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Abstract

The greatest integer that does not belong to a numerical semigroup

S is called the Frobenius number of S. The Frobenius problem, which

is also called the coin problem or the money changing problem, is a

mathematical problem of finding the Frobenius number. In this paper,

we solve the Frobenius problem for sexy prime triplets.

1 Introduction

The greatest integer that does not belong to a numerical semigroup S is
called the Frobenius number of S and is denoted by F (S). In other words,
the Frobenius number is the largest integer that cannot be expressed as a
sum

∑n

i=1 tiai, where t1, t2, ..., tn are nonnegative integers and a1, a2, ..., an
are generators of S (See §2.1 for the definition of generators). Finding the
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Frobenius number is called the Frobenius problem, the coin problem or the
money changing problem. The Frobenius problem is not only interesting for
pure mathematicians, but it is also connected with graph theory [10, 11]
and the theory of computer science [17], as introduced in [16]. There are
explicit formulas for the Frobenius number when only two relatively prime
numbers are present as a generator of a numerical semigroup [32]. For the
case of three relatively prime numbers, it was shown decades ago that there
is a somewhat algorithmic method to obtain the Frobenius number using the
Euclidean algorithm [22], and more recently, semi-explicit formulas [20, 33]
were obtained.

On the other hand, F. Curtis proved in [4] that the Frobenius number for
three or more relatively prime numbers cannot be given by a finite set of poly-
nomials, and Ramı́rez-Alfonśın proved in [18] that the problem is NP-hard.
Currently, only algorithmic methods of determining the general formula for
the Frobenius number of a numerical semigroup whose generating set has
three or more relatively prime numbers [2, 3]. From an algebraic viewpoint,
rather than finding the general formula for the case of three or more rela-
tively prime numbers, the formulae for special cases were found such as the
Frobenius number of a numerical semigroup whose generating set consists
of a geometric sequence [15], Pythagorean triples [6] and three consecutive
squares or cubes [12]. Recently, various methods of solving the Frobenius
problem for numerical semigroups have been suggested in [1, 23, 27, 28], etc.
In particular, a method of computing the Apéry set and obtaining the Frobe-
nius number using the Apéry set is an efficient tool for solving the Frobenius
problem for numerical semigroups as reported in [13, 19, 27]. Furthermore,
this method was used to obtain the Frobenius number in recent articles such
as the ones presenting the Frobenius problems for Fibonacci numerical semi-
groups [14], Mersenne numerical semigroups [26], Thabit numerical semi-
groups [24], some generalizations of Thabit numerical semigroups [7, 30, 31],
and repunit numerical semigroups [25].

As a motivation of this paper, note that there is a newest result which uses
the Apéry set to compute the Frobenius number, genus, pseudo-Frobenius
numbers and type of a numerical semigroup whose generating set is a prime
k-tuplet [21]. Here, a prime k-tuplet is a sequence of consecutive prime
numbers Pk = (p1, . . . , pk), and assuming the generalized Hardy-Littlewood
conjecture [8, 9] the number of prime k-tuplets is infinite. Also, in [21], the
authors introduce the cousin prime (p, p + 4) where p and p+ 4 are primes,
sexy prime (p, p + 6) where p and p + 6 are primes, and sexy prime triplet
(p, p+ 6, p+ 12) where p, p + 6, and p+ 12 are primes.
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In this paper, we find the Apéry set, Frobenius number, pseudo-Frobenius
numbers, genus, and type of the semigroups generated by the sexy prime
triplets. One of our main results is summarized in the following theorem.

Theorem 1.1. The Frobenius number of a numerical semigroup with a sexy
prime triplet {p, p+ 6, p+ 12} as a generating set is a quadratic polynomial
of p whose leading coefficient has denominator 2.

For the details, see the proof of Corollary 3.3.

This paper is organized as follows. In Section 2, we introduce some prelim-
inaries on the Frobenius numbers of numerical semigroups with relevant facts
(see §2.1), and the sexy prime triplets (see §2.2). In Section 3, we present a
method to obtain the Apéry set, Frobenius number, pseudo-Frobenius num-
bers, genus and type for the semigroups generated by the sexy prime triplets.

2 Preliminaries

In this section, we provide some auxiliary facts for our main results.

2.1 Numerical semigroup and submonoid

Let N be the set of nonnegative integers. We introduce the notions of a
numerical semigroup and a submonoid generated by a nonempty subset.

Definition 2.1. A numerical semigroup is a subset S of N that is closed
under addition and contains 0, such that N\S is finite.

Definition 2.2. Given a nonempty subset A of a numerical semigroup N,
we denote by

〈

A
〉

the submonoid of (N,+) generated by A, that is,

〈

A
〉

= {λ1a1 + · · ·+ λnan | n ∈ N\{0}, ai ∈ A, λi ∈ N

for all i ∈ {1, · · · , n}}.

In addition, we recall several theorems and definitions that are directly
related to the above concepts.

Theorem 2.3. ([24, 27]). Let
〈

A
〉

be the submonoid of (N,+) generated by
a nonempty subset A ⊆ N. Then

〈

A
〉

is a numerical semigroup if and only
if gcd(A) = 1.
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One easy thing to see is that if A1, A2 are two nonempty subsets of N
with A1 ⊆ A2, then 〈A1〉 ⊆ 〈A2〉. In particular, we can think of the smallest
element in the set of nonempty subsets A ⊆ N which generate the same
numerical semigroup.

Definition 2.4. If S is a numerical semigroup and S =
〈

A
〉

, then we say
that A is a system of generators of S. Moreover, if S 6=

〈

X
〉

for all X ( A,
then we say that A is a minimal system of generators of S.

Regarding Definition 2.4, one interesting thing is the following theorem.

Theorem 2.5. ([27]). Every numerical semigroup S admits a finite and
unique minimal system of generators.

This fact naturally motivates:

Definition 2.6. The cardinality of the minimal system of generators of S is
called the embedding dimension of S and is denoted by e(S).

Now, we provide two more relevant concepts.

Definition 2.7. The cardinality of N\S is called the genus of S and is de-
noted by g(S).

Definition 2.8. (a) An integer x is a pseudo-Frobenius number for S if
x 6∈ S and x+ s ∈ S for all s ∈ S\{0}.
(b) The set of pseudo-Frobenius numbers of S is denoted by PF (S).
(c) The cardinality of PF (S) is called the type of S and denoted by t(S).

Example 2.9. Let A = {7, 11, 13}. Then we have the following:

• S = 〈A〉 is a numerical semigroup because gcd(7, 11, 13) = 1.

• Since 13 < 2·7, A is a minimal system of generators of S. In particular,
we have e(S) = 3.

• Let a ∈ N. We use a classical method to find the Frobenius number,
the genus, the pseudo-Frobenius numbers, and the type of S.

– If n ≡ 0 (mod 7) any positive number n = 7a can be represented.

– If n ≡ 1 (mod 7) any positive number n = 2 · 11 + 7a = 22 + 7a
can be represented.

– If n ≡ 2 (mod 7) any positive number n = 11+2·13+7a = 37+7a
can be represented.
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– If n ≡ 3 (mod 7) any positive number n = 11+ 13+ 7a = 24+ 7a
can be represented.

– If n ≡ 4 (mod 7) any positive number n = 11 + 7a can be repre-
sented.

– If n ≡ 5 (mod 7) any positive number n = 2 · 13 + 7a = 26 + 7a
can be represented.

– If n ≡ 6 (mod 7) any positive number n = 13 + 7a can be repre-
sented.

Since any positive number greater than or equal to 31 can be represented
by an integral combination of 7, 11, and 13, we conclude that F (S) = 30.
Also, since

S = N\ ({1, 2, 3, 4, 5, 6} ∪ {8, 15} ∪ {9, 16, 23, 30} ∪ {10, 17} ∪ {12, 19}) ,

we have g(S) = 6 + 2 + 4 + 2 + 2 = 16. Finally, it is clear that
PF (S) = {15, 30, 19} and t(S) = 3.

For the rest of this subsection, we introduce the method of finding the
Frobenius number using Apéry set. We start with the following definition.

Definition 2.10. Let S be a numerical semigroup and let x ∈ S\{0}. Then
we define the Apéry set of x in S to be the set Ap(S, x) = {s ∈ S|s−x 6∈ S}.

The relation among the Frobenius number, genus, and Apéry set of a
numerical semigroup is given in the following lemma.

Lemma 2.11. ([27, 29]). Let S be a numerical semigroup and let x ∈ S\{0}.
Then we have
(a) F (S) = max(Ap(S, x))− x.
(b) g(S) = 1

x
(
∑

w∈Ap(S,x)w)−
x−1
2
.

Example 2.12. Let S = 〈{7, 11, 13}〉 as in Example 2.9. Then we have
Ap(S, 7) = {0, 11, 13, 22, 24, 26, 37}, F (S) = maxAp(S, 7) − 7 = 30, and
g(S) = 1

7
(0 + 11 + 13 + 22 + 24 + 26 + 37)− 7−1

2
= 16.

2.2 Sexy prime triplets

Now, we turn our attention to sexy prime triplets.

Definition 2.13. Sexy primes are pairs of primes of the form (p, p+6) and
sexy prime triplets are 3-tuples of primes of the form (p, p+ 6, p+ 12).
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It is clear that if p+ 6 or p + 12 is not a prime, then (p, p + 6, p+ 12) is
not a sexy prime triplet. Thus it is efficient to exclude the trivial cases that
p + 6 or p + 12 is not a prime. For convenience, we let p = 60k + α where
0 ≤ α,≤ 59. Note that p+6 = 60k+ (α+6) (resp. p+12 = 60k+ (α+12))
is not a prime when gcd(60, α + 6) 6= 1 (resp. gcd(60, α + 12) 6= 1) and this
condition is equivalent to gcd(30, α+ 6) 6= 1 (resp. gcd(30, α+ 12) 6= 1).

Now we can tell what the sexy prime triplets look like.

Lemma 2.14. Let (p, p + 6, p + 12) be a sexy prime triplet. Then (p, p +
6, p+ 12) is of one of the following 4 forms:

1. (30k + 1, 30k + 7, 30k + 13)

2. (30k + 7, 30k + 13, 30k + 19)

3. (30k + 11, 30k + 17, 30k + 23)

4. (30k + 17, 30k + 23, 30k + 29)

Remark 2.15. In light of Dickson’s conjecture ([5]), we expect that the num-
ber of each form of sexy prime triplets is infinite.

3 Main Results

In this section, we provide our main results on the Frobenius numbers of
semigroups generated by each of the form of sexy prime triplets. We give
a detailed proof for the semigroup generated by a sexy prime triplet of the
form (30k+1, 30k+7, 30k+13) as the first case, and omit the details of the
proofs for remaining cases due to the fact that the arguments are somewhat
similar as in the first case.

3.1 The first form: S = 〈30k + 1, 30k + 7, 30k + 13〉

We begin with the following easy observation: for any k ∈ N, we have

1. (15k + 7)(30k + 1) = (30k + 7) + 15k(30k + 13)

2. 2(30k + 7) = (30k + 1) + (30k + 13)

3. (15k + 1)(30k + 13) = (15k + 6)(30k + 1) + (30k + 7)
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These three equations are the representations of x(30k+1), y(30k+7), z(30k+
13) with the least positive integer coefficients x, y, z by the nonnegative in-
teger combinations of other elements in the set {30k+ 1, 30k+ 7, 30k+ 13}.

Using the above equations, we have the following lemma which indicates
the shape of a subset of the Apéry set, Ap(S, 30k + 1).

Lemma 3.1. Let k ∈ N and S = 〈30k + 1, 30k + 7, 30k + 13〉. Then the set

{a(30k+13) | a ∈ {0, 1, . . . , 15k}}∪{(30k+7)+a(30k+13) | a ∈ {0, 1, . . . , 15k−1}}

is a subset of Ap(S, 30k + 1).

Proof. Since gcd(30k + 1, 30k + 13) = 1, it is clear that 15k(30k + 13) ∈
Ap(S, 30k + 1).

Now, suppose that there is an element α(30k+7)+β(30k+13) ∈ {a(30k+
13) | a ∈ {0, 1, . . . , 15k−1}}∪{(30k+7)+a(30k+13) | a ∈ {0, 1, . . . , 15k−1}}
such that α(30k + 7) + β(30k + 13) 6∈ Ap(S, 30k + 1). Then we have

(x1 + 1)(30k + 1) = (α− x2)(30k + 7) + (β − x3)(30k + 13)

for some x1, x2, x3 ∈ N, which, in turn, implies that β ≥ 15k. Therefore
α(30k+7)+β(30k+13) ∈ Ap(S, 30k+1) for any α(30k+7)+β(30k+13) ∈
{a(30k + 13) | a ∈ {0, 1, . . . , 15k − 1}} ∪ {(30k + 7) + a(30k + 13) | a ∈
{0, 1, . . . , 15k − 1}}.

Now we are ready to suggest the following theorem for Apéry set of the sexy
prime triplets of the form (30k + 1, 30k + 7, 30k + 13).

Theorem 3.2. Let k ∈ N and S = 〈30k + 1, 30k + 7, 30k + 13〉. Then we
have Ap(S, 30k + 1) = {a(30k + 13) | a ∈ {0, 1, . . . , 15k}} ∪ {(30k + 7) +
a(30k + 13) | a ∈ {0, 1, . . . , 15k − 1}}.

Proof. Consider the equation (15k+7)(30k+1) = (30k+7)+15k(30k+13)
which is already given. Note that any element of T = {a(30k + 13)|a ∈
{0, 1, . . . , 15k}}∪ {(30k+7)+ a(30k+13)|a ∈ {0, 1, . . . , 15k− 1}} is also an
element of Ap(S, 30k+1) by Lemma 3.1. Then the desired result follows from
the fact that both T and Ap(S, 30k + 1) have the same number of elements,
namely, 2× (15k + 1)− 1 = 30k + 1.

As an immediate consequence of Theorem 3.2, we obtain the Frobenius num-
ber, pseudo-Frobenius number, genus, and type of the numerical semigroup
〈30k + 1, 30k + 7, 30k + 13〉.
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Corollary 3.3. Let k ∈ N and S = 〈30k + 1, 30k + 7, 30k + 13〉. Then we
have:

(a) F (S) = 450k2 + 165k − 1.

(b) g(S) = 225k2 + 90k.

(c) PF (S) = {450k2 + 165k − 1, 450k2 + 165k − 7} and t(S) = 2.

Proof. (a) This can be obtained by doing a simple computation as follows:

F (S) = max(AP(S, 30k + 1))− (30k + 1)

= 15k(30k + 13)− (30k + 1) = 450k2 + 165k − 1.

(b) This also follows from the following direct computation:

g(S) =
1

30k + 1

(

(15k)(15k + 1)(30k + 13)

2
+ (15k)(30k + 7)

+
(15k − 1)(15k)(30k + 13)

2

)

−
30k

2

= 225k2 + 90k.

(c) It is clear by considering the maximal elements in the Apéry set of S as
follows:

maximals≤S(AP(S, 30k + 1))

= {15k(30k + 13), (30k + 7) + (15k − 1)(30k + 13)}.

This completes the proof.

Similar arguments apply for other forms, and we summarize the analogous
results in the next three subsequent subsections.

3.2 The second form: S = 〈30k + 7, 30k + 13, 30k + 19〉

Let us record the following equations.

1. (15k + 10)(30k + 7) = (30k + 13) + (15k + 3)(30k + 19)

2. 2(30k + 13) = (30k + 7) + (30k + 19)

3. (15k + 4)(30k + 19) = (15k + 9)(30k + 7) + (30k + 13)
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Using the above equations, we can describe the shape of a subset of the
Apéry set Ap(S, 30k + 7).

Lemma 3.4. Let k ∈ N and S = 〈30k + 7, 30k + 13, 30k + 19〉. Then we
have {a(30k+19) | a ∈ {0, 1, . . . , 15k+3}}∪{(30k+13)+a(30k+19) | a ∈
{0, 1, . . . , 15k + 2}} ⊆ Ap(S, 30k + 7).

Now we are ready to suggest the following theorem for Apéry set of the
sexy prime triplets of the form (30k + 7, 30k + 13, 30k + 19).

Theorem 3.5. Let k ∈ N and S = 〈30k + 7, 30k + 13, 30k + 19〉. Then we
have Ap(S, 30k+7) = {a(30k+19) | a ∈ {0, 1, . . . , 15k+3}}∪{(30k+13)+
a(30k + 19) | a ∈ {0, 1, . . . , 15k + 2}}.

As before, we obtain the Frobenius number, pseudo-Frobenius number,
genus, and type of 〈30k + 7, 30k + 13, 30k + 19〉 using Theorem 3.5.

Corollary 3.6. Let k ∈ N and S = 〈30k + 7, 30k + 13, 30k + 19〉. Then we
have:

(a) F (S) = 450k2 + 345k + 50.

(b) g(S) = 225k2 + 195k + 30.

(c) PF (S) = {450k2 + 345k + 50, 450k2 + 345k + 44} and t(S) = 2.

3.3 The third form: S = 〈30k + 11, 30k + 17, 30k + 23〉

Let us consider the following equations.

1. (15k + 12)(30k + 11) = (30k + 17) + (15k + 5)(30k + 23)

2. 2(30k + 17) = (30k + 11) + (30k + 23)

3. (15k + 6)(30k + 23) = (15k + 11)(30k + 11) + (30k + 17)

Using these equations, we also obtain the shape of a subset of the Apéry
set Ap(S, 30k + 11).

Lemma 3.7. Let k ∈ N and S = 〈30k + 11, 30k + 17, 30k + 23〉. Then we
have {a(30k+23) | a ∈ {0, 1, . . . , 15k+5}}∪{(30k+17)+a(30k+23) | a ∈
{0, 1, . . . , 15k + 4}} ⊆ Ap(S, 30k + 11).

Thus we suggest the following theorem for Apéry set of the sexy prime
triplets of the form (30k + 11, 30k + 17, 30k + 23).
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Theorem 3.8. Let k ∈ N and S = 〈30k + 11, 30k + 17, 30k + 23〉. Then we
have Ap(S, 30k+11) = {a(30k+23)|a ∈ {0, 1, . . . , 15k+5}}∪{(30k+17)+
a(30k + 23)|a ∈ {0, 1, . . . , 15k + 4}}.

We also get the Frobenius number, pseudo-Frobenius number, genus, and
type of 〈30k + 11, 30k + 17, 30k + 23〉 using Theorem 3.8.

Corollary 3.9. Let k ∈ N and S = 〈30k+11, 30k+17, 30k+23〉. Then we
have:

(a) F (S) = 450k2 + 465k + 104.

(b) g(S) = 225k2 + 255k + 60..

(c) PF (S) = {450k2 + 465k + 104, 450k2 + 465k + 98} and t(S) = 2.

3.4 The fourth form: S = 〈30k + 17, 30k + 23, 30k + 29〉

Finally, let us see the following equations.

1. (15k + 15)(30k + 17) = (30k + 23) + (15k + 8)(30k + 29)

2. 2(30k + 23) = (30k + 17) + (30k + 29)

3. (15k + 9)(30k + 29) = (15k + 14)(30k + 17) + (30k + 23)

Using the above equations we have the following lemma which indicates
the shape of a subset of the Apéry set Ap(S, 30k + 17).

Lemma 3.10. Let k ∈ N and S = 〈30k + 17, 30k + 23, 30k + 29〉. Then we
have {a(30k+29) | a ∈ {0, 1, . . . , 15k+8}}∪{(30k+23)+a(30k+29) | a ∈
{0, 1, . . . , 15k + 7}} ⊆ Ap(S, 30k + 17).

The following theorem is to describe the Apéry set of the sexy prime
triplets of the type (30k + 17, 30k + 23, 30k + 29).

Theorem 3.11. Let k ∈ N and S = 〈30k + 17, 30k + 23, 30k + 29〉. Then
we have Ap(S, 30k + 17) = {a(30k + 29)|a ∈ {0, 1, . . . , 15k + 8}} ∪ {(30k +
23) + a(30k + 29)|a ∈ {0, 1, . . . , 15k + 7}}.

As a result, we obtain the Frobenius number, pseudo-Frobenius number,
genus, and type of 〈30k + 17, 30k + 23, 30k + 29〉 using Theorem 3.11.

Corollary 3.12. Let k ∈ N and S = 〈30k + 17, 30k + 23, 30k + 29〉. Then
we have:
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(a) F (S) = 450k2 + 645k + 215.

(b) g(S) = 225k2 + 345k + 120..

(c) PF (S) = {450k2 + 645k + 215, 450k2 + 645k + 209} and t(S) = 2.
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sion, J. Algebra, 226, (2000), 479–487.



The Frobenius problems for Sexy Prime Triplets 333

[24] J.C. Rosales, M.B. Branco, D. Torrão, “The Frobenius problem for
Thabit numerical semigroups”, J. Number Theory, 155, (2015), 85–99.

[25] J.C. Rosales, M.B. Branco, D. Torrão, “The Frobenius problem for re-
punit numerical semigroups”, Ramanujan J., 40, (2016), 323–334.

[26] J.C. Rosales, M.B. Branco, D. Torrão, “The Frobenius problem for
Mersenne numerical semigroups”, Math. Z., 286, (2017), 1–9.
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