
Swarm and Evolutionary Computation 28 (2016) 58–77
Contents lists available at ScienceDirect
Swarm and Evolutionary Computation
http://d
2210-65

n Corr
E-m

rkumar.
journal homepage: www.elsevier.com/locate/swevo
Regular Paper
Ageist Spider Monkey Optimization algorithm

Avinash Sharma a, Akshay Sharma b, B.K. Panigrahi c,n, Deep Kiran c, Rajesh Kumar a

a Malaviya National Institute of Technology, Jaipur, India
b National Institute of Technology, Surathkal, India
c Indian Institute of Technology Delhi, New Delhi, India
a r t i c l e i n f o

Article history:
Received 15 July 2015
Received in revised form
12 December 2015
Accepted 18 January 2016
Available online 18 February 2016

Keywords:
Swarm intelligence
Spider Monkey Optimization
Artificial systems
Numerical optimization
Greedy search
x.doi.org/10.1016/j.swevo.2016.01.002
02/& 2016 Published by Elsevier B.V.

esponding author.
ail addresses: avinashmnit30@gmail.com (A. S
ee@gmail.com (R. Kumar).
a b s t r a c t

Swarm Intelligence (SI) is quite popular in the field of numerical optimization and has enormous scope
for research. A number of algorithms based on decentralized and self-organized swarm behavior of
natural as well as artificial systems have been proposed and developed in last few years. Spider Monkey
Optimization (SMO) algorithm, inspired by the intelligent behavior of spider monkeys, is one such re-
cently proposed algorithm. The algorithm along with some of its variants has proved to be very suc-
cessful and efficient.

A spider monkey group consists of members from every age group. The agility and swiftness of the
spider monkeys differ on the basis of their age groups. This paper proposes a new variant of SMO al-
gorithm termed as Ageist Spider Monkey Optimization (ASMO) algorithm which seems more practical in
biological terms and works on the basis of age difference present in spider monkey population. Ex-
periments on different benchmark functions with different parameters and settings have been carried
out and the variant with the best suited settings is proposed. This variant of SMO has enhanced the
performance of its original version. Also, ASMO has performed better in comparison to some of the
recent advanced algorithms.

& 2016 Published by Elsevier B.V.
1. Introduction

A metaheuristic refers to a high level problem independent framework which helps to develop heuristic optimization algo-
rithms [1]. Any approach to problem solving, learning or discovery which focuses on immediate near optimality rather than exact
results, using practical methods can be termed as a heuristic. Metaheuristics are developed scientifically to find a solution that is
“good enough” in a computing time that is “small enough” [2–4]. The present trend to use heuristic techniques over exact ones is
due to fact that many real world problems have been shown to remain forever intractable to exact algorithms, regardless of the
ever increasing computational power, simply due to unrealistically large running times [5]. History and various trends related to
metaheuristics are mentioned in [5]. One such approach is SI which is a result of collective behavior of different agents present in
the population.

SI is a discipline which deals with artificial and natural systems, these systems are composed of swarms of homogeneous individuals
and instead of everyone depending on a single central unit, all units are self-organized and they cooperate and share information to
carry out their necessary tasks. The collective behavior of the individuals resulted from local interactions with each other and their
environment is known as swarm intelligence. It is a metaheuristic approach which makes use of nature inspired techniques to solve
optimization problems, the term was introduced by Gerardo Beni in 1989 [6], in the context of cellular robotic systems. A number of
natural systems are studied under SI like schools of fish, ant colonies, bird flocks, bee colonies, herds of animals, etc. The engineering
application of swarm intelligence is to exploit the understanding of the systems and design systems to solve problems of practical
relevance.

The recent advancements in SI have shown its tremendous capability in solving complex problems which otherwise is impossible to
solve with other naive approaches and therefore has great application in artificial intelligence. A lot of research has been done and is still
harma), ksh.shrm1@gmail.com (A. Sharma), bkpanigrahi@ee.iitd.ac.in (B.K. Panigrahi), dkiran5@gmail.com (D. Kiran),

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2016.01.002
http://dx.doi.org/10.1016/j.swevo.2016.01.002
http://dx.doi.org/10.1016/j.swevo.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.002&domain=pdf
mailto:avinashmnit30@gmail.com
mailto:ksh.shrm1@gmail.com
mailto:bkpanigrahi@ee.iitd.ac.in
mailto:dkiran5@gmail.com
mailto:rkumar.ee@gmail.com
http://dx.doi.org/10.1016/j.swevo.2016.01.002

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 59
going on to further improve the potential of SI in solving real time optimization problems. A number of nature inspired algorithms like ant
colony optimization (ACO) [7] and particle swarm optimization (PSO) [8], artificial bee colony optimization (ABC) [9], bacterial foraging
optimization (BFO) [10] has been proposed. These belong to the classes that are based on population, intelligent foraging behavior, social
foraging behavior and many more. Early studies [10] of swarm behavior employed mathematical models to simulate and understand the
swarm behavior. Three basic rules composing simplest mathematical model are:

� Move in the same direction as your neighbors.
� Remain close to your neighbors.
� Avoid collisions with your neighbors.

Craig Reynolds created programs called boids [1] in 1986, these programs simulate the swarm behavior following the above rules. Many
current simulation models implement swarm behavior by means of concentric zones around each individual like zones of repulsion,
alignment and attraction. Researchers, in order to find out as to why animals show swarm behavior, have been developing and studying
evolutionary models simulating the population of evolving algorithms. Researchers have developed many algorithms and their
improvements in recent years. Among them are various improvements of previously proposed evolutionary and swarm intelligence
inspired algorithms.

Yu et al. [11] proposed enhanced comprehensive learning particle swarm optimization (ECLPSO) which improved the performance
of CLPSO [12] by introducing perturbation rate and adaptive particle probability to the original algorithm. SP-PSO and SG-PSO [13]
consider the effect of second best personal and global position for updating positions of other particles, respectively. Superior so-
lution guided particle swarm optimization (SSG-PSO) [14] maintains and updates a collection of superior positions for updating
positions of particles in the swarm. Scatter learning particle swarm optimization (SLPSO) [15] creates a pool of high quality solution
scattered throughout search space called exemplar pool that makes particles to select their exemplars from the pool using the
roulette wheel rule.

Recent research tries to improve performance of PSO by incorporating various elements of human learning principles within
them. Social learning PSO (SL-PSO) [16] introduces a social learning mechanism into PSO such that particle position is updated
based on historical information. To empower the searching particles with human like characteristics dynamic mentoring and self-
regulation based PSO (DMeSR-PSO) [17] algorithm incorporates a dynamic mentoring scheme along with a self-regulation scheme
in the classical PSO algorithm. Competitive and cooperative PSO with ISM (CCPSO-ISM) [18] proposes an information sharing
mechanism (ISM) to improve the performance of PSO. Self-regulating particle swarm optimization (SRPSO) [19] algorithm in-
corporates best human learning strategies within PSO for finding the optimum solution. Adaptive division of labor (ADOL) PSO
(ADOLPSO) [20] adopts two new operators, convex operator and reflectance operator to generate new particles from the memory
swarm.

Differential Evolutionary (DE) [21] algorithm is an evolutionary search heuristic proposed by Storn and Price in 1995. To improve its
performance, Jana et al. proposed Levy distributed DE (LdDE) [22] which control each of its parameters by levy distribution. DE with auto-
enhanced population diversity (AEPD-JADE) [23] is proposed to identify the moments when a population becomes converging or stag-
nating by measuring the distribution of the population in each dimension. Harmony search algorithm [24] is a metaheuristic optimization
method developed by Geem et al. imitating the music improvisation process where musicians improvise pitch of their instruments by
searching for a perfect state of harmony. Valian et al. proposed IGHS [25] algorithm which presents an improved harmony search algo-
rithm using the swarm intelligence technique.

Gao et al. proposed artificial bee colony algorithm based on information learning (ILABC) [26] which divides the whole population
into sub-populations and dynamically adjusts size of sub-population. In enhanced artificial bee colony (EABC) [27] algorithm, two
new search equations are presented to generate candidate solutions in the employed bee phase and the onlookers phase,
respectively.

Inspired by the behavior of spider monkeys, Bansal et al. proposed an algorithm based on fission–fusion social structure. This algorithm
is known as spider monkey optimization (SMO) [28] mimics the social behavior of a south American species of monkeys called spider
monkeys, those belong to the class of nature inspired algorithms (NIA) [6]. The necessary principles of intelligent behavior are im-
plemented in the social behavior of monkeys that are self-organizing in foraging behavior of monkeys while searching for food or mating
and division of labor to divide the main group into subgroups for independent foraging. The fitness of the monkey at some particular
position refers to its nearness to the global optimum value required, decides the superiority of food and affects behavior of other spider
monkeys. The two main parts of an optimization problem, i.e. exploration and exploitation, need to be balanced. While searching for
optimum solution the algorithm maintains the balance between deviation and selection processes which ensure exploration and ex-
ploitation, respectively.

Recently published modified variants of SMO have shown improvement in its performance, i.e. modified position update in spider
monkey optimization (MPU-SMO) [29] that makes use of golden section search (GSS) to enhance performance of SMO. Kumar et al.
proposed self-adaptive SMO (Sa-SMO) [30] with algorithm parameters being self-adaptive in nature and tournament selection based
spider monkey optimization (TS-SMO) [31] proposed by Gupta et al. replaces the fitness proportionate probability scheme of SMO with
tournament selection based probability scheme with an objective.

This paper proposes a new variant of SMO called as Ageist SMO (ASMO) which works on the basis of the fact that not all monkeys in the
population are alike; they belong to different age groups and have different levels of activity. Some monkeys are more expeditious than
others and, therefore, behave differently from others.

The rest of the paper is organized as follows: introduction is followed by Section 2 that contain details of SMO algorithm, proposed
approach of the algorithm is explained in Section 3. A detailed analysis on different benchmark functions for clear understanding and
comparison is given in Section 4. Section 5 concludes the paper on the basis of results obtained.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7760
2. Spider monkey Optimization

A new swarm intelligence algorithm is proposed in terms of fission fusion social structure (FFSS) as these monkeys fall in the category
of FFSS based animals. This form of social organization occurs in several species of primates (e.g. common chimpanzees and bonobos,
hamadryas baboons, geladas, orangutans, spider monkeys, and humans), African elephants, most carnivores and fishes.

2.1. Social behavior of spider monkeys

Spider monkeys follow FFSS in which they form temporary small subgroups, whose members belong to large stable communities. The
composition and size of these subgroups changes frequently due to fluid movement between these groups. The members of these sub-
groups then communicate through barking and other physical activities depending on the availability of food. In this type of society, the
parent subgroup can fission into smaller subgroups and can also fuse again into one big group depending on the environmental or social
circumstances. These subgroups are led by a female leader for searching food which split the subgroups when there is scarcity of food. The
main group generally has around 50 members initially and subgroups have at least 3 members. They show territorial behavior after
splitting into subgroups to ensure no physical contact.

2.2. Spider Monkey Optimization algorithm

SMO algorithm based of FFSS consists of four basic steps:

1. The group starts foraging and evaluate their distance from the food sources which is termed as the fitness of the monkeys.
2. Based on the fitness of individuals, group members update their positions and then again evaluate the fitness.
3. Local leader (LL) updates its position, i.e. the best position in the group and if the position remains unchanged for a predefined number

of times then the group is scattered depending on the perturbation rate (pr).
4. Global leader (GL) updates its position, i.e. the best position among all the monkeys and in case of stagnation; the groups are split into

subgroups. If the total number of groups present exceeds the maximum group (MG) limit then all the subgroups are fused into the
parent group.

The above steps are continuously executed until the termination criterion is met. Two necessary control parameters in this proposed
strategy are localleaderlimit and globalleaderlimit which are used to avoid stagnation in local and global position updates, respectively. If LL
does not update its position in specified number of times then the group is redirected to a different direction for foraging. If GL fails to
update its position after a specified number of times then the group is split for independent foraging.

2.2.1. Major steps of SMO algorithm
SMO, like other population based algorithms, is also a trial and error based collaborative iterative process where the algorithm tries to

reach to the optimum value in minimum number of iterations. The SMO algorithm is divided into six major phases or steps described as
follows:

1. Population initialization: A randomly distributed population P of spider monkeys is initialized. Each monkey is a D dimensional
vector SMi (= (‥)i P1, 2, , , where D represents the number of variables in the optimization problem and SMi refers to the ith spider
monkey in the population. Each SMi is initialized as:

= + () × (−) ()SM SM R SM SM0, 1 1ij minj u maxj minj

where, SMminj and SMmaxj are lower and upper bounds of SMi in jth (= { ‥ }j D1, 2, ,) dimension respectively and ()R 0, 1u is a uniformly
distributed random number in the range [0,1].

2. Local Leader Phase (LLP): In this phase, spider monkeys update their position based on the experience of LL as well as other members
of the group. The fitness value of the newly obtained position is calculated and if the fitness value of the new position is more optimum
than the old position, then the SM is updated with new position. For ith SM of kth subgroup:

= + () × (−) + (−) × (−) ()SM SM R LL SMij R SM SM0, 1 1, 1 2newij ij u kj u rj ij

where, SMij is the ith SM in jth dimension, LLkj represents the jth dimension of the kth local group leader position and SMrj is the rth SM
chosen randomly from the kth group such that ≠r i.

Algorithm 1. Position update in LLP.
1:
2:
3:
4:
5:
procedure LLP
for each ∈ { … }k MG1, 2 , do
for each member ∈SM kthi group do
for each ∈ { … }j D1, 2, , do

if () ≥R pr0, 1u then
↔ + () × (−) + (−) × (−)SM SM R LL SM R SM SM0, 1 1, 1new ij u kj ij u rj ijij
6:

3. Global Leader Phase (GLP): GLP follows LLP where spider monkeys update their position based on the experience of GL and members
of local group using (3).

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 61
= + () × (−) + (−) × (−) ()SM SM R GL SM R SM SM0, 1 1, 1 3newij ij u j ij u rj ij

where GLj is the global leader's position in jth dimension and ∈ …j D1, 2, 3 , is the randomly chosen index. In this phase, the position
update of spider monkeys is constrained by a probability value probi which is calculated using their fitness, giving a higher chance to a
better candidate to make itself better. Here, probi is computed using (4).

= ×
_

+
()

prob x
fitness

max fitness
y

4i
i

where, fitnessi is the fitness of ith monkey. Here, + =x y 1 and optimum results are obtained at values x¼0.9 and y¼0.1.

Algorithm 2. Position update in GLP.
1:
2:
3:
4:
5:
6:
7:

8:
9:
10:

1:
2:
3:

4:
5:
6:
7:
8:
9:

10:

1:
2:
3:
4:
5:
6:
7:
procedure GLP
for k¼1 to MG do

←count 1
←GS kth group size
while <count GS do
for i¼1 to GS do
if () <R prob0, 1u i then

← +count count 1
Randomly select ∈ { … }j D1, 2,
Randomly select SMr from kth group such that ≠r i

← + () × (−) + (−) × (−)SM SM R GL SM R SM SM0, 1 1, 1new ij u j ij u rj ijij

11:

4. Global Leader Learning Phase (GLL): GL updates its position by applying greedy selection process, SM having the best fitness among
all the monkeys is selected as the new position of GL, and if the position of GL remains the same, GlobalLimitCount is increased by 1.

5. Local Leader Learning Phase (LLL): The position of LL of all the groups are updated by applying greedy selection process and then selecting
the monkey SM having the best fitness in that group. If the LL's position remains same as before, then the LocalLimitCount is increased by 1.

6. Local Leader Decision Phase (LLD): If a LL position is not updated for a predetermined number of iterations i.e. LocalLeaderLimit, then
the positions of the spider monkeys are updated either by random initialization as in step 1 or by using information from both LL and GL
based on pr through (5).

= + () × (−) + () × (−) ()SM SM R GL SM R SM LL0, 1 0, 1 5newij ij u j ij u ij kj

Algorithm 3. Local Leader Decision Phase.
procedure LLDP
for k¼1 to MG do
if >locallimitcount localleaderlimitk then

←locallimitcount 0k

←GS k groupsizeth
for i¼1 to GS do
for each ∈ { … }j D1, 2, do

if () ≥R pr0, 1u then
← + () × (−)SM SM R SM SM0, 1new minj u maxj minjij

else
← + () × (−) + () × (−)SM SM R GL SM R SM LL0, 1 0, 1new ij u j ij u ij kjij
11:

7. Global Leader Decision Phase (GLD): In this phase, the decision about GL position is taken, if the position of GL is not updated in
predetermined number of iterations i.e. globalleaderlimit, then the population is split into subgroups. The groups are split till the number
of groups reaches to maximum allowed groups ()MG , then they are combined to form a single group again.

Algorithm 4. Global Leader Decision Phase.
procedure GLDP
if >globallimitcount globalleaderlimit then

←globallimitcount 0
if Number of Groups < MG then

Split Group
else
Fuse all groups in one

Update Local Leader positions
8:

Fig. 1. AMSMO flowcharts.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7762

Table 1
Benchmark function details.

Function name D Range ME Type OV

30 [�100,100] 1.00E�03 US 0
Elliptic (f1) 50 [�100,100] 1.00E�03 0

100 [�100,100] 1.00E�02 0
Ackley(f2) 10 [�32,32] 1.00E�05 MS 0

30 [�32,32] 1.00E�03 0
Weierstrass (f3) 10 [�0.5,0.5] 1.00E�03 MS 0

30 [�0.5,0.5] 5.00E�02 0
Step (f4) 30 [�100,100] 0.00Eþ00 US 0

30 [�100,100] 1.00E�03 US 0
Axis paralled hyper ellipsoid (f5) 50 [�100,100] 1.00E�03 0

100 [�100,100] 1.00E�02 0
Beale (f6) 2 [�4.5,4.5] 1.00E�05 UN 0
Brain Rcos (f7) 2 [�5,10], [0,15] 1.00E�06 MN 0

30 [�10,10] 1.00E�05 US 0
Cigar (f8) 50 [�10,10] 1.00E�03 0

100 [�10,10] 1.00E�02 0
Dekkers and Aarts (f9) 2 [�20,20] 5.00E�01 MN �24777
Six Hump Camel Back (f10) 2 [�5,5] 1.00E�06 MN �1.0316
Griewank (f11) 30 [�600,600] 1.00E�02 MN 0

50 [�600,600] 1.00E�02 0
Goldstein price (f12) 2 [�2,2] 1.00E�06 MN 3

30 [�100,100] 1.00E�03 US 0
Discus (f13) 50 [�100,100] 1.00E�03 0

100 [�100,100] 1.00E�02 0
Trid (f14) 6 [�36,36] 1.00E�05 UN �50

10 [�100,100] 1.00E�05 �210
Holder Table (f15) 2 [�10,10] 1.00E�20 MN �19.2085

Drop Wave (f16) 2 [�5.12,5.12] 1.00E�05 MN �1

Hartmann 3D (f17) 3 [0,1] 1.00E�06 MN �3.86218

Levy (f18) 10 [�10,10] 1.00E�05 MN 0

Shubert (f19) 2 [�10,10] 1.00E�05 MN �186.731

Shifted Schwefel 1.2 (f20) 30 [�100,100] 1.00Eþ00 UN 0
50 [�100,100] 5.00Eþ02 0

Shifted Elliptic (f21 50 [�100,100] 1.00E�03 US 0

100 [�100,100] 1.00E�02 0
Shifted Rastrigin (f22) 50 [�5,5] 1.00E�03 MS 0

Corner Shifted Schwefel 1.2 (f23) 50 [�100,100] 1.00Eþ00 UN 0
100 [�100,100] 1.00Eþ01 0

Corner Shifted Ackley (f24) 30 [�32,32] 1.00E�02 MS 0
50 [�32,32] 1.00E�02 0

Corner Shifted Elliptic (f25) 50 [�100,100] 1.00E�03 US 0
100 [�100,100] 1.00E�02 0

Hybrid Sphere Rosenbrock (f26) 10 [�5,10] 7.50E�01 MN 0
30 [�5,10] 7.50E�01 0

Katsuura (f27) 30 [�100,100] 1.00E�03 MS 0

50 [�100,100] 1.00E�03 0
100 [�100,100] 1.00E�03 0

Treccani (f28) 2 [�5,5] 1.00E�20 UN 0

Shifted Rotated Rastrigin (f29) 10 [�100,100] 1.00E�03 MN 0
30 [�100,100] 1.00E�03 0

Hybrid Sphere Rastrigen (f30) 30 [�5,5] 0.00Eþ00 MN 0
50 [�5,5] 0.00Eþ00 0

Parameter Settings:

Algorithm Algorithm Specifications

SMO GLL¼20
LLL¼500
SS¼40
MG¼4

ASMO GLL¼20
LLL¼500
SS¼32
MG¼4

AMSMO GLL¼20
LLL¼500
SS¼32
MG¼4

Abbrevations:
SMO Spider Monkey Optimization

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 63
ASMO Ageist SMO

Alg
Ste

Ste

Ste

Ste
S
S

S
S

S
S

S

AMSMO Ageist modified SMO
AS4 ASMO with 4 mgrp
AM4 AMSMO with 4 mgrp
AS8 ASMO with 8 mgrp
AM8 AMSMO with 8 mgrp
D Dimensions
M.E. Max. tolerable error
AI Average iterations
AFE Average fun. evaluation
AE Average error
SR Success ratio
US Unimodal seperable
MS Multimodal seperable
UN Unimodal nonseperable
MN Multimodal nonseperable
OV Optimum value
GLL Global leader limit
LLL Local leader limit
SS Swarm size
MG Maximum groups
mgrp/M No. of mini groups

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7764
orithm—SMO
p 1: Initialize spider monkey population (Eq. (1)), control parameters (localleaderlimit and globalleaderlimit), and perturbation rate
(pr).
p 2: Fitness evaluation, calculate the distance of individuals from food sources or the function value at each monkey's position with
variables as parameter values in respective dimensions.
p 3: Update LL and GL by greedy selection process. In greedy selection process best among the given set is chosen (as explained
above).
p 4: While (terminating condition is false) do
tep 4.1: Position update for all the spider monkeys based on LLP (Algorithm 1) i.e. self, LL and group members' experience.
tep 4.2: Selection of better position between the newly generated and the existing one based on fitness and applying greedy
selection process.
tep 4.3: Calculate the probability probi for all the group members using Eq. (4).
tep 4.4: Position update for all the group members selected by probi based on GLP (Algorithm 2) i.e. self, GL and group members'
experience.
tep 4.5: Update LL and GL positions by applying greedy selection process on the entire group members.
tep 4.6: If any LL is not updating its position for a predefined number of iterations then redirect all the group members using local
leader decision phase as given in Algorithm 3 (foraging algorithm).
tep 4.7: If GL is not updating position for predefined number of iterations then the group is divided, if number of groups present is
less than MG else all the subgroups combine to form one single group. This is done by global leader decision phase (Algorithm 4).
while
end

2.3. Problems with SMO algorithm

In the original SMO algorithm, the position of each spider monkey is updated depending upon the position of another randomly
selected spider monkey in LLP and GLP. This update is irrespective of whether the position of randomly selected monkey is better or not.
This leads to low convergence rate further causing high rate group breaking and merging. To tackle problem of low convergence rate, new
algorithm is proposed as described in the next section.
3. Modified approach—ASMO

The intelligent behavior of spider monkeys lies behind their fission–fusion based foraging behavior. The spider monkey population
shows features like self-organization and division of labor, which are the necessary and sufficient conditions for swarm intelligence
behavior. While searching for food, the monkeys interact with their group members, LL as well as GL and update their positions according
to the information they get from others.

Now as these monkeys belongs to different age groups, i.e. young, adult and old monkeys. Among which younger monkeys will be
faster and more efficient in interacting and updating their positions, than other old and mentally or physically disabled monkeys. These
faster monkeys will interact and update their positions (to increase their fitness) before the slower ones and will provide themwith better
experience with greedily selected positions. Considering this fact and looking at the original SMO algorithm, which updates positions of
monkeys assuming they have same interacting and exploring abilities, a variant of SMO algorithm is proposed which is as follows:

This modified algorithm called as ASMO works on the basis of age and dynamical differences between existing monkeys in the group.
The strategy is to further divide groups of spider monkeys into mini-groups which can be interpreted as age groups in biological terms.
These mini-groups is divided from the group on the basis of different levels of ability to interact and to track changes in the environment
and all the monkeys in the mini-group will have the same level of abilities. While updating position of monkeys, the monkeys of best
mini-group will update their position first and communicate it to the other monkeys which improve the convergence rate of monkeys

不考慮的

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 65
towards optimum solution.

3.1. ASMO Algorithm

The position update of monkeys in both GLP and LLP involves using experience of other monkeys in the group along with GL and LL in
respective phases.

The idea is to divide groups of spider monkeys into M number of mini-groups, value of M can be set manually and remains constant
throughout. Instead of updating positions of all the monkeys of the group and then selecting better position between the previous and the
new one by applying greedy selection based on the fitness, the above steps are executed for one mini-group and then it switches to next
mini-group in that group (Algorithm 5).

Similar to LLP, Algorithm 5 ageist strategies can also be implemented in GLP as implemented in Algorithm 6. ASMO implements ageist
strategy in only LLP. While implementing this in both LLP and GLP gives AMSMO. Stated algorithms (Algorithms 5 and 6) are replacements
for Algorithms 1 and 2 of the original SMO respectively. By using Algorithm 5 in place of Algorithm 1 in step 4.1 ASMO algorithm can be
implemented. By further replacing Algorithm 2 by Algorithm 6 in step 4.4 we can implement ageist variant of modified spider monkey
algorithm called AMSMO algorithm. Modified SMO algorithm involves greed based selection in group leader based position update step of
original algorithm.

The main SMO remains the same with the removal of step 4.2 i.e. greedy selection process for choosing a better position as we have
already included that part in our modified algorithm ASMO as well as AMSMO. Flowchart of the proposed algorithm is given in Fig. 1.

Algorithm 5. Position update in ASMO.
1:
2:
3:
4:
5:
6:
7:

8:
9:
10:
11:
12:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

14:
15:
16:
17:
18:
procedure LLP
for each ∈ { … }k MG1, 2 , do
for each ∈ { … }m M1, 2, do

for each member ∈SM mthi mini-group do
for each ∈ { … }j D1, 2, , do
if () ≥R pr0, 1u then

← + () × (−) + (−) × (−)SM SM R LL SM R SM SM0, 1 1, 1new ij u kj ij u rj ijij

for each member ∈SM mthi mini-group do
calculate fitnessnew
if fitnessnewi is better than fitnessi then
for each ∈ { … }j D1, 2, , do

←SM SMij newij

←fitness fitnessi newi
13:

Algorithm 6. Modified position update in AMSMO.
procedure GLP
for k¼1 to MG do

←count 1
←GS kth group size

while <count GS do
for m¼1 to M do

←MS mth mini-group size
fori¼1 to MS do
if () <R prob0, 1u i then

← +count count 1
Randomly select ∈ { … }j D1, 2,
Randomly select SMr from kth group such that ≠r i

← + () × (−) + (−) × (−)SM SM R GL SM R SM SM0, 1 1, 1new ij u j ij u rj ijij

for each member ∈SM mthi mini-group do
calculate fitnessnew
if fitnessnewi is better than fitnessi then
for each ∈ { … }j D1, 2, , do

←SM SMij newij

←fitness fitnessi newi
19:

3.2. Algorithm Logic

Position update phases for spider monkeys (Algorithms 1 and 2), while generating new position uses a random spider monkey's
experience from that group. In (2) and (3), a random monkey SMr is selected from the group and its position is used,

(−) × (−)R SM SM1, 1u rj ij is added to the previous position along with LL and GLs experience. If the random number generated by Ru is

Highlight

Table 2
Comparison between proposed SMO variants and SMO algorithm for function f1—f13.

SMO ASMO (M¼4) AMSMO (M¼4) ASMO (M¼8) AMSMO (M¼8)

f1 AI 432.87 286.8 169 273.1 163.07
D¼30 AFE 17 315 9177.6 10 816 8739.2 10 436

AE 9.02E�04 8.74E�04 9.30E�04 8.52E�04 9.10E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f1 AI 1215.2 511.07 311.5 515.33 281.5
D¼50 AFE 48 607 16 354 19 936 16 491 18 016

AE 9.30E�04 9.02E�04 8.98E�04 9.63E�04 9.05E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f1 AI 4136.6 1411.9 617.33 1187.7 639.5
D¼100 AFE 165 464 45 182 39 509 38 005 40 928

AE 9.45E�03 9.86E�03 9.87E�03 9.76E�03 9.93E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f2 AI 232.8 155.6 105.7 151.67 100
D¼10 AFE 9312 4979.2 6764.8 4853.4 6400

AE 9.12E�06 9.11E�06 9.23E�06 8.95E�06 9.15E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f2 AI 600.5 512.77 202.4 457.4 196.6
D¼30 AFE 24 020 16 409 12 954 14 637 12 582

AE 9.62E�04 8.80E�01 9.22E�04 4.58E�01 9.21E�04
SR 100.00% 40.00% 100.00% 60.00% 100.00%

f3 AI 223.17 162.6 99.8 160.6 99
D¼10 AFE 8926.7 5203.2 6387.2 5139.2 6336

AE 9.62E�04 9.47E�04 9.48E�04 9.56E�04 9.61E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f3 AI 775.2 399 217.6 421.33 193.27
D¼30 AFE 31 008 12 768 13 926 13 483 12 369

AE 4.89E�02 4.78E�02 4.83E�02 4.88E�02 4.68E�02
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f4 AI 329.8 692.23 264.1 952.47 275.5
AFE 13 192 22 151 16 902 30 479 17 632
AE 0.00Eþ00 1.93Eþ00 9.00E�01 9.30Eþ00 7.00E�01
SR 100.00% 40.00% 67.00% 3.33% 60.00%

f5 AI 528.17 364.57 211.33 358 214.27
D¼30 AFE 21 127 11 666 13 525 11 456 13 713

AE 9.44E�04 9.46E�04 9.23E�04 9.31E�04 9.27E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f5 AI 1487.7 651.5 380.93 648.1 375.33
D¼50 AFE 59 508 20 848 24 380 20 739 24 021

AE 9.28E�04 9.61E�04 9.66E�04 9.21E�04 9.45E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f5 AI 5129.9 1793 747 1624.1 754.03
D¼100 AFE 205 196 57 375 47 808 51 972 48 258

AE 9.74E�03 9.68E�03 9.71E�03 9.47E�03 9.68E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f6 AI 60 61.9 26.1 82.233 29.033
AFE 2400 1980.8 1670.4 2631.5 1858.1
AE 8.11E�06 7.47E�06 8.34E�06 8.12E�06 7.79E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f7 AI 74.4 35.167 27 45.9 25.6
AFE 2976 1125.3 1728 1468.8 1638.4
AE 7.97E�07 7.88E�07 8.78E�07 7.98E�07 8.12E�07
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f8 AI 620.47 395.33 219.4 356.33 210
D¼30 AFE 24 819 12 651 14 042 11 403 13 440

AE 9.12E�06 8.69E�06 8.78E�06 8.87E�06 8.79E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f8 AI 1474.4 708.33 381.1 670.13 398.77
D¼50 AFE 58 977 22 667 24 390 21 444 25 521

AE 9.23E�04 9.33E�04 9.45E�04 9.38E�04 9.58E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f8 AI 5606.1 2000.3 819.47 1604 779.37
D¼100 AFE 224 244 64 010 52 446 51 327 49 879

AE 9.73E�03 9.68E�03 9.77E�03 9.74E�03 9.71E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f9 AI 30.233 23.667 12.233 23.267 12.7
AFE 1209.3 757.33 782.93 744.53 812.8

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7766

Table 2 (continued)

SMO ASMO (M¼4) AMSMO (M¼4) ASMO (M¼8) AMSMO (M¼8)

AE 4.97E�01 4.94E�01 4.92E�01 4.96E�01 4.91E�01
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f10 AI 26.9 18.333 10.2 21.467 12.133
AFE 1076 586.67 652.8 686.93 776.53
AE 9.61E�07 9.64E�07 9.23E�07 9.31E�07 9.33E�07
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f11 AI 526.67 245 151.73 249.5 147.67
D¼30 AFE 21 067 7840 9710.9 7984 9450.7

AE 8.75E�03 9.23E�03 9.07E�03 9.78E�03 9.50E�03
SR 100.00% 75.00% 100.00% 70.00% 100.00%

f11 AI 1218.3 834.27 249.9 854.77 266.5
D¼50 AFE 48 732 26 697 15 994 27 353 17 056

AE 9.12E�03 1.50E�02 9.24E�03 2.11E�02 9.37E�03
SR 100.00% 70.00% 100.00% 70.00% 100.00%

f12 AI 43.567 40.67 22.33 34.4 29.767
AFE 1742.7 1301.4 1429.1 1100.8 1905.1
AE 9.44E�07 9.23E�07 8.91E�07 9.45E�07 9.07E�07
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f13 AI 423.6 270.97 169.1 272.57 162.73
D¼30 AFE 16 944 8670.9 10 822 8722.1 10 415

AE 9.11E�04 8.98E�04 8.86E�04 8.87E�04 8.58E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f13 AI 1316.3 533.4 297.83 487.8 287.2
D¼50 AFE 52 653 17 069 19 061 15 610 18 381

AE 9.57E�04 9.28E�04 9.38E�04 9.12E�04 9.37E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f13 AI 4195.5 1246.5 631.5 1146.4 625.67
D¼100 AFE 167 820 39 889 40 416 36 684 40 043

AE 9.79E�03 9.63E�03 9.78E�03 9.63E�03 9.59E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 67
positive then it means that the current monkey is going near rth monkey and going away if it is negative.
Thus, if the position update of the monkeys are done without breaking them into mini-groups, as in original SMO, the position of the

randomly selected spider monkey SMr may or may not be better than its previous position. There may exist two cases:

Case 1: The randomly selected monkey SMr has already been updated in current iteration before the SMi.
Case 2: The randomly selected monkey is not yet updated in current iteration.

In both the cases, the position of the monkey SMr is not yet chosen from its new or previous position based on fitness, therefore, if the
random number generated by Ru is positive then it is not sure that the monkey is going towards better position or not.

In ASMO, the groups are divided into mini-groups and after generating the new positions for all the spider monkeys of that mini-group,
the better position is greedily selected for them between the new and the previous one, before switching to the next mini-group for
updating positions. Hence, if in the position update, (2) and (3), the randomly selected monkey SMr has been already updated in the same
iteration, then it can be ensured that SMi will gain better experience and will converge to a better position.
4. Experimental results

4.1. Testing and parameter setting

Three different variants of SMO algorithm have been analyzed, including the original one, with 30 different benchmark functions (f1–
f30). The details of these functions are provided in Table 1 including dimensions (D), range, maximum tolerable error (ME), type and global
optimum value (OV). These are continuous, unbiased optimization problems and have different degrees of complexity and multimodality.
The set of functions selected have different kinds of properties such as unimodal, multimodal, separable and non-separable. These
functions are taken from various sources including CEC2010 [32], CEC2014 [33] and Simon Fraser University [34]. The algorithms are
implemented in Python 2.7 and the experiments are done on a system with 2.5 GHz i5 4200 m processor with 4 GB RAM.

A unimodal function has only one extremum (minimum or maximum) in the given range space whereas a multimodal function can
have many local extrema. They are used to test if the algorithm is stuck in a local extrema while exploring search space. To analyze
different forms of complexities few shifted and rotated functions along with some hybrid functions are also used.

The algorithms involved in experiments are:

1. Original SMO.
2. ASMO with M¼4 and ASMO with M¼8.
3. AMSMO with M¼4 and AMSMO with M¼8.

Table 3
Comparison between proposed SMO variants and SMO algorithm for function f14—f28.

SMO ASMO (M¼4) AMSMO (M¼4) ASMO (M¼8) AMSMO (M¼8)

f14 AI 319.87 266.7 140.87 288.7 163.57

D¼6 AFE 12 795 8534.4 9015.5 9238.4 10 468
AE 9.45E�06 9.39E�06 9.19E�06 9.48E�06 9.23E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f14 AI 1963.3 1371.2 1031.8 1519 1029.9

D¼10 AFE 78 533 43 879 66 035 48 608 65 914
AE 9.78E�06 9.73E�06 9.67E�06 9.56E�06 9.55E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f15 AI 45.6 28.667 19 28.7 19.667

AFE 1824 917.33 1216 918.4 1258.7
AE 5.40E�21 5.94E�21 5.23E�21 6.12E�21 5.77E�21
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f16 AI 263.57 385.1 189.4 248.63 77

AFE 10 543 12 323 12 122 7956.3 4928
AE 8.42E�06 8.72E�06 8.32E�06 8.56E�06 8.47E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f17 AI 27 23.367 14.833 30.3 15.2

AFE 1080 747.73 949.33 969.6 972.8
AE 9.12E�07 9.32E�07 9.21E�07 8.87E�07 9.27E�07
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f18 AI 145.7 96.5 56.967 103.43 55.567

AFE 5828 3088 3645.9 3309.9 3556.3
AE 9.45E�06 9.56E�06 9.41E�06 9.12E�06 9.45E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f19 AI 205.3 128.8 59.9 113.33 58.133

AFE 8212 4121.6 3833.6 3626.7 3720.5
AE 8.47E�06 8.48E�06 8.33E�06 8.54E�06 8.22E�06
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f20 AI 8000 3141.4 1862 3243.5 2019

D¼30 AFE 320 000 100 524.8 119 168 103 792 129 216
AE 1.24Eþ01 9.67E�01 9.82E�01 9.72E�01 9.63E�01
SR 0.00% 100.00% 100.00% 100.00% 100.00%

f20 AI 15 000 6095.7 6524 9367 6784.1

D¼50 AFE 600 000 195 062.4 417 536 299 744 434 182.4
AE 3.46Eþ03 4.88Eþ02 4.91Eþ02 4.86Eþ02 4.88Eþ02
SR 0.00% 100.00% 100.00% 100.00% 100.00%

f21 AI 1112.5 496.5 290 465 270.97

D¼50 AFE 44 501 15 888 18 560 14 880 17 342
AE 9.12E�04 8.95E�04 9.01E�04 9.12E�04 8.92E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f21 AI 4011 1302 598.13 1155.3 634

f¼100 AFE 160 440 41 664 38 281 36 969 40 576
AE 9.63E�03 9.77E�03 9.56E�03 9.68E�03 9.71E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f22 AI 8000 10 000 5000 10 000 5000

AFE 320 000 320 000 320 000 320 000 320 000
AE 1.36Eþ02 1.26Eþ02 9.70E�02 6.95Eþ01 6.80E�03
SR 0.00% 0.00% 0.00% 0.00% 0.00%

f23 AI 2014 830.33 499.33 925 450.2

D¼50 AFE 80 560 26 571 31 957 29 600 28 813
AE 9.86E�01 9.78E�01 9.81E�01 9.69E�01 9.77E�01
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f23
AI 1622.1 925.5 401.8 843.7 505.03

D¼100 AFE 64 885 29 616 25 715 26 998 32 322
AE 9.64Eþ00 9.88Eþ00 9.78Eþ00 9.66Eþ00 9.74Eþ00
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f24 AI 5000 6250 1681 6250 3125

D¼30 AFE 200 000 200 000 107 584 200 000 200 000
AE 2.11Eþ01 2.08Eþ01 0.00Eþ00 2.04Eþ01 2.00Eþ01
SR 0.00% 0.00% 100.00% 0.00% 0.00%

f24 AI 10 000 12 500 2802.2 12 500 6250

D¼50 AFE 400 000 400 000 179 340.8 400 000 400 000
AE 2.12Eþ01 2.10Eþ01 0.00Eþ00 2.07Eþ01 2.03Eþ01

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7768

Table 3 (continued)

SMO ASMO (M¼4) AMSMO (M¼4) ASMO (M¼8) AMSMO (M¼8)

SR 0.00% 0.00% 100.00% 0.00% 0.00%

f25 AI 725.33 411.5 274 382.57 253.8

D¼50 AFE 29 013 13 168 17 536 12 242 16 243
AE 9.45E�04 9.31E�04 8.71E�04 8.77E�04 8.85E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f25 AI 2750.5 1102.7 904.67 1142.2 605.67

D¼100 AFE 110 020 35 285 57 899 36 551 38 763
AE 9.87E�03 9.54E�03 9.44E�03 9.38E�03 9.61E�03
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f26
AI 173.8 103.6 56.4 181.47 57.3

D¼10 AFE 6952 3315.2 3609.6 5806.9 3667.2
AE 7.32E�01 7.28E�01 7.33E�01 7.39E�01 7.26E�01
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f26 AI 5000 6250 3125 6250 3125

D¼30 AFE 200 000 200 000 200 000 200 000 200 000
AE 4.78Eþ00 8.51E�01 8.93E�01 1.02Eþ00 8.70E�01
SR 0.00% 0.00% 0.00% 0.00% 0.00%

f27 AI 595.93 329.23 190.1 302.2 210.2

D¼30 AFE 23 837 10 535 12 166 9670.4 13 453
AE 9.64E�04 9.55E�04 9.71E�04 9.66E�04 9.59E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f27 AI 1316.3 533.4 297.83 487.8 287.2

D¼50 AFE 52 653 17 069 19 061 15 610 18 381
AE 9.68E�04 9.57E�04 9.68E�04 9.63E�04 9.62E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f27 AI 11 201 2069.8 902 2020.5 970.23

D¼100 AFE 448 040 66 234 57 728 64 656 62 095
AE 9.67E�04 9.68E�04 9.78E�04 9.69E�04 9.77E�04
SR 100.00% 100.00% 100.00% 100.00% 100.00%

f28
AI 99.2 72.533 54.833 72.433 48.2

AFE 3968 2321.1 3509.3 2317.9 3084.8
AE 5.55E�21 4.51E�21 5.84E�21 3.91E�21 4.82E�21
SR 100.00% 100.00% 100.00% 100.00% 100.00%

Table 4
Comparison between proposed SMO variants and SMO algorithm for function f29 and f30.

SMO ASMO (M¼4) AMSMO (M¼4) ASMO (M¼8) AMSMO (M¼8)

f29 AI 5000 6250 3125 6250 3125

D¼10 AFE 200 000 200 000 200 000 200 000 200 000
AE 1.93Eþ01 4.63Eþ00 1.80Eþ00 3.65Eþ00 1.35Eþ00
SR 0.00% 0.00% 0.00% 0.00% 0.00%

f29 AI 5000 6250 3125 6250 3125

D¼30 AFE 200 000 200 000 200 000 200 000 200 000
AE 1.98Eþ02 1.81Eþ02 6.45Eþ01 1.84Eþ02 6.15Eþ01
SR 0.00% 0.00% 0.00% 0.00% 0.00%

f30 AI 3000 3750 1875 3750 1875

D¼30 AFE 120 000 120 000 120 000 120 000 120 000
AE 2.38Eþ01 2.24Eþ00 3.85E�23 5.57Eþ00 8.66E�31
SR 0.00% 0.00% 0.00% 0.00% 0.00%

f30
AI 5000 6250 3125 6250 3125

D¼50 AFE 200 000 200 000 200 000 200 000 200 000
AE 6.74Eþ01 2.05Eþ01 3.56E�07 2.36Eþ01 6.19E�13
SR 0.00% 0.00% 0.00% 0.00% 0.00%

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 69
where, M is number of mini-groups in each group. The parameter settings for these algorithms are provided in Table 1 along with
benchmark functions. The perturbation rate (pr) is varied linearly from 0.1 to 0.4 based on the equation = + (−)⁎ _pr 0.1 0.4 0.1 iter

max iter
where iter is the current iteration and max_iter are maximum iterations given.

Fig. 2. Comparison graphs for functions f1– f8.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7770
4.2. Comparison between different variants of SMO

Numerical results for benchmark problems (f1–f30) listed in Table 1 are provided in Tables 2–4. In these tables, the algorithm variants
are shown as column headers and average iterations (AI), average function evaluations (AFE), average error (AE) and success ratio (SR), are
shown as rows in front of respective functions. The AFE is the average of the function evaluations that are required to reach to terminating

condition in 60 runs. It can be shown mathematically as ∑ = FE

60
i i1
60

where FEi is the number of evaluations required in the ith trail to reach the
terminating criteria. To compare algorithms bar-graphs of the functions (Figs. 2–4) with different dimensions are shown. Also, for proper
analysis and comparison convergence plots (Fig. 5) are shown for some functions. AFE and AE comparison with SMO for different functions
is shown in Tables 5 and 6.

For comparison between various variants of SMO (for results given from Tables 2 to 6) ME has been used as the primary stopping
criteria. Thus, if the fitness value reaches below ME as given in Table 1 the function evaluation is stopped. This has been done to compare
the convergence rate of different variants of SMO. Further, maximum function evaluation (MFE) has been used as the secondary stopping
criteria if the function is not able to converge within the given MFE (as given in Table 1).

4.2.1. AFE comparison between variants of SMO
Table 2 shows comparison between SMO, ASMO and AMSMO for function f1–f13. For almost all of these functions SMO and all its ageist

variants converged below ME within MFE. It is quite clear from these functions that ageist variants got converged much faster than the
SMO algorithm for these functions with an exception being step function (f4). Also the convergence rate of ageist variants for most
functions is almost similar with a few exceptions. For Ackley function (f2) at 30 dimensions, SR for ASMO was much lesser in comparison
to SMO and AMSMO (which showed 100% SR) and it got stuck in local minima at many occasions leading to smaller AE in comparison to
SMO and AMSMO. Similar to Ackley function (f2), Greiwank function (f11) also showed lower SR in the case of ASMO as compared to SMO
and AMSMO (showing 100% SR).

Fig. 3. Comparison graphs for functions f8– f22.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 71
Table 3 shows comparison between SMO, ASMO and AMSMO for function f14–f28. Similar to functions in Table 2 all concerned algo-
rithms converged belowME in given MFE and convergence of ageist variants was much better in comparison to SMO. With few exceptions
performance of all ageist variants was quite close to each other. Also, similar to Table 2, there is not much performance difference in
variants with 4 and 8 mini-groups. SMO algorithm was not able to converge below ME within MFE for shifted Schwefel 1.2 function (f20).
Compared to this all ageist variants easily converged below ME for both 30 and 50 dimensions. For shifted Rastrigen function (f22) only

Fig. 4. Comparison graphs for functions f23– f30.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7772
AMSMO variants were able to reach global minima with SMO and ASMO getting struck at local minima. For corner shifted Ackley function
(f24) only AMSMO with 4 mini-groups (M¼4) was able to converge to global minima with other algorithms showing absolutely no
convergence as shown by their AE and SR.

Table 4 shows comparison between SMO variants for functions f29 and f30. The table clearly shows that AMSMO performed much better
in terms of AE in comparison to SMO and ASMO for both shifted rotated Rastrigen (f29) and hybrid sphere Rastrigen functions (f30).

Figs. 2–4 show comparison in bar graphs between various SMO variants for functions f1–f30. In these graphs, S is for SMO, AS4 is for
ASMO with M¼4, AM4 is for AMSMO with M¼4, AS8 is for ASMO for M¼8 and AM8 is for AMSMO with M¼8. These have been plotted to
clearly visualize Tables 2–4 data. Fig. 2 includes AFE comparison bar graphs for functions f1–f8. In all these y-axis represents AFE taken for
convergence. Fig. 3 includes AFE comparison bar graphs for functions f8–f21 and AE comparison bar graph for function f22. Fig. 4 includes
AFE comparison bar graphs for functions f23–f28 and AE comparison bar graph for functions f29 and f30. These bar graphs clearly confirm the
above mentioned observations.

Fig. 5 shows convergence curves for hybrid sphere Rastrigen function (D¼50), hybrid sphere Rosenbrock function (D¼30), Weierstrass
function (D¼10) and elliptic function (D¼100). The convergence curve for hybrid sphere Rastrigen function shows convergence only in
the case of AMSMO. Least convergence is shown by SMO which is along with ASMO got struck at local minima while AMSMO got fully

Fig. 5. Convergence plots.

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 73
converged to global minima. Convergence plots of elliptic and hybrid sphere Rosenbrock function clearly shows that how easily ASMO and
AMSMO outperform SMO with AMSMO performing marginally better. For Weierstrass function, convergence of ASMO was better than
that of AMSMO with both of them outperforming SMO.

Table 5 gives percentage improvement in terms of amount of AFE required by concerned algorithm for convergence to ME in com-
parison to SMO. Algorithms compared are ASMO and AMSMO with 4 and 8 mini-groups. If value in this table is negative then the
concerned algorithm takes that percent less AFE for convergence to ME while if it is positive then AFE taken by concerned algorithm is
more than that taken by SMO. Table 6 gives the percentage improvement in terms of AE given by concerned algorithm with respect to
SMO algorithm.

It is clear from these tables and graphs that ageist variants of SMO (i.e. ASMO and AMSMO) performed much better than SMO in terms
of AFE and AE except function f4 (step function). Among the ageist variants AMSMO with 4 mini-groups turned out to be most stable of the
lot.

4.3. Parameteric and Non-parametric tests between SMO, ASMO and AMSMO

For the parametric and non parametric tests, AMSMO (4 mini-groups) has been used as the base algorithmwith which SMO and ASMO
have been compared. Table 7 shows the p-value, h-value along with the corresponding t-value of SMO and ASMO in comparison to AMSMO
for the t-test. p-Value represents probability of rejection of null hypothesis. Its value is between 0 and 1. Lesser the p-value more is the
difference between the compared algorithms. Hypothesis test or h-value also indicates the rejection of null hypothesis. h¼1 represents
confirmation on rejection of null hypothesis and thus represents that compared algorithms are different. For hypothesis test significance
level of 5% is taken. The t-test assesses whether the means of two groups of results are statistically different from each other. For purpose
of testing two-tailed t-tests was adopted with 5% significance level and 118 degrees of freedom. The negative t-value indicates that
AMSMO is better than the concerned algorithm. Further comparison has been done using the Wilcoxon signed rank test [35] on AFE and AE
given in Tables 2–4. For this test the comparison data (Tables 2–4) was taken in normalized formwith a significance level of 5%. For most of
the functions, t-test has given a negative value with the p-value being small and h being 1 for both SMO and ASMO algorithms in
comparison to AMSMO with the exception being step function in SMO and elliptic function and Goldstien function in ASMO. But in these
functions, the performance of AMSMO was comparable to the concerned function. The highly negative t-value of SMO and ASMO for
corner shifted Ackley in comparison to AMSMO is due to lack of convergence in the case of ASMO and SMO for this function. Compared to
this AMSMO was easily able to converge to global minima. The high performance of AMSMO in the case of corner shifted Ackley, shifted
Rastrigen and shifted rotated Rastrigen function in comparison to SMO and ASMO again proves the high stability of AMSMO.

4.4. Complexity comparison of SMO, ASMO and AMSMO

For calculation of complexity, formula given in CEC 2014 benchmark function report has been used. Complexity value for SMO, ASMO
and AMSMO are found to be 23.19, 15.61 and 13.42, respectively. The reduction in complexity is due to increased convergence rate for
AMSMO and ASMO in comparison to SMO. Due to low convergence of original SMO algorithm, rate of group breaking and merging is much
more as compared to AMSMO and ASMO algorithms.

Due to lower complexity of AMSMO, in comparison to SMO and ASMO, for the same amount of function evaluations, AMSMO algorithm
takes much lesser computational time in comparison to SMO and ASMO.

Table 5
Percentage AFE required in comparison to original SMO.

Function name Dimension ASMO
(M¼4)
(%)

ASMO
(M¼8)
(%)

AMSMO
(M¼4) (%)

AMSMO
(M¼8) (%)

Elliptic 30 �47.00 �49.53 �37.53 �39.73
50 �66.35 �66.07 �58.99 �62.94
100 �72.69 �77.03 �76.12 �75.26

Ackley 10 �46.53 �47.88 �27.35 �31.27

Weierstrass 10 �41.71 �42.43 �28.45 �29.02
30 �58.82 �56.52 �55.09 �60.11

Step function 30 67.92 131.04 28.13 33.66

Axis paralled� 30 �44.78 �45.77 �35.98 �35.09
hyper ellipsoid 50 �64.97 �65.15 �59.03 �59.63

100 �72.02 �74.66 �76.69 �76.47

Beale 2 �17.47 9.64 �30.40 �22.58

Brain Rcos 2 �62.19 �50.65 �41.94 �44.95

Cigar 30 �49.03 �54.06 �43.42 �45.85
50 �61.57 �63.64 �58.64 �56.73
100 �71.46 �77.11 �76.61 �77.76

Dekkers and Aarts 2 �37.38 �38.43 �35.26 �32.79

Six Hump Camel
Back

2 �45.48 �36.16 �39.33 �27.83

Griewank 30 �62.78 �62.10 �53.90 �55.14
50 �45.22 �43.87 �67.18 �65.00

Goldstein price 2 �25.33 �36.83 �17.98 9.32

Discus 30 �48.83 �48.52 �36.13 �38.53
50 �67.58 �70.35 �63.80 �65.09
100 �76.23 �78.14 �75.92 �76.14

Trid 6 �33.30 �27.80 �29.52 �18.17
10 �44.13 �38.11 �15.91 �16.06

Holder Table 2 �49.65 �49.65 �33.33 �30.88

Drop Wave 2 16.88 �24.55 14.72 �53.26

Hartmann 3D 3 �30.68 �10.22 �11.70 �9.93

Levy 10 �47.01 �43.22 �37.41 �38.97

Shubert 2 �49.81 �55.85 �53.30 �52.57

Shifted Schwefel
1.2

30 �68.59 �67.57 �62.76 �59.62

50 �67.49 �50.04 �30.41 �27.64

Shifted Elliptic 50 �64.30 �66.56 �58.29 �61.03
100 �74.03 �76.96 �76.15 �74.71

Corner Shifted� 50 �67.02 �63.26 �60.33 �64.23
Schwefel 1.2 100 �54.36 �58.38 �60.17 �50.19

Corner Shifted� 50 �54.61 �57.80 �39.56 �44.01
Elliptic 100 �67.93 �66.77 �70.39 �64.80

Hybrid Sphere
Rosenbrock

10 �52.36 �16.04 �48.08 �47.25

Katsurra 30 �55.81 �59.43 �48.99 �43.55
50 �67.58 �70.37 �63.80 �65.09
100 �85.22 �85.57 �87.12 �86.14

Treccani 2 �37.91 �36.53 �5.34 �15.92

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7774
4.5. Comparison of AMSMO with various newly proposed algorithms

Table 8 compares AMSMO with five recently proposed state-of-the-art algorithms. Ten functions have been used to compare our
proposed modified variant of SMO (AMSMO). All functions are allowed to evaluate for ×2 105 evaluations. Average of 20 runs has been
taken for comparison purpose. For the convenience error value of × −1 10 100 has been taken as 0. Table 8 clearly shows that the per-
formance of AMSMO algorithm is comparable to newly proposed algorithms even outperforming other algorithms as in the case of
Schwefel 2.22 function. Further Wilcoxon test confirmed the comparative performance of AMSMO algorithm in comparison to these
current state-of-the-art algorithms. It can also be stated from p- and h-value (wilcoxon test) for LdDE and ECLPSO that AMSMO has
outperformed for the compared functions.

Table 7
Non parametric tests for comparison of SMO and ASMO with AMSMO.

Function D SMO ASMO

p-value h t-value p-value h t-test

Elliptic 50 3.84E�08 1 �14.8556 0.001 1 4.5582
Ackley 30 7.87E�06 1 �8.3751 0.0027 1 �3.4802
Step 30 0.4932 0 0.6994 0.1692 0 �1.4325
Corner Shifted

Ackley
30 1.09E�17 1 �317.2561 6.54E�24 1 �1901.8

Greiwank 50 8.95E�04 1 �9.2630 0.03177 1 �3.0895
Goldstein Price 12 0.0053 1 �3.3948 0.6625 0 0.4497
Shifted Rastrigen 50 0.0037 1 �4.5997 0.0032 1 �4.3614
Shifted Rotated

Rastrigen
30 1.62E�11 1 �32.8377 1.02E�08 1 �17.0384

Wilcoxon test 2.41E�10 1 0.4882 0

Table 6
Percent AE in comparison to original SMO.

Function name Dimensions ASMO
(M¼4)
(%)

ASMO
(M¼8)
(%)

AMSMO
(M¼4) (%)

AMSMO
(M¼8) (%)

Shifted Rastrigin 50 �7.61 �49.12 �99.93 �100.00

Hybrid Sphere
Rosenbrock

30 �82.17 �78.68 �81.31 �81.79

Shifted Rotated
Rastrigin

10 �75.98 �81.07 �90.68 �92.97

30 �8.94 �7.42 �67.51 �69.01

Hybrid Sphere
Rastrigin

30 �90.59 �76.57 �100.00 �100.00

50 �69.59 �64.96 �100.00 �100.00

Table 8
Comparison of AMSMO with various newly proposed algorithms.

D AMSMO LdDE [22] ILABC [26] SSG-PSO [14] ECLPSO [11] EABC [27]

Sphere 30 0.00Eþ00 5.68E�14 7.54E�43 0.00Eþ00 1.00E�96 9.26E�67
Elliptic 30 0.00Eþ00 6.23E�14 8.61E�39 0.00Eþ00 8.41E�92 2.76E�64
Ackley 30 2.18E�14 3.26E�11 2.77E�14 1.25E�14 3.55E�15 1.36E�14
Rosenbrock 30 8.27Eþ00 1.87Eþ00 1.01E�01 6.90Eþ00 2.75Eþ01 9.06E�02
Rastrigen 30 0.00Eþ00 3.21Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
Griewank 30 0.00Eþ00 2.11E�02 3.64E�13 0.00Eþ00 0.00Eþ00 0.00Eþ00
Schwefel 2.22 30 2.25E�86 4.34E�08 6.02E�23 9.33E�22 2.02E�31 5.85E�35
Schwefel 1.2 30 1.29E�01 3.74E�09 8.92Eþ01 4.16Eþ01 5.62Eþ01 1.14Eþ02
Shifted Rosenbrock 30 1.26Eþ01 3.27Eþ00 8.34E�01 2.64E�13 3.42Eþ01 2.17E�01
Shifted Rastrigen 30 0.00Eþ00 4.91Eþ00 0.00Eþ00 1.22Eþ01 0.00Eþ00 0.00Eþ00

Wilcoxon test p 0.0273 0.0781 0.4375 0.0313 0.2188
h 1 0 0 1 0

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 75
4.6. Comparison of AMSMO with newly proposed SMO variants

Table 9 compares AMSMO with newly proposed SMO variants. Comparison has been done in terms of the average number of function
evaluations taken by the algorithm to reach the ME as given in the table.

Table 9 clearly shows that AMSMO outperforms MPU-SMO and Sa-SMO in most of the tested functions which is further proved by the
wilcoxon test which gave low p-values (lower than 0.05) and h-value of 1 for both MPU-SMO and Sa-SMO algorithms.

4.7. Comparison of AMSMO with MVMO

Table 10 shows AE comparison for ×2 105 function evaluations for 9 different functions between AMSMO and CEC2014 winner Mean
Variance Mapping Optimization (MVMO) [36]. For the purpose of testing, the rotation and shifting data as in CEC2014 is used. An error of

× −1 10 8 has been taken as zero error. The above table clearly shows the better performance of AMSMO in terms of AE as compared to

Table 9
Comparison of AMSMO with newly proposed SMO variants.

D ME AMSMO MPU-SMO
[29]

Sa-SMO [30]

Sphere 30 1.00E�05 13 120.2 44 435.12 14 597.25
Elliptic 30 1.00E�05 13 760.133 65 693.17 17 563.39
Griewank 30 1.00E�05 12 864.1 87 401.67 28 207.11
Rosenbrock 30 5.00Eþ01 33 088 201 808.6 67 433
Rastrigen 30 1.00E�05 144 680.73 91 623.6 81 293.64
Beale 2 1.00E�05 1670.4 2898.423 4414.41
Branin Rcos 2 1.00E�06 1728 18 496.32 31 362.01
Ackley 30 1.00E�05 18 624 10 824.76 24 075.81
Shifted

Rastrigen
30 1.00E�05 141 160.5666 Not

Converged
Not Converged

Goldstien 2 1.00E�14 3392.23 8595.18 4885.353
Six Hump Camel

Back
2 1.00E�06 652.8 Not

Converged
Not Converged

Dekker's and
Aarts

2 5.00E�01 782.93 2181.96 1407.78

Wilcoxon test p 0.0034 0.0049
h 1 1

Table 10
Comparison of AMSMO with MVMO.

D AMSMO MVMO [36]

Shifted sphere 10 0.000Eþ00 0.000Eþ00
20 0.000Eþ00 0.000Eþ00
30 0.000Eþ00 0.000Eþ00

Shifted ellipsoid 10 0.000Eþ00 0.000Eþ00
20 0.000Eþ00 0.000Eþ00
30 0.000Eþ00 0.000Eþ00

Shifted rotated ellipsoid 10 0.000Eþ00 0.000Eþ00
20 0.000Eþ00 0.000Eþ00
30 0.000Eþ00 8.849E�01

Shifted step function 10 0.000Eþ00 2.650Eþ00
20 8.333E�02 6.550Eþ00
30 9.600E�01 1.270Eþ01

Shifted rotated Rastrigin 10 1.795Eþ00 2.617Eþ01
20 6.943Eþ00 4.253Eþ01
30 6.446Eþ01 8.493Eþ01

Shifted Griewank 10 2.027E�02 4.397E�01
20 0.000Eþ00 0.000Eþ00
30 0.000Eþ00 0.000Eþ00

Shifted Rosenbrock 10 2.787Eþ00 9.546Eþ00
Hybrid function (F18�CEC14) 30 2.786Eþ01 2.894Eþ01
Composition function(F23�CEC�14) 30 3.20Eþ02 3.15Eþ02

Wilcoxon test p 0.0020
1

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–7776
MVMO for the same number of AFE for the shifted step and shifted rotated Rastrigen functions. For other functions performance of
AMSMO and MVMO was comparable. Further Wilcoxon test on these two algorithms gave a p-value lower than the significance level and
the h-value of 1 thus indicating better performance of AMSMO in comparison to MVMO.
5. Conclusion

The paper comprises newly proposed variants of SMO, known as ASMO and AMSMO respectively. These algorithms are based upon
difference in age and other dynamic abilities of spider monkeys like interaction, speed of communication and adapting to the changes in
the environment. These algorithms are compared with the original SMO algorithm and results are recorded. The graph and tables proves
the importance of adding this feature in terms of convergence rate. In all the above variants of SMO tested and compared it is found that
the modified version of ASMO i.e. AMSMO with 4 mini-groups is most stable and has shown thehighest convergence rate in many of the
tested benchmark functions. To further compare the performance various non-parametric tests were done which again showed the
significance of AMSMO algorithm compared to SMO and ASMO. For better analysis of convergence rate in terms of time, complexity
calculations were done. Lower complexity and better convergence of AMSMO proves it to have a better convergence rate in terms of time
in comparison to SMO and ASMO algorithms. Further comparisons of AMSMO algorithm was done with various state-of-the-art algo-
rithms like LdDE, ILABC, SSG-PSO, ECLPSO, EABC, MPU-SMO, Sa-SMO and MVMO proves the significance of AMSMO in comparison to

貢獻點在增加收斂速度

A. Sharma et al. / Swarm and Evolutionary Computation 28 (2016) 58–77 77
modern optimization techniques.
Future prospect would be to extend the use of AMSMO algorithm in solving multiobjective optimization problems. The proposed

algorithm can be used in various complex real world optimization problems like design of wireless telecommunications networks, hydro-
thermal coordination, clustering and data mining.
References

[1] Craig Reynolds, Flocks, herds and schools: a distributed behavioral model. SIGGRAPH '87: in: Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (Association for Computing Machinery), 1987. pp. 25–34.

[2] Bianchi Leonora, Marco Dorigo, Luca Maria Gambardella, Walter J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Natural Comput. Int. J.
8 (2) (2009) 239–287.

[3] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268–308.
[4] E.-G. Talbi, Metaheuristics: From Design to Implementation, vol. 74, John Wiley & Sons, 2009.
[5] Kenneth Sorensen, Metaheuristic—the metaphor exposed, Int. Trans. Oper. Res. 22 (2012) 3–18.
[6] G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in: Proceedings of the NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June

26–30, 1989.
[7] M. Dorigo, T. Stützle, Ant colony optimization: overview and recent advances, Techreport, IRIDIA, Universite Libre de Bruxelles, 2009.
[8] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942-1948.
[9] K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22 (3) (2002) 52–67.
[10] D. Karaboga, et al., A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214 (1) (2009) 108–132.
[11] X. Yu, X. Zhang, Enhanced comprehensive learning particle swarm optimization, Appl. Math. Comput. 242 (2014) 265–276.
[12] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol.

Comput. 10 (2006) 281–295.
[13] Y.-B. Shin, E. Kita, Search performance improvement of particle swarm optimization by second best particle information, Appl. Math. Comput. 246 (2014) 346–354.
[14] G. Wu, D. Qiu, Y. Yu, W. Pedrycz, M. Ma, H. Li, Superior solution guided particle swarm optimization combined with local search techniques, Expert Syst. Appl. 41 (16)

(2014) 7536–7548.
[15] Z. Ren, A. Zhang, C. Wen, Z. Feng, A scatter learning particle swarm optimization algorithm for multimodal problems, IEEE Trans. Cybern. 44 (2014) 1127–1140.
[16] Ran Cheng, Yaochu Jin, A social learning particle swarm optimization algorithm for scalable optimization, Inf. Sci. 291 (2015) 43–60.
[17] M.R. Tanweer, S. Suresh, N. Sundararajan, Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world opti-

mization problems, Inf. Sci. 326 (2016) 1–24.
[18] Yuhua Li, et al., Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems, Inf. Sci. 293 (2015)

370–382.
[19] M.R. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm optimization algorithm, Inf. Sci. 294 (2015) 182–202.
[20] Wei Hong Lim, Nor Ashidi Mat Isa, Adaptive division of labor particle swarm optimization, Expert Syst. Appl. 42.14 (2015) 5887–5903.
[21] R. Storn, K.V. Price, Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, ICSI, USA, Technical Report TR-95-

012, March, 1995.
[22] N.D. Jana, J. Sil, Levy distributed parameter control in differential evolution for numerical optimization, Nat. Comput. (2015) 1–14.
[23] M. Yang, C. Li, Z. Cai, J. Guan, Differential evolution with auto-enhanced population diversity, IEEE Trans. Cybern. 45 (2) (2015) 302–315, art. no. 6868218.
[24] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simul. Soc. Comput. Simul. 76 (2001) 60–68.
[25] E. Valian, S. Tavakoli, S. Mohanna, An intelligent global harmony search approach to continuous optimization problems, Appl. Math. Comput. 232 (2014) 670–684.
[26] W.F. Gao, L.L. Huang, S.Y. Liu, C. Dai, Artificial bee colony algorithm based on information learning, IEEE Trans. Cybern. 45 (12) (2015) 2827–2839.
[27] Wei-feng Gao, San-yang Liu, Ling-ling Huang, Enhancing artificial bee colony algorithm using more information-based search equations, Inf. Sci. 270 (2014) 112–133.
[28] J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider Monkey Optimization algorithm for numerical optimization, Memetic Comput. (2013) 1–17.
[29] S. Kumar, V.K. Sharma, R. Kumari, Modified position update in Spider Monkey Optimization Algorithm, Int. J. Emerg. Technol. Comput. Appl. Sci. 7 (2) (2014) 198–204.
[30] S. Kumar, V. Kumar Sharma, R. Kumari, Self-adaptive spider monkey optimization algorithm for engineering optimization problems, Int. J. Inf. Commun. Comput.

Technol. II (2014) 96–107.
[31] K. Gupta, K. Deep Tournament Selection Based Probability Scheme in Spider Monkey Optimization Algorithm: In Harmony Search Algorithm, Springer, Berlin, Hei-

delberg, 2016, pp. 239–250.
[32] Ke Tang, Xiaodong Li, P.N. Suganthan, Zhenyu Yang, Thomas Weise, Benchmark functions for the CEC 2010 special session and competition on large-scale global

optimization, Nature Inspired Computation and Applications Laboratory (NICAL), School of Computer Science and Technology, University of Science and Technology of
China, Hefei, Anhui, China, School of Computer Science and Information Technology, RMIT University, Australia, School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, January 8, 2010.

[33] J.J. Liang1, B.Y. Qu2, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter
numerical optimization, School of Electrical Engineering, Zhengzhou University, Zhengzhou, China, School of Electric and Information Engineering, Zhongyuan Uni-
versity of Technology, Zhengzhou, China, School of EEE, Nanyang Technological University, Singapore, December 2013.

[34] S. Surjanovic, D. Bingham. Virtual Library of Simulation Experiments: Test Functions and Datasets, Retrieved July 15, 2015, from 〈http://www.sfu.ca/�ssurjano〉, 2013.
[35] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm

intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.
[36] T.H. Khoa, P.M. Vasant, M.S.B. Singh, V.N. Dieu, Swarm based mean-variance mapping optimization (MVMOs) for economic dispatch problemwith valvepoint effects, in:

IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2014, pp. 59–63.

http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref2
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref2
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref2
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref3
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref3
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref5
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref5
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref9
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref9
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref10
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref10
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref11
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref11
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref12
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref12
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref12
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref13
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref13
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref14
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref14
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref14
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref15
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref15
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref16
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref16
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref17
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref17
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref17
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref18
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref18
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref18
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref19
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref19
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref20
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref20
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref55255
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref55255
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref23
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref23
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref24
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref24
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref25
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref25
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref25559
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref25559
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref28
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref28
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref29
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref29
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref30
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref30
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref30
http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref35
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref35
http://refhub.elsevier.com/S2210-6502(16)00012-2/sbref35

	Ageist Spider Monkey Optimization algorithm
	Introduction
	Spider monkey Optimization
	Social behavior of spider monkeys
	Spider Monkey Optimization algorithm
	Major steps of SMO algorithm

	Problems with SMO algorithm

	Modified approach—ASMO
	ASMO Algorithm
	Algorithm Logic

	Experimental results
	Testing and parameter setting
	Comparison between different variants of SMO
	AFE comparison between variants of SMO

	Parameteric and Non-parametric tests between SMO, ASMO and AMSMO
	Complexity comparison of SMO, ASMO and AMSMO
	Comparison of AMSMO with various newly proposed algorithms
	Comparison of AMSMO with newly proposed SMO variants
	Comparison of AMSMO with MVMO

	Conclusion
	References

