
Solving Shortest Common Supersequence Problem
using Chemical Reaction Optimization

C M Khaled Saifullah
Computer Science and Engineering Discipline

Khulna University
Khulna, Bangladesh

khaledkucse@gmail.com

Md. Rafiqul Islam
Computer Science and Engineering Discipline

Khulna University
Khulna, Bangladesh

dmri1978@gmail.com

Abstract— The Shortest Common Supersequence problem is an
NP-hard optimization problem that has a vast use in real world
problems. It is used in data compression and different bio-
informatics analysis. Different types of approaches were used to
solve this problem. Exact algorithms failed to compute for large
instances whereas approximation algorithms lack optimality. In
this paper, we propose a meta-heuristic approach named as
Chemical Reaction Optimization Algorithm (CRO-SCS) to solve
the Shortest Common Supersequence (SCS) Problem. The
experimental results demonstrate that our proposed method
takes less time to find SCS than dynamic programming and have
better performance than other well-known approximation
algorithms.

Keywords— Shortest Common Supersequence; Chemical
Reaction Optimization; Meta-heuristic; NP-hard.

I. INTRODUCTION

Shortest Common Supersequence (SCS) problem
states as for a given set of strings the task is to find the
supersequence of every string that is minimum in length. The
term supersequence means the sequence of symbols of a string
and sequence of symbols of the computed strings are same
(sequence need not to be adjacent). SCS problem has
diversified application in probe synthesis during microarray
production [1], AI planning [2], query optimization in the
database [3] and data compression [4]. Given a finite set of
strings L where every string was constructed using an
alphabet . Now we have to search a string s of minimal
length that is a supersequence of all strings in L from the set of
supersequence S. Therefore,

Objective function = min)(Ls  where Ss ∈ (1)

An example of Common sequence is depicted in Fig.

1. Here, the alphabet  contains four symbols, {a, c, g, t}.
And, set of strings L has three strings, {S1= tatcg, S2= ctagc
and S3= agtgc}. From these three strings, we can generate a
common supersequence S = tactagctgc.

Fig. 1. An example of common supersequence

From Fig. 1 we can see that, all of the three strings

are embedded in supersequnce S. Therefore S is a common
supersequence for L. Similar to S, we can generate some other
common supersequnce for L. Now, the common
supersequence having the least length is the SCS for L.

The SCS problem has shown to be very hard under
various formulations and restrictions [4]. Therefore no exact
algorithms were able to compute for bigger instances. To find
the optimal solution for SCS dynamic programming (DP)
algorithm [4] and Branch-and-Bound algorithm [5] have been
proposed. Both dynamic programming and branch-and-bound
algorithms cannot solve SCS problem unless the number of
strings is restricted. Some approximate approaches were
implemented for finding solutions of SCS problem where
exact algorithms failed to solve. The heuristic approach
includes Majority Merge (MM) [6] a variant of MM named as
Weighted Majority Merge (WMM) [7], Deposition and
Reduction (DR) [8], Reduce and Expand (RE) [9]. MM
algorithm shortens the strings that have small size rather than
checking the longer ones [7]. But in practical, shorter strings
are found embedded in long strings. Worst case approximation
ration of DP and RE is | | which is not appealing [10].
Besides, some meta-heuristics approaches like Artificial Bee
Colony Algorithm (ABC) [11], Probabilistic Beam Search
(PBS) [12], Ant colony optimization (ACO) [13], Genetic
Algorithm (GA) [14] and Enhanced Beam search algorithm
(IBS_SCS) [10] have also been proposed. Objective function
of ABC algorithm does not cover the constraints of SCS
whereas, both GA and ACO follow the MM concept which is
time consuming. PBS algorithm checks all the candidate

Supersequence t a c t a g c t g c

S1={t, a, t, c, g} • • • • •

S2={c, t, a, g, c} • • • • •

S3={a, g, t, g, c} • • • • •

978-1-5090-1269-5/16/$31.00 ©2016 IEEE

2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) 50

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

solution which is too time consuming [10]. And IBS_SCS
algorithm is very much deterministic and does not guaranty
optimality though it gives much better result than all other
approaches.

In this paper, we propose a meta-heuristic algorithm
Chemical Reaction Optimization Algorithm (CRO-SCS) for
solving the Shortest Common Supersequence problem.

Experimental results show that CRO-SCS computes
SCS in less time than DP and outperforms WMM, RE, DR
algorithms both in length of returned supersequence and
execution time.

II. RELATED WORK

To find the optimal solution in SCS problem different
approaches had been proposed and implemented. These
approaches for solving shortest common supersequence are
described below.

A. Dynamic Programming

Dynamic Programming algorithm was proposed by V.
Timkovskii [4] and the Branch-and-Bound algorithm was
proposed by C. Fraser [5]. Dynamic programming algorithm is
successful if the strings are small in number. But for a large
number of strings DP needs large spaces and branch-and-
bound takes a lot of time.

B. Weighted Majority Merge

Failure of implementation of SCS problem for larger
instances by exact algorithms leads researchers to work with
approximation algorithms. Out of different approximate
approaches, one of the earliest heuristic algorithms for SCS
problem was Majority Merge (MM). The basic idea of the
algorithm was to build supersequence by adding most frequent
symbol found at the front of all strings and removing the
symbol from the respective strings. But MM missed a fact that
the strings could have different lengths [7].It suggests that
strings with shorter length can be removed earlier. But it is
necessary to shorten the length of the long string rather than
removing symbols from the short string. Based on this concept
J. Branke et al. [7] proposed Weighted Majority Merge
(WMM) where string length was considered to be the weight
of the string. WMM showed better performance than MM
where the problem has no structure or the structure is
deceptive [7].

C. Deposition and Reduction

Deposition and Reduction (DR) Algorithm was proposed
by K. Ning et al. [8]. The algorithm includes two processes
Deposition and Reduction. In deposition process a small set
of SCS templates is generated. Each template is a common
supersequence of the given set of strings. To produce
templates two algorithms (Look Ahead Sum Height (LA-SH)
algorithm and Alphabet algorithm) have been
used. The reduction process shortens these templates by
removing some characters while preserving the common

supersequence property. Finally, the shortest result obtained
after this reduction process is selected as the final output of the
algorithm. The overall performance of the algorithm fully
depends on generating SCS templates. But the algorithm
Alphabet that is used to generate the templates has an
approximation ratio of ||  . That means the worst case

approximation ratio of DR algorithm is ||  which is not

satisfactory.

D. Reduce-Expand Algorithm

Reduce-Expand (RE) algorithm has been proposed by
Paolo Barone et al. [9]. First of all, RE reduces the sequence
into basic sequences. Basic sequences means the sequence will
contain different symbols in adjacent position of SCS. Now,
expand process tries to add symbols to SCS preserving the
characteristics of common supersequence. As similar to DR it
has a worst case approximation ration of | |.

III. CHEMICAL REACTION OPTIMIZATION

Chemical Reaction Optimization (CRO) is meta-heuristic
based on mimicking the behavior of chemical reaction. In our
universe every unstable molecule with higher potential energy
wants to get stabilized of low potential energy by reacting
with other unstable molecule or the surroundings. A chemical
reaction is accomplished by some sub reactions and after
every sub reaction a more stable product is generated. On the
same time a checking is done whether the product is at optimal
point or not. So it is a multi-step optimal point searching. This
behavior is very similar to many real world optimization
problems. Researchers mimic this natural phenomenon to
solve optimization problem. To design the algorithm another
important principle of thermodynamics has been considered.
Energy cannot be created or destroyed rather it is transformed
into one form to another. Researchers use potential energy
(PE) and kinetic energy (KE) as the energy of a molecule and
central energy buffer as the energy of the surroundings. The
potential energy of a reaction is referred as the objective
function in an optimization problem and kinetic energy as a
numeric value that quantifies how much a molecule can
tolerate the worst value. So the acceptance of a change during
chemical reaction is done by

 
= =

≥+
m

i

n

j
jxxixi PEKEPE

1 1

')((2)

Where popsizem ≤≤1

 Here m numbers of reactants () collide to form n
number of products () and popsize is the number of
population. Energy transformation has a big role for chemical
reaction. A central energy buffer is used to adjust the energy
distribution on the basis of conservation of energy principle.
This allows the algorithm to search different region of the
search space.

51

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

CRO is one of the meta-heuristic methods that is
being used to solve optimization problem efficiently. It is a
powerful method that mimics the interaction of molecules in
chemical reaction to search for the global optimum [15].

Meta-heuristic methods outperformed over heuristic
method for solving optimizing problem because of two
reasons. Firstly meta-heuristic methods can solve a wide range
problem with little or no knowledge of the search space. So
they can easily adjust to fit the problem. And it can reach
optimal or near optimal solutions in a considerable time
though the optimization problem are intractable and NP-Hard
and optimal solution cannot be obtained in a polynomial time.
CRO has been used to solve different optimization problem
recently such as CROG for 0-1 Knapsack problem [16], both
Parallel CRO [15] and singular CRO [17] for Quadratic
Assignment Problem, Artificial CRO for Multiple Choice
Knapsack problem [18], Population Transition Problem in
peer live streaming [19], Grid Scheduling problem [20],
Artificial neural network training [21], Network coding
optimization problem [22] etc.

CRO algorithm is designed for SCS problem because of
the fact that, it has both the diversification and intensification
properties. So from any sort of generated population it can
travel the solution space very efficiently. Through the reaction
operators we can easily traverse the solution space and find
the near optimal solution very quickly. Besides, being a meta-
heuristic approach it can be fitted to SCS problem having no
prior information about the problem and its variable
population size can easily adjust the system for solving the
problem. Moreover, newly designed reform function also
ensures the constraints and the quality of solutions of this
problem.

A. CRO Algorithm

The CRO algorithm includes three stages such as
initialization, iteration, and the final stage. The initialization
stage generates initial population (pop) along with popSize.
KElossRate, MoleColl, buffer, InitialKE and two thresholds (α
and β). In iteration stage, one elementary reaction out of four
reactions takes place in each iteration. Here, we have to
determine whether uni-molecular or bi-molecular reaction is
taken place. The type of reaction is determined by comparing
a random number t [0, 1] against MolColl. At the end of each
iteration, we have to check the termination criteria. The CRO
Algorithm is shown in Algorithm1.

Algorithm1 (CRO Algorithm):
Input: Problem specific information (Objective Function,
constraints and the dimension of the problem)
1: Initialize population with random solutions and set the
 parameters.
2: Compute the fitness value of each molecule as PE.
3: Let the central energy buffer be buffer and initialize
 Buffer=0
4: while stopping criteria not met do
5: Choose one reaction from the four elementary

collisions according to certain rules.
6: Select the molecule(s) for reaction

7: Generate the new molecule(s)
8: if the new solution acceptance rules satisfied then
9: Substitute new molecule(s) for original one(s)
10: Update the KE for new molecule(s)
11: Update the central energy buffer.
12: else
13: Keep the original molecule(s)
14: end while
Output: The overall minimum solution and its function value

IV. DESIGN CRO FOR SCS PROBLEM

A. Population Generation

Initially, the population is generated on the basis of the
concept of random selection which has been followed from
[10]. Here the frequency of each symbol of alphabet  is
calculated in Array1. Then in Array2, the frequency is
converted to the strings. For example if  = {a, c, g, t} and
set of strings L = {acctg, cttcg, acact, gtgca} then the structure
of Array 1 and Array 2 is depicted in Fig. 2.

 Array 1

a c g t
4 7 4 5

Array2

1 2 3 4 5 6 7 8 9 10
a a a a c c c c c c

11 12 13 14 15 16 17 18 19 20
c g g g g t t t t t

Fig. 2. Population Generation

 Now the symbols from Array 2 are randomly selected
to create the population. During selection of symbols
frequency of the symbols will be considered. Since the
population size is 20 then 20 common supersequences will be
created. For example Pop={acctacgatacg, catctgacgtag, …..}.

B. Solution Representation

Each symbol in Alphabet  is initialized with a value.
The integer string of the value of the corresponding symbol
represents a solution. For example let  = {a, c, g, t} have a
value of {0, 1, 2, 3}. Fig. 3 represents the solution for the
above example.

Fig. 3. Solution Representation

a g t c t a c

0 2 3 1 3 0 2

52

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

C. Reaction Operators

We have designed four types of reaction operators in this
algorithm which are described as follows

1) On-wall ineffective collision

 This is a molecular reaction used for the neighborhood search
in solution. Well known evolutionary algorithm mutation
operator (Fig. 4) is used here. A position i in solution m will
be chosen and a small value is added or subtracted from the
value. A small value will be chosen randomly. Reformation
function is used to repair the invalid solution after the
operation. Reformation function is discussed later.

m 0 3 2 1 3 0 2 0 1 2

mʹ 0 3 2 2 3 0 2 0 1 2

Fig. 4. Mutation Operator

2) Decomposition
The process divides a solution m into two solutions. The

operator takes a random solution from the pop and creates two
solutions m1ʹ and m2ʹ dividing from the middle of the solution
m (Fig. 5). Reform function is incorporated to check the
validity of new solutions. This operator causes the
diversification and makes the algorithm explore in the search
space.

0 3 2 1 3 0 2 0 1 2

Fig. 5. Decomposition Operator

3) Inter-molecular ineffective collision
The operator takes two solutions m1 and m2 randomly from

the pop and using two point crossover operators commonly
used in the genetic algorithm (Fig. 6) produces two new
solutions m1ʹ and m2ʹ.

Fig. 6. Two-point crossover operator

 The procedure is taking two points x1 and x2 randomly
and then dividing both the solution into three parts.Now

merging 0 to x1 and x2 to n part of m1 and x1 to x2 part of m2
will form m1ʹ and merging other three parts will form m2’.
Neighbourhood search is implemented using inter-molecular
ineffective collision.

4) Synthesis
Synthesis operator combines two molecules into one

solution. Probabilistic select operator (Fig. 7) is used for
synthesis reaction. The process is done by taking one random
variable from 0 to 1 and if the value is less than 0.5 then
symbol from the m1 will be chosen and appended to the
supersequence. Otherwise, a symbol from m2 will be chosen.
It works as the opposite of the decomposition reaction.
Synthesis reaction implements the global search. Massive
change in the molecular structure causes exploration
throughout the solution space and can avoid getting stuck in
local optima.

Fig. 7. Synthesis Operator

D. Reform Function

Reform function is used after every reaction to check the
constraints are violated or not. For that, the newly formed
solution is checked with every string in the set of strings. If the
newly formed strings become the common supersequence for
all the strings then it will be selected and the previous strings
are removed from the pop. Otherwise, the change made by the
reaction will be discarded. Besides, if the newly formed
supersequence is found valid then the symbols having
frequency zero are removed from the supersequences.

E. Termination Condition

After a particular computation time, the algorithm will be
terminated and the optimal length of the supersequence from
the population will be considered as the output of the
algorithm. The computation time is based on the output of the
others algorithm to compare the length of the supersequence
for algorithms in a particular time

F. Parameter Settings

Chemical Reaction Optimization has six parameters
(KELossRate, InitialKE, MoleColl, Popsize, α and β). Out of
this seven parameter, first four have been taken from [15]
where KELossaRate=0.8, InitialKE=100, PopSize=20,
MoleColl=0.2. Two thresholds values (α and β) are required
to check the condition for decomposition reaction and

0 3 2 1 3 0 2 0 1 2

 m1 0 3 2 1 3 0 2 0 1 2

m2 1 3 1 0 2 3 0 2 1 3

m1ʹ 0 3 1 0 2 3 2 0 1 2

m2ʹ 1 3 2 1 3 0 0 2 1 3

 m1 1 3 0 2 3 0 1 2 3 1

m2 3 1 2 1 0 2 3 1 0 3

 mʹ 1 1 2 2 0 2 1 2 0 1

53

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

synthesis reaction. Like [13] we set the value of α as α є
[10,500] and β є [10,500].

V. EXPERIMENTAL RESULT

The experiment has been done on a personal Toshiba
laptop Model no: Satellite A305-S6905 with Intel Core 2 Due
T5800 CPU at 2.00 GHz, 3 GB RAM and running on
Windows 10 (64 bit). All algorithms have been implemented
on Java SE Development Kit 7 platform and Eclipse Ide.

The datasets that have been used for all algorithms are
taken from [23] which are also used by K. Ning et al. for
implementing DR algorithm [8]. For all cases, ten random
instances were used and average outcome results of CRO
algorithm are being compared with DR, WMM, RE and
Dynamic Programming (DP) algorithm. Due to the
exponential behavior of DP algorithm, the experiment could
not be conducted for the number of strings more than 500.
Moreover, RE and WMM algorithm also take a lot of time for
the strings those have lengths over 100. Therefore, the dataset
is restricted up to a number of strings 500 and length of string
100. Standard deviation and execution time are also measured
as the programs are executed for ten instances and the average
values are taken as final outputs. Execution times are
measured in seconds.

TABLE I. COMPARISON OF LENGTH, STANDARD
DEVIATION,EXECUTION TIME OF SUPERSEQUENCE BETWEEN DP, WMM, RE,

DR AND CRO-SCS ALGORITHM

Algorithm Number

of
string

Length
of

string

Length
of

returned
String

Standard
Deviation

Execution
Time(s)

DP 5 10 20 0 5

WMM 5 10 27.5 1.16 2.4

RE 5 10 20.97 0.73 1.10

DR 5 10 20.3 1.12 0.1

CRO-SCS 5 10 20.3 0.54 0.005

DP 10 10 24 0 19

WMM 10 10 32 2.43 13.5

RE 10 10 26.45 1.25 6.49

DR 10 10 25.7 1.56 0.7

CRO-SCS 10 10 24.9 1.11 0.8

DP 100 10 30 0 38

WMM 100 10 43.7 1.98 21

RE 100 10 35.78 1.44 11.76

DR 100 10 32.1 1.68 8.2

CRO-SCS 100 10 31.9 0.81 1.1

DP 5 100 174 0 66

WMM 5 100 205.8 3.47 32.83

RE 5 100 190.7 6.23 21.72

DR 5 100 194.3 2.87 7.1

CRO-SCS 5 100 186.7 1.75 3.2

DP 10 100 204 0 156

WMM 10 100 295.7 8.46 98

RE 10 100 229.78 7.65 64.37

DR 10 100 227.6 7.1 21.6

CRO-SCS 10 100 222.3 6.47 7.6

DP 100 100 247 0 1837

WMM 100 100 396 6.54 782.7

RE 100 100 287.65 11.76 658.65

DR 100 100 276.6 6.23 37.5

CRO-SCS 100 100 261.6 7.20 13.8

DP 500 100 262 0 3966

WMM 500 100 432 11.7 1378.7

RE 500 100 302.33 17.5 2065.65

DR 500 100 289.6 5.1 1087.3

CRO-SCS 500 100 277.4 6.9 176.5

The experimental results demonstrate that DP gives the
optimal results in every case whereas CRO-SCS takes much
less time than the DP to find the most near optimal SCS. The
difference of length between DP and CRO-SCS increases as
the number of strings enlarges. Besides CRO-SCS gives a
better result than DR, RE and WMM algorithm in less
execution time. Comparison between CRO-SCS, DR, RE,
WMM shows that in every case CRO-SCS gives better
performance than all other algorithms with less time. Both the
quality and the consumption of computational time for CRO-
SCS are much better than all other algorithms. For the largest
instances, our proposed algorithm takes less than three
minutes whereas DR takes over 18 minutes, WMM takes
almost 23 minutes, RE consumes 34 and half minutes and DP
takes over an hour. That proves the robustness of our proposed
algorithm. Moreover, standard deviation suggests that even
CRO-SCS has less variation of results than other three
approximate algorithms. That demonstrate the our proposed
algorithm can return results that will very similar if we
execute the algorithm multiple times for same instances and
that ensures the reliability of our proposed algorithm.

VI. CONCLUSION

In this paper, we have reviewed a well-known NP-hard
problem Shortest Common Supersequence (SCS) and
discussed the different approaches for solving SCS problem.
Then we have proposed a meta-heuristic algorithm Chemical
Reaction Optimization (CRO-SCS) for solving SCS problem.
CRO-SCS algorithm has been designed and parameters are
being set according to previous work done by a different
author for solving different NP-hard optimization problems by
CRO. The combination of local search and global search by
the reaction operators ensure the completeness of our
algorithm. Besides randomness property in the algorithm
governs the searching procedure to a near optimal solution.
The experimental results of CRO have been compared with
DR, DP, RE and WMM algorithms. DP shows optimal results
but it takes very long time whereas CRO-SCS gives near
optimal results and takes much less time. Besides, in every
case CRO-SCS outperforms DR, RE and WMM both in SCS
length and execution time. The robustness and the reliability
are ensured by the proposed approaches. Our future target is to

54

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

do experiments for more instances and some real datasets
which include the DNA and Protein sequences.

REFERENCE

[1] S. Rahmann, "The shortest common supersequence problem in a

microarray production setting", Bioinformatics, vol. 19, no. 2, pp. ii156-
ii161, 2003.

[2] D. Foulser, M. Li and Q. Yang, "Theory and algorithms for plan
merging", Artificial Intelligence, vol. 57, no. 2-3, pp. 143-181, 1992.

[3] S. Chaudhuri and B. Nicolas, "Method and apparatus for generating
statistics on query expressions for optimization.", U.S. Patent
No.7,330,848., 2008.

[4] V. Timkovskii, "Complexity of common subsequence and
supersequence problems and related problems", Cybern Syst Anal, vol.
25, no. 5, pp. 565-580, 1990.

[5] C. Fraser, "Subsequences and supersequences of strings.", BULLETIN-
EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER
SCIENCE, no. 57, pp. 355-355, 1995.

[6] T. Jiang and M. Li, "On the Approximation of Shortest Common
Supersequences and Longest Common Subsequences", SIAM Journal on
Computer., vol. 24, no. 5, pp. 1122-1139, 1995

[7] J. Branke, M. Middendorf and F. Schneider, "Improved heuristics and
a genetic algorithm for finding short supersequences", OR Spektrum,
vol. 20, no. 1, pp. 39-45, 1998.

[8] K. Ning and H. Leong, "Towards a better solution to the shortest
common supersequence problem: the deposition and reduction
algorithm", BMC Bioinformatics, vol. 7, no. 4, p. S12, 2006.

[9] P. Barone, P. Bonizzoni, G. Vedova and G. Mauri, "An
approximation algorithm for the shortest common supersequence
problem: an experimental analysis", in ACM symposium on Applied
computing, 2001, pp. 56-60.

[10] S. Mousavi, F. Bahri and F. Tabataba, "An enhanced beam search
algorithm for the Shortest Common Supersequence
Problem", Engineering Applications of Artificial Intelligence, vol. 25,
no. 3, pp. 457-467, 2012.

[11] M. Noaman and A. Jaradat, "Solving shortest common supersequence
problem using artificial bee colony algorithm.", in Int J ACM Jordan
2.3, Jordan, 2011, pp. 180-185.

[12] C. Blum, C. Cotta, A. FernÃ¡ndez and J. Gallardo, "A probabilistic
beam search approach to the shortest common supersequence problem.",
in Evolutionary Computation in Combinatorial Optimization, Berlin
Heidelberg, 2007, pp. 36-47.

[13] R. Michel and M. Middendorf, "An ACO algorithm for the shortest
common supersequence problem", 1999.

[14] J. Branke and M. Middendorf, "Searching for shortest common
supersequences by means of a heuristic-based genetic algorithm", in
University of Vaasa, 1996.

[15] J. Xu, A. Lam and V. Li, "Parallel chemical reaction optimization for
the quadratic assignment problem.", in World Congress in Computer
Science, Computer Engineering, and Applied Computing, 2010.

[16] T. Truong, K. Li and Y. Xu, "Chemical reaction optimization with
greedy strategy for the 0-1 knapsack problem", Applied Soft Computing,
vol. 13, no. 4, pp. 1774-1780, 2013.

[17] A. Lam and V. Li, "Chemical-Reaction-Inspired Metaheuristic for
Optimization", IEEE Transactions on Evolutionary Computation, vol.
14, no. 3, pp. 381-399, 2010.

[18] T. Truong, K. Li, Y. Xu, A. Ouyang and X. Tang, "An artificial
chemical reaction optimization algorithm for multiple-choice knapsack
problem.", in Proceedings of the International Conference on Artificial
Intelligence (ICAI), p. 1., 2013.

[19] A. Lam, J. Xu and V. Li, "Chemical reaction optimization for population
transition in peer-to-peer live streaming", in Evolutionary Computation
(CEC), 2010 IEEE Congress on, 2010, pp. 1--8.

[20] J. Xu, A. Lahm and V. Li, "Chemical reaction optimization for the grid
scheduling problem", in Communications (ICC), 2010 IEEE
International Conference on, 2010, pp. 1---5.

[21] J. Yu, A. Lahm and V. Li, "Evolutionary artificial neural network based
on chemical reaction optimization", in Evolutionary Computation
(CEC), 2011 IEEE Congress on, 2011, pp. 2083-2090.

[22] B. Pan, A. Lahm and V. Li, "Network coding optimization based on
chemical reaction optimization", in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, 2011, pp. 1---5.

[23] <http://www.biomedcentral.com/content/supplementary/1471-2105-7-
S4-S12-S1.zip>[Accessed: Jun- 2015].

55

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on May 19,2024 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

