
Design-Centric Maze Generation
Paul Hyunjin Kim

The Ohio State University
Columbus, Ohio

kim.3983@osu.edu

Jacob Grove
The Ohio State University

Columbus, Ohio
grove.217@osu.edu

Skylar Wurster
The Ohio State University

Columbus, Ohio
wurster.18@osu.edu

Roger Crawfis
The Ohio State University

Columbus, Ohio
crawfis.3@osu.edu

ABSTRACT
A maze is a common structure in a game level. When we design
game levels having a different purpose of each level, we may desire
mazes with different topological properties, such as lots of branches
or long straight-ways. Thus, we need the ability to design mazes
based on our game mechanics. In this paper, we introduce our
design-centric maze generation in which designers can input their
desired properties to create their own mazes. Our method also
enables the designers to control the topology of the solution path of
a maze. Additionally, this method can provide several mazes which
satisfy the given desired properties allowing designers to choose
the best maze and use it to build game content for a game level. To
demonstrate how useful our design-centric method is, this paper
provides several use-cases of building actual game levels and shows
that we can design the levels effectively using our method.

CCS CONCEPTS
• Computing methodologies → Graphics input devices;

KEYWORDS
Perfect Maze, Maze Generation, Topological Properties of Maze,
Search-Based Procedural Content Generation

ACM Reference Format:
Paul Hyunjin Kim, Jacob Grove, Skylar Wurster, and Roger Crawfis. 2019.
Design-Centric Maze Generation. In The Fourteenth International Conference
on the Foundations of Digital Games (FDG’19), August 26–30, 2019, San Luis
Obispo, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3337722.3341854

1 INTRODUCTION
A maze is a puzzle where a player finds a path from the starting
point to the ending point. Nowadays, mazes are also used as a
platform for a computer game level. Random mazes can be used to
design game levels, but in some cases mazes with specific properties

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341854

may be desired to cause an effect on the player. For example, when
we design a level for exploring dungeons, we may desire a relatively
high number of branches in the maze to disorient the player. Also,
when we design a level in which the player is being chased, we may
desire long straight-ways on a maze to make a player run at high
speeds. To create amazewith desired properties, we can use existing
computer maze generation tools like [1], but they have a lack of
control over maze generation. For example, we can control only the
size of the maze and perhaps the random seed for the generation.
In our research, we developed a design-centric maze generation
method that allows users to input their own desired topological
properties. We have detailed control over the maze’s topology and
also the solution path of the maze. Several mazes satisfying the
given desired properties can be returned as an output of this method
so that designers can choose the best one that fits their use. Once the
best maze is chosen, designers can perform post-processing, such as
building an actual game level, on the maze. To prove the usefulness
of our method, we demonstrate the performance of generating
desired mazes and provide several use-cases of designing actual
computer game levels.

2 RELATEDWORKS
There are many methods focusing on solving a maze, but this pa-
per focuses on generating a maze. In the real world, many mazes
are created manually. We can easily see lots of maze puzzle books,
where mazes are drawn by hand. In [5], Since 2002, a maze artist
Christopher Berg shows his astonishing maze works created manu-
ally on paper. In [10] and [20], we can also see many life-size maze
attractions designed and constructed by maze design companies.
Berg said that this manual creation process requires many hours of
practice to design paths with complicated structure. Thus, drawing
a maze is not easy for people with less experience.

There are many computer algorithms to draw a maze automat-
ically. In [21] and [8], a comprehensive list of maze generation
algorithms is provided. Most of these are based on spanning tree
algorithms. As explained in [21] and [8], classic spanning tree algo-
rithms, such as Prim’s algorithm, are used as the maze generation
algorithm. In [7], the maze generation process of the algorithm is an-
imated step by step so that we can easily see how they proceed. The
RRT Page [15] also shows mazes created using rapidly-exploring
random trees.

Research has been conducted on developing the aesthetic as-
pects of a maze. Xu et al. [25] constructed a maze with obfuscated

https://doi.org/10.1145/3337722.3341854
https://doi.org/10.1145/3337722.3341854
https://doi.org/10.1145/3337722.3341854
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3337722.3341854&domain=pdf&date_stamp=2019-08-26

FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA P. Kim et al.

structure by adopting a vortex shape on it. Also, Pedersen et al.
[19] created organic labyrinths, which resemble input images, by
evolving simple curves. In [26] and [24], a maze was generated
based on a given image. Consequently, the input image is filled
with paths of a maze. In [9], paths of a maze were decorated with
textures designed by artists. In [18], Okamoto et al. showed work
to create a picturesque maze. Picturesque mazes look like a normal
maze, but the filled solution path reveals an image.

Research has also been conducted on controlling the topology
of generated mazes to some user specifications. Ashlock et al. [4]
developed an evolutionary algorithm, in which a maze-like level
is evolved with dynamic programming to control the resulting
structure. In this research, depending on the type of level repre-
sentation, the generator has different tendencies over generated
level structures. Bosch et al. [6] proposed a method that utilizes
integer program to generate a labyrinth with path-segment tiles.
In the integer program, we can input some constraints to force
the labyrinth to be as symmetric as possible. Kaplan [11] did some
research regarding a reconfigurable maze, where rotating maze
parts yields a maze with another topology. In [16], Maung et al.
used array grammar rules to define a path structure, and a maze
was generated based on the rules. Kim et al. [13] also provided a
method that applies existing spanning tree algorithms. When a user
has desired topological properties, this method attempts to choose
a spanning tree algorithm that is best for creating mazes with the
desired properties effectively. In [14], Kim et al. proposes a maze
generation method that applies a machine learning technique so
that mazes with any valid topological constraints can be obtained
successfully.

3 RESEARCH DOMAIN
Our research domain is a rectangular perfect maze as shown in
Figure 1. A perfect maze is a type of maze that has no loops and
no inaccessible areas. Since the maze has the same properties as
a spanning tree, we can consider a rectangular perfect maze as a
spanning tree in a rectangular grid. In our research, an MxN rect-
angular grid indicates an arrangement of rectangular cells in M
columns and N rows. We consider each cell center as a node and
lines between cell centers as an edge. Each node has neighboring
edges in either vertical or horizontal directions. A MxN grid has
M (N − 1) + (M − 1)N edges in total. For any spanning tree on a
rectangular grid, the edges of the spanning tree correspond to paths
of a perfect maze. Thus, to generate a maze in a grid, we can use
existing minimum spanning tree algorithms, such as Kruskal’s al-
gorithm with randomized weights. Since there is a duality between
a perfect maze and a spanning tree, we will use both terminologies
interchangeably in this paper. The difference is that a maze has a
start and end cell.

To explain more about our research domain, the perfect maze,
we introduce several components that we can have in a perfect
maze. Here, some descriptions are given from the viewpoint of a
player playing a maze puzzle.

(1) Starting Point and Ending Point: The starting point is a point
where a player starts to solve a maze. The ending point is
a point where the player needs to arrive to finish the maze
puzzle.

(2) Solution Path: The solution path is a path between the start
point and the end point. Since a perfect maze has no loop,
there is a unique solution path.

(3) Dead-End Trees: All paths on a perfect maze which are not
the solution path are dead-end trees. One maze can have
several dead-end trees, and they branch from the solution
path. In our research, we define three types of dead-end
trees.
• Forward Dead-End: The forward dead-end is a dead-end
tree that heads towards the ending point. It provides the
illusion that the dead-end tree is leading to the ending
point.

• Backward Dead-End: The backward dead-end is a dead-
end tree that turns away from the ending point. It has
opposite directional properties compared to the forward
dead-end.

• Alcove: An alcove is a dead-end which is only a straight
path.

More descriptions about these three types of dead-end trees
can be found in [12].

(4) Maze Cells: A maze cell is a unit of a perfect maze, and there
can be five types of maze cells based on the shape of edges
on its center. Each type of maze cell is illustrated in Figure 2,
and the description of each type is given below.
• Turn: On a perfect maze, a turn cell consists of a single
vertical path and a single horizontal path. There are four
possible turn cells as shown in Figure 2(a).

• Straight: Straight cells have two paths that are either both
horizontal or both vertical. There are two types of straight
cells: a vertical straight cell, in which both paths have
vertical directions; and a horizontal straight cell, in which
both paths have horizontal directions.

• T-Junction: A T-junction cell has has exactly 3 edge from
the cell center and represents a decision on a perfect maze.
It has the shape of a T. There are four shapes of T-junctions,
as shown in Figure 2(c). In a perfect maze, when a player
enters a T-junction, the player needs to decide which path
to take.

• Cross-Junction: A cross-junction cell has all four paths out
of the cell center. The player has three choices of direction
to decide from in a perfect maze.

• Terminal: A terminal cell has only one path on the cell
center. A player needs to go back when the player enters
the terminal cell. There are four shapes of terminal cells
as depicted in Figure 2(e).

Note that in this paper, we focus only on the topology and not
art design or game mechanics. A terminal cell may be a large or-
ganic room, and a cross-junction cell may require a specific game
mechanic such as jumping off a bridge.

4 MOTIVATION
In this section, we provide more detailed examples of designing a
game level using a maze.

Example 1: Consider designing a level with a search quest. As
described in [2], the search quest is a level archetype where a player
is asked to search to collect required items. We design a game level

Design-Centric Maze Generation FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA

Figure 1: An example of a rectangular perfect maze with the
starting point (blue) and the ending point (red).

Figure 2: Representation of (a) turn cells, (b) straight cells,
(c) T-junction cells, (d) cross-junction cells, and (e) terminal
cells. Purple lines and black circles denote a path and a cell
center, respectively.

such that the player needs to spend lots of time finding paths to each
quest item. Thus, wemight need a level structure that is complicated
to disorient the player. In this design, we can use a maze with a
relatively higher number of junctions so that the level has enough
places where a decision is necessary, leading to more time spent
searching.

Example 2: Assume that we are designing a game level where a
player is fleeing from enemies that chase the player. To give this
game level more tension, we can design the game level using a
single path, such as a labyrinth. Then, the player is forced to look
ahead and has to deal with any events on the single path to the
exit. By adding a few short dead-ends on the path, we can give the
player little rooms to get items that help the player flee better, such
as a run speed increase. But the player still has less control over
evading the enemy and has to rely on running as fast as possible to
escape. In this design, we can use a maze with a few numbers of
junctions and long straight-ways.

In these examples, we can see that mazes with different topolog-
ical properties can help in designing the corresponding levels. To
create the desired mazes using the current maze generation tools
that exist, we would need to generate random mazes repeatedly un-
til we get one close enough to the desiredmaze. It is time-consuming
to find such desired mazes. Therefore, in this paper, we introduce
our design-centric method, which can help users obtain these mazes
more effectively.

5 DEFINING DESIRED PROPERTIES
In this section, we introduce the desired properties that we can
define over a maze.

5.1 Basic Properties
First, we define some basic properties of the maze and its solution
path. These are quantitative attributes of a perfect maze, and are
referred to as maze metrics.

Solution Path

• Starting Point and Ending Point
• #Turns: The number or percentage of turn cells on the solu-
tion path.

• #Straights: The number or percentage of straight cells on
the solution path.

• #Decisions: The number or percentage of decisions on the
solution path. Each decision will be either a T-junction cell
or a cross-junction cell.

• SolutionPathLength: The number or percentage of edges on
the solution path. Designer-friendly semantics can also be
used such as short, long, and very long.

Maze

• Size: Denotes the size of a maze. It will be defined by the
number of columns and the number of rows of a grid.

• #Turns: Denotes the number or percentage of turn cells in
the maze.

• #Straights: Denotes the number or percentage of straight
cells in the maze.

• #T-Junctions: Denotes the number or percentage of T-junction
cells in the maze.

• #Cross-Junctions: Denotes the number or percentage of cross-
junction cells in the maze.

• #Terminals: Denotes the number or percentage of terminal
cells in the maze.

5.2 Higher-Level Properties
Additionally, we can define higher-level topological properties on
a maze such as in [21]. These can be more intuitively related to
design-centric properties than the above basic properties. Here, we
provide a list of higher-level properties.

• Run: Indicates how long a maze path is straight before it
meets a turn or junction. A higher run will give us mazes
with long straight-ways. A lower run will give us mazes with
short straight-ways with lots of turns and/or branches.

• River Factor: Indicates relative density of dead-ends and
junctions in the maze. A Low river factor indicates that there
are many short dead-ends on each dead-end tree. A high
river factor indicates that there are a few long dead-ends on
each dead-end tree.

• Bias: Tendency to have straight-ways in one direction more
often than another direction. For example, a maze with a
bias will have more vertical straight-ways then horizontal
straight-ways.

• Agility Versus Speed (AVS): Indicates the twistiness of a path
of a maze. When we have a high AVS, we may have many
consecutive turns on a path so that a player is required to
be quick and nimble, changing direction often. In contrast,
when we have a low AVS, we may have long straight-ways
on a path so that a player needs less control, but may pick
up speed.

• Homogeneity: Indicates the amount of homogeneity over
a maze properties. High homogeneity yields a maze with
homogeneous properties, but low homogeneity gives a maze
with diverse properties.

FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA P. Kim et al.

• Hidden Factor: Indicates how hard it is to recognize the shape
of paths from any place while playing a maze. a high hidden
factor means the player will be easily lost and confused, and
a lower hidden factor means the player may easily find the
path to the exit.

6 DESIGN-CENTRIC METHOD
In this section, we provide an overview of our design-centric maze
generation method. Our method consists of four stages, the input
stage, solution path generation stage, maze generation stage, and
output stage. In this overview, we explain what is done in each
stage briefly.

6.1 Input Stage
In this stage, we input the desired properties of a maze. The desired
properties are defined by properties explained in Section 5. Higher-
lvel properties are converte to basic properties.

6.2 Solution Path Generation Stage
In this stage, we generate the solution path satisfying the given
desired properties. If there is no specified starting point and ending
point, we assume the top-left corner and bottom-right corner of the
grid, respectively. More descriptions of this path generation will be
given in Section 7.

6.3 Maze Generation Stage
In this stage, we generate a maze satisfying the given desired prop-
erties. When we generated the desired solution path in the previous
stage, we need to create a maze containing the path. For this, we
can generate a maze first and check whether the maze has the de-
sired solution path. However, this technique will have a very low
probability to find mazes that satisfy the desired properties and the
generated path at the same time. Instead, we insert the generated
path on a grid as a hard constraint. As described in Section 8, our
maze generation method allows hard constraint inputs on the grid
such that the resulting generated maze is forced to contain the
constraints in its topology. Thus, by giving the desired path as a
hard constraint, we are guaranteed to have the path in the resulting
maze. More descriptions of this maze generation will be given in
Section 7.

6.4 Output Stage
In this stage, we provide a single maze as an output. Alternatively,
we can provide a set of mazes as an output - all which satisfy the
given constraints - so that a user can select among them or design
multiple levels. From there, designers may iterate on the resulting
maze and introduce loops or empty areas to diversify gameplay.

7 SOLUTION PATH AND MAZE GENERATION
WITH DESIRED PROPERTIES

In this section, we explain briefly how we create the solution path
and amaze satisfying the given topological properties. To the best of
our knowledge, it is not easy to generate the desired path or the de-
sired maze directly. Creating a desired maze with a desired solution
path is even harder. Instead, in our research, we apply an approach

called search-based procedural content generation[23]. This section
explains this approach first and then the path generation and maze
generation.

7.1 Search-Based Procedural Content
Generation (SBPCG)

SBPCG is one approach to generate the desired content using a
searching mechanism. When we search for the desired content, we
iteratively generate and test results to see whether the generated
result has properties close to the desired properties. We can contin-
uously generate content until we have the desired one. However,
the process is not guaranteed to finish, especially when we have
a very low probability to find a desired one. To fix this, another
termination protocol may be introduced to the searching process.
We can iteratively generate a fixed number of results and return
one closest to the desired one. This guarantees that the searching
process will terminate, but now the resulting content might not
have the desired properties.

7.2 SBPCG-Based Solution Path Generation
Here, we explain how we accelerate the SBPCG approach to make
it feasible, as the space of perfect mazes is very large [14]. To find
the desired path, we need to know how to generate a path on a
grid. One option is to apply a random walk algorithm. However,
the algorithm takes a very long time to generate a path and is
not guaranteed to terminate within some amount of time. Instead,
we can use pathfinding algorithms such as randomized depth-first
searchwhich visits neighboring nodes of the current node randomly.
These algorithms introduce bias, however, and tend to generate
paths with certain topological characteristics, such as long straight-
ways.

We developed a new efficient path generation and enumeration
algorithm. This method generates edges column by column in a
grid. In Figure 3, we see that each column consists of different edges
on a grid. In Figure 4, the path generation starts from the leftmost
column and ends at the rightmost column. On each column, we
generate edges that do not give us a loop or cause a disconnect with
the previously generated edges so that a valid path is maintained.
In our method, we set up several rules to create valid edges on each
column rapidly without looking at the previously generated edges.
This method performs quickly and generates path with uniform
distributions, unlike randomized depth-first search. More details of
this path generation will be given in the forthcoming report.

Therefore, when we iteratively generate paths using the SBPCG
approach to find the desired path, we could create paths using our
new method. However, since random generation can repeatedly
give us duplicated paths, it can be rather inefficient for finding
a desired path. We could enumerate all paths using this method,
but enumeration is an NP problem. This means that it can take a
long time to search over all possible paths. As an optimization, we
can apply some constraints over the path enumeration to reduce
the search time. Assume that we have the desired length (desired
number of edges) of a path where the two end points are the top-left
node and the bottom-right node in a grid. When we generate the
edges of a path on one column, we count how many edges we have
generated between the leftmost column and the current column.

Design-Centric Maze Generation FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA

Figure 3: Figures show corresponding edges of each column
on a 3x3 grid. (a) Edges of the leftmost column. (b) Edges of
the second left column. (c) Edges of the rightmost column.
Note that the rightmost column has only vertical edges.

Figure 4: Illustration of the column-based path generation
on a 3x3 grid.

If the number of edges already exceeds a valid amount, we stop.
These applied constraints can prevent the enumeration process
from spending time on generating non-desired paths.

7.3 SBPCG-Based Maze Generation
Instead, we can apply spanning tree enumeration to all mazes for
the SBPCG approach, meaning a desired maze will be found even-
tuall. However, the enumerated space of the spanning tree is huge.
For example, in a 6x6 grid, there are trillions of spanning trees.
Searching through trillions of spanning trees for a desired maze is
not feasible.

In our research, we developed a new maze generation method
for finding the desired mazes. In this method, we pre-build a set of
machine learningmodels that are trained to generate spanning trees
with specific topological properties. To train the models effectively,
this method uses the enumerated spanning tree data. Based on
the given desired properties, we select a proper model in the set
of the trained models and use it to generate spanning trees for
the SBPCG approach. This machine learning-based method returns
desired mazes in a short amount of time. More details of this method
including the training process are found in [14].

In the learning-based method, we need the enumerated spanning
tree data to train the models. When the grid size gets larger, the
size of the enumerated data gets exponentially larger. We avoid
enumerating other larger grid domains for training data, and instead
implement a new technique for grids larger than 6x6. In a large
grid, our new maze generation works on a hierarchical maze, as
shown in Figure 5, where we combine small mazes to create a large
maze.

Figure 5: Overview of hierarchical maze construction. 6x6
small mazes are stitched to build 12x12 large maze.

8 APPLYING HARD CONSTRAINTS
When we define desired properties in our method, we can give hard
constraints along with the desired properties. In our method, we
can specify some edges of the solution path directly over a grid.
Then, we can enumerate the results that pass through the specified
edges. Likewise, we can specify cells of a maze directly over a grid.
Through these hard constraints, maze designers can have direct
control over maze topology.

9 MAZE DESIGN TOOL
Based on our design-centric method, we have developed a maze
design tool as shown in Figure 7. In the tool, we can specify several
basic properties as input parameters, such as the size of a maze,
length of the solution path, and properties of a solution path and
maze. For a hierarchical maze, in addition to setting upmetric values
for a large maze, we can specify metric values for the stitched small
mazes locally.

In this tool, we also let users input some higher-level properties
that can be defined quantitatively using maze properties, such as a
river factor and AVS. Then, inside the tool, the input properties are
converted to values of maze metrics, and desired mazes are found
based on those metric values. For example, a high AVS is converted
to a large value of #Turns and a small value of #Straights. Also, a
high river factor is converted to a low value of #T-Junctions and a
relatively higher value of #Straights. However, properties like the
hidden factor and homogeneity have some cognitive term, and are
difficult to define quantitatively with the basic metrics. Designers
may have a different definition for these subjective properties. Thus,
in our tool, we let the designers use basic properties to define these
higher-level properties by themselves.

Hard constraints also can be specified in the tool, as mentioned
in Section 8 so that we can obtain the maze satisfying the input
constraints.

After input parameters are specified, our tool generates a fixed
number of mazes based on the input and returns the best maze
among those results to a user. If a user does not like the result, he
or she can obtain desired mazes with different topologies by simply
clicking the ’Create Maze’ button several times.

Now, in the next section, we represent several use-cases of de-
signing game levels to show how our method can be helpful in
designing actual game content. In these use-cases, we used our
design tool described in Section 9 to generate desired mazes. Note
that when higher-level design-centric properties are used in the
use-cases, some calculation was done to turn those into to the basic
metric values defined.

FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA P. Kim et al.

10 RESULTS
In this section, to validate the effectiveness of our design-centric
method, we compare the expressive range [22] of our method with
the expressive range of a previously developed method [13], which
chooses the best spanning tree algorithm to find desired mazes.
Additionally, we provide several use-cases of designing game lev-
els and show how our method builds the desired game levels by
generating the corresponding mazes.

First, we obtain expressive range data, for a 18x18 maze, using
1,000 mazes. In Figure 6, the expressive ranges are visualized using
2D histograms with contour maps. In the histograms, the color
darkness corresponds to the number of mazes that have the associ-
ated metrics. A darker color means that more mazes belong to that
space. Dotted red lines are used to show whether expressive ranges
(generative spaces) cover mazes of the corresponding properties.
Note, in this application, we desire a small expressive range near
the target.

Figure 6 shows that we can have direct control over result-
ing topologies using our method. While the choice-based method
does not have expressive ranges covering input metric values, our
method has expressive ranges covering input parameter values.
It indicates that maze generation can be controlled well by our
method so that we can generate desired mazes effectively.

Rolling Ball Game: Suppose that we design a level for a rolling
ball game. In the rolling ball game, we have one ball and tilt a
platform to move the ball toward the goal point. This game type
was also applied in the commercial game ”The Legend of Zelda:
Breath of the Wild”[17] as shown in Figure 8.

In the game level, it is important to give different levels of dif-
ficulty over the platform so that a player can have various ten-
sions during the gameplay. To manipulate the difficulty, we can
use the agility vs. speed (AVS) concept explained in Section 5 on
the platform. When we have a low AVS, the level will have long
straight-ways so that we tilt the platform in one direction for a
long time. When we have a high AVS, the level will have curving
passages so that we need to change the direction of tilt frequently.

In this design, we specified different amounts of AVS for each
quadrant of a 12x12 maze so that we can have various difficulties
while we play the game in this 12x12 maze. For a high AVS, we
defined a high number of turns and a low number of straights as
input parameters. Likewise, for a low AVS, we gave a low number
of turns and a high number of straights. Figure 9(a) shows a set
of 12x12 mazes we obtained using our tool. We specified different
AVS properties locally; top-left and bottom-right quadrants have a
low AVS, and top-right and bottom-left quadrants have a high AVS.
Resulting game level is shown in Figure 9(b). The goal point on the
level is denoted by a flag.

Plumbing Game: Suppose that we design a plumbing game, as
shown in Figure 10. The plumbing game is a puzzle where we need
to rotate pipe parts to assemble a pipe system that connects the
starting point(s) and the ending point(s).

The most important design factor for designing a puzzle for this
type of game is that the puzzle is actually solvable. To create a
solvable plumbing puzzle, we generate a solution path using our
method and place the corresponding pipe part on each maze cell.
Then, we rotate each pipe part randomly. We can make a level more

difficult by adding junctions and filling out the maze. As we add
more and more junctions to the maze, the player will have to make
more choices about which way to rotate each pipe.

Using our method, we generate a difficult plumbing puzzle. We
input a relatively higher number of T-junctions for a 6x6 grid. In
Figure 11(a), we can see a set of mazes generated by our tool. Figure
11(b) shows a pipe system where pipe parts are placed on one of
the mazes in Figure 11(a). In Figure 11(c), an unsolved puzzle level
is obtained by rotating the pipe parts.

Running Game: Nowadays, as represented in [3], there are
some running games which utilize a treadmill as an input device. A
player can use the various system to watch the game scene, such
as a tablet or a VR system. In the game, the player needs to run on
the treadmill to move a character in the game.

An important design factor for this kind of a game is to not make
a player bored during the gameplay. Thus, besides creating a path
for running, we need to add some natural looking scenery around
the path. To create a path in the game, we can use the solution
path generation ability in our method. Also, to add natural looking
scenery, we can use the maze obtained by our method to build some
road network around the path. Then we may place ambient objects,
such as trees, rocks, and other models, around the path. The game
might give more freedom to a player so that the player can also
explore the surrounding road map during the gameplay.

In this design, we generate a path for running over a 12x6 maze
first. When we specify the path, we select a somewhat average
SolutionPathLength so that we can have enough room for the sur-
rounding road map over a maze. To create a 12x6 maze using our
method, we stitch two 6x6 mazes side by side. We used a hard con-
straint to have the path go through the bottom middle between the
mazes. Then, we ask for a relatively higher number of T-junctions
over the maze topology to have a road network with junctions
around the running path. Figure 12(a) shows a set of mazes gen-
erated by our tool. In this set, we chose one maze and, as shown
in Figure 12(b), built a level structure based on the maze. In Fig-
ure 12(c), we can see the actual gameplay scene with the marked
running path.

Table 1 provides the performance of our method in designing
game levels of the above use-cases. In Table 1, we can see that our
method needs only a few input parameters to build the desired
levels. Table 1 also shows how accurately our method generates
desired mazes. In Section 9, we mentioned that our tool generates
1,000 mazes to find the desired ones. To demonstrate the accuracy
of our method, we chose the top 10 mazes among the 1,000 mazes
and calculated average distances between a vector of input desired
parameters and vectors of parameters measured from the top 10
mazes. When the average distance value (ADV) is close to 0, it
means that our method has more accuracy in finding desired mazes.
As shown in Table 1, ADVs for all use-cases are 0, which means
that the top 10 mazes generated with our method exactly match
the desired properties given. Additionally, we can see the total time
to generate 1,000 mazes using our tool. As described in Table 1,
our method generates 1,000 mazes in a reasonable amount of time,
which is usually less than 1 second for each use-case. This is a
vast improvement over other approaches for designing maze-based
game levels. Then, since we can make various maze structures with

Design-Centric Maze Generation FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA

Figure 6: Charts showing expressive ranges in a 18x18 grid regarding 2D basic parameters ((a) #Straights & #Terminals,
(b)#Turns & #T-Junctions). In each panel, charts in the top row correspond to results of the choice-based method, and our
method is sown in the bottom row. Charts in each column of each panel show histograms of the same input metric values.
Darker color means that there more mazes with the associated metrics we are generated. Dotted red lines are used to show the
desired metric values.

Figure 7: Figure showing a maze design tool we have devel-
oped.

Figure 8: Figure showing one scene of the commercial game
”The Legend of Zelda: Breadth of theWild”[17] that contains
a maze-based rolling ball game.

little difficulty, we allow designers to find the kinds of features
they’re looking for.

Figure 9: Figures showing (a) a set of mazes created by our
tool for the rolling ball game and (b) an actual gameplay
view. In (a), each quadrant of the maze was given different
desired properties. In (b), the goal position is marked by a
flag, so we need to roll the silver ball toward the flag.

Figure 10: Example showing the plumbing game captured
from https://ko.y8.com/games/plumber_game

11 CONCLUSION AND FUTUREWORK
In this paper, we introduced our design-centric maze generation
method. In our method, we can give desired properties for the

https://ko.y8.com/games/plumber_game

FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA P. Kim et al.

Game Input Parameters Error (ADV)
Time to
Generate
1,000 Mazes

Rolling Ball

Top-Left & Bottom-Right Mazes:
#Turns=15%, #Straights=85%
Top-Right & Bottom-Left Mazes:
#Turns=85%, #Straights=15%

0.0 0.54s

Plumbing #T-Junctions=85% 0.0 0.13s

Running SolutionPathLength=50%,
#T-Junctions=75% 0.0 0.51s

Table 1: Table showing performance of our method in designing game level for each use-case

Figure 11: (a) A set ofmazes obtained by our tool, (b) a solved
plumbing game, and (c) Puzzle where we need to connect the
pipe parts between the ending parts denoted by arrows.

solution path and metrics for the whole maze topology which are
used as inputs to generate a maze. Using the SBPCG approach, we
generate the desired maze satisfying both the desired solution path
and design-based parameters & constraints. We quickly compute
desired mazes, allowing users to obtain the maze that is best for
them. To demonstrate the effectiveness of our method, we provided
several use-cases of building an actual game level and see how
our method could be used to help users design their desired game
levels. We observed that our method generates the desired levels
effectively with a few input parameters. This design-centric method
has a promising potential to be applied to design content in various
fields, especially the field of computer game content generation.

In the future, we will ask expert level designers and even novices
to use our maze-design tool to design their own levels and investi-
gate how our tool works. We expect to have valuable feedback from
them so that we can improve our tool to be more designer-friendly.

REFERENCES
[1] Maze Generator. http://www.mazegenerator.net.
[2] RPG Design Patterns. https://rpgpatterns.soe.ucsc.edu/doku.php.
[3] Zwift Run. https://zwift.com/en/run/.
[4] D. Ashlock, C. Lee, and C.McGuinness. 2011. Search-Based Procedural Generation

of Maze-Like Levels. IEEE Transactions on Computational Intelligence and AI in

Figure 12: (a) A set ofmazes generated for the running game,
(b) a level structure built based on one of the mazes in the
set, and (c) an actual gameplay level. The running path is
denoted by red lines in (a) and by dotted-lines in (b).

Games 3, 3 (September 2011), 260–273. DOI:http://dx.doi.org/10.1109/TCIAIG.
2011.2138707

[5] Christopher Berg. Amazeing Art. http://amazeingart.com.
[6] Robert Bosch, Sarah Fries, Mäneka Puligandl, and Karen Ressler. 2013. From

Path-Segment Tiles to Loops and Labyrinths. In Proceedings of Bridges 2013:
Mathematics, Music, Art, Architecture, Culture.

[7] Jamis Buck. HTML 5 Presentation with Demos of Maze Generation Algorithms.
www.jamisbuck.org/presentations/rubyconf2011/index.html.

[8] Jamis Buck. 2015. Mazes for Programmers: Code Your Own Twisty Little Passages.
Pragmatic Bookshelf.

http://www.mazegenerator.net
https://rpgpatterns.soe.ucsc.edu/doku.php
https://zwift.com/en/run/
http://dx.doi.org/10.1109/TCIAIG.2011.2138707
http://dx.doi.org/10.1109/TCIAIG.2011.2138707
http://amazeingart.com
www.jamisbuck.org/presentations/rubyconf2011/index.html

Design-Centric Maze Generation FDG’19, August 26–30, 2019, San Luis Obispo, CA, USA

[9] Wen-Shou Chou. 2016. RectangularMaze Construction by Combining Algorithms
and Designed Graph Patterns. GSTF Journal on Computing (JOC) (August 2016).

[10] Adrian Fisher. Maze Maker. http://mazemaker.com.
[11] Craig S. Kaplan. 2014. The Design of a Reconfigurable Maze. In Proceedings of

Bridges 2014: Mathematics, Music, Art, Architecture, Culture.
[12] P. H. Kim and R. Crawfis. 2015. The quest for the perfect perfect-maze. In 2015

Computer Games: AI, Animation, Mobile, Multimedia, Educational and Serious
Games (CGAMES). 65–72. DOI:http://dx.doi.org/10.1109/CGames.2015.7272964

[13] P. H. Kim and R. Crawfis. 2018. Intelligent Maze Generation based on Topological
Constraints. In 2018 7th International Congress on Advanced Applied Informatics.

[14] P. H. Kim, S. Wurster, and R. Crawfis. Submitted in 2019. Maze Generation with
Topological Constraints. (Submitted in 2019).

[15] Steve LaValle. The RRT Page. http://msl.cs.uiuc.edu/rrt/index.html.
[16] D. Maung and R. Crawfis. 2015. Applying formal picture languages to procedural

content generation. In 2015 Computer Games: AI, Animation, Mobile, Multimedia,
Educational and Serious Games (CGAMES). 58–64. DOI:http://dx.doi.org/10.1109/
CGames.2015.7272963

[17] Nintendo. 2017. The Legend of Zelda: Breadth of the Wild.
[18] Yoshio Okamoto and Ryuhei Uehara. 2009. How to make a picturesque maze. In

CCCG.
[19] Hans Pedersen and Karan Singh. 2006. Organic Labyrinths and Mazes. In

Proceedings of the 4th International Symposium on Non-photorealistic Anima-
tion and Rendering (NPAR ’06). ACM, New York, NY, USA, 79–86. DOI:http:
//dx.doi.org/10.1145/1124728.1124742

[20] Dave Phillips. Dave Phillips Mazes and Games. https://www.
davephillipsmazesandgames.com/.

[21] Walter D. Pullen. Think Labyrinth! http://www.astrolog.org/labyrnth.htm.
[22] Gillian Smith and Jim Whitehead. 2010. Analyzing the Expressive Range of

a Level Generator. In Proceedings of the 2010 Workshop on Procedural Content
Generation in Games (PCGames ’10). ACM, New York, NY, USA, Article 4, 7 pages.
DOI:http://dx.doi.org/10.1145/1814256.1814260

[23] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne. 2011. Search-Based
Procedural Content Generation: A Taxonomy and Survey. IEEE Transactions on
Computational Intelligence and AI in Games 3, 3 (September 2011), 172–186. DOI:
http://dx.doi.org/10.1109/TCIAIG.2011.2148116

[24] L. Wan, X. Liu, T. Wong, and C. Leung. 2010. Evolving Mazes from Images. IEEE
Transactions on Visualization and Computer Graphics 16, 2 (March 2010), 287–297.
DOI:http://dx.doi.org/10.1109/TVCG.2009.85

[25] Jie Xu and Craig S. Kaplan. 2006. Vertex Maze Construction. Journal of Mathe-
matics and the Arts (November 2006).

[26] Jie Xu and Craig S. Kaplan. 2007. Image-guided Maze Construction. ACM
Trans. Graph. 26, 3, Article 29 (July 2007). DOI:http://dx.doi.org/10.1145/1276377.
1276414

http://mazemaker.com
http://dx.doi.org/10.1109/CGames.2015.7272964
http://msl.cs.uiuc.edu/rrt/index.html
http://dx.doi.org/10.1109/CGames.2015.7272963
http://dx.doi.org/10.1109/CGames.2015.7272963
http://dx.doi.org/10.1145/1124728.1124742
http://dx.doi.org/10.1145/1124728.1124742
https://www.davephillipsmazesandgames.com/
https://www.davephillipsmazesandgames.com/
http://www.astrolog.org/labyrnth.htm
http://dx.doi.org/10.1145/1814256.1814260
http://dx.doi.org/10.1109/TCIAIG.2011.2148116
http://dx.doi.org/10.1109/TVCG.2009.85
http://dx.doi.org/10.1145/1276377.1276414
http://dx.doi.org/10.1145/1276377.1276414

	Abstract
	1 Introduction
	2 Related Works
	3 Research Domain
	4 Motivation
	5 Defining Desired Properties
	5.1 Basic Properties
	5.2 Higher-Level Properties

	6 Design-Centric Method
	6.1 Input Stage
	6.2 Solution Path Generation Stage
	6.3 Maze Generation Stage
	6.4 Output Stage

	7 Solution Path and Maze Generation with Desired Properties
	7.1 Search-Based Procedural Content Generation (SBPCG)
	7.2 SBPCG-Based Solution Path Generation
	7.3 SBPCG-Based Maze Generation

	8 Applying Hard Constraints
	9 Maze Design Tool
	10 Results
	11 Conclusion and Future Work
	References

