 5 100 194.3 2.87 7.1 

CRO-SCS 5 100 186.7 1.75 3.2 

DP 10 100 204 0 156 

WMM 10 100 295.7 8.46 98 

RE 10 100 229.78 7.65 64.37 

DR 10 100 227.6 7.1 21.6 

CRO-SCS 10 100 222.3 6.47 7.6 

DP 100 100 247 0 1837 

WMM 100 100 396 6.54 782.7 

RE 100 100 287.65 11.76 658.65 

DR 100 100 276.6 6.23 37.5 

CRO-SCS 100 100 261.6 7.20 13.8 

DP 500 100 262 0 3966 

WMM 500 100 432 11.7 1378.7 

RE 500 100 302.33 17.5 2065.65 

DR 500 100 289.6 5.1 1087.3 

CRO-SCS 500 100 277.4 6.9 176.5 

 
The experimental results demonstrate that DP gives the 
optimal results in every case whereas CRO-SCS takes much 
less time than the DP to find the most near optimal SCS. The 
difference of length between DP and CRO-SCS increases as 
the number of strings enlarges. Besides CRO-SCS gives a 
better result than DR, RE and WMM algorithm in less 
execution time. Comparison between CRO-SCS, DR, RE, 
WMM shows that in every case CRO-SCS gives better 
performance than all other algorithms with less time. Both the 
quality and the consumption of computational time for CRO-
SCS are much better than all other algorithms. For the largest 
instances, our proposed algorithm takes less than three 
minutes whereas DR takes over 18 minutes, WMM takes 
almost 23 minutes, RE consumes 34 and half minutes and DP 
takes over an hour. That proves the robustness of our proposed 
algorithm.   Moreover, standard deviation suggests that even 
CRO-SCS has less variation of results than other three 
approximate algorithms. That demonstrate the our proposed 
algorithm can return results that will very similar if we 
execute the algorithm multiple times for same instances and 
that ensures the reliability of our proposed algorithm. 
 

VI. CONCLUSION 

In this paper, we have reviewed a well-known NP-hard 
problem Shortest Common Supersequence (SCS) and 
discussed the different approaches for solving SCS problem. 
Then we have proposed a meta-heuristic algorithm Chemical 
Reaction Optimization (CRO-SCS) for solving SCS problem. 
CRO-SCS algorithm has been designed and parameters are 
being set according to previous work done by a different 
author for solving different NP-hard optimization problems by 
CRO. The combination of local search and global search by 
the reaction operators ensure the completeness of our 
algorithm. Besides randomness property in the algorithm 
governs the searching procedure to a near optimal solution. 
The experimental results of CRO have been compared with 
DR, DP, RE and WMM algorithms. DP shows optimal results 
but it takes very long time whereas CRO-SCS gives near 
optimal results and takes much less time. Besides, in every 
case CRO-SCS outperforms DR, RE and WMM both in SCS 
length and execution time. The robustness and the reliability 
are ensured by the proposed approaches. Our future target is to 
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do experiments for more instances and some real datasets 
which include the DNA and Protein sequences.  
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