
Theoretical Computer Science 793 (2019) 132–139
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Maximal common subsequence algorithms ✩

Yoshifumi Sakai

Graduate School of Agricultural Science, Tohoku University, 468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 November 2018
Received in revised form 3 June 2019
Accepted 6 June 2019
Available online 2 July 2019
Communicated by R. Giancarlo

Keywords:
Algorithms
String comparison
Longest common subsequence

A common subsequence of two strings is maximal if inserting any character into it no
longer yields a common subsequence. The present article proposes a (sub)linearithmic-
time, linear-space algorithm for finding a maximal common subsequence of two strings
and a linear-time algorithm for determining if a common subsequence of two strings is
maximal.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A subsequence of a string is obtained from the string by deleting any number of characters at any position. A common
subsequence of two strings is a subsequence of one string that is also a subsequence of the other. Searching for certain kinds
of common subsequences is important in some applications because we can think of a common subsequence as a pattern
common to the strings. Let a common subsequence be maximal if inserting a character into it no longer yields a common
subsequence. The present article considers the problem of determining if a given common subsequence is maximal, and also
considers the problem of finding a maximal common subsequence (an MCS) that contains the given common subsequence
as a subsequence. These problems may arise when we search for informative patterns common to two strings. For example,
consider the situation where we want to find a common subsequence that is essentially different from a given common
subsequence P . Here, a common subsequence W is essentially different from P if W is not a subsequence of any common
subsequence that is similar to P under some similarity criterion. Suppose that we have a common subsequence W that is
not similar to P as a candidate. If W is maximal, then we can immediately conclude that W is essentially different from P .
In contrast, for the case in which W is not maximal, an arbitrary MCS Z that has W as a subsequence tells us the following.
If Z is not similar to P , then Z is essentially different from P ; otherwise, W is not essentially different from P (and hence
we can shift our focus to another possible candidate, if any).

A longest common subsequence (an LCS) is a common subsequence that has the greatest possible length. Any (non-
conditional) LCS is hence maximal. Since the length of an arbitrary LCS of two strings can be used to measure the similarity
between the strings, the problem of finding an LCS is one of the classic problems in computer science and has been widely
investigated. It is well known that the dynamic programming algorithm of Wagner and Fisher [15] finds an LCS of two
strings in O (n2) time and O (n2) space. Here, we use n to denote the sum of the length of the strings. The divide-and-
conquer technique of Hirschberg [10] reduces this required space to O (n) without increasing the asymptotic execution

✩ A preliminary version [13] of this paper was presented at the 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018) at Qingdao,
China, in July 2018.

E-mail address: yoshifumi.sakai.c7@tohoku.ac.jp.
https://doi.org/10.1016/j.tcs.2019.06.020
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.06.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:yoshifumi.sakai.c7@tohoku.ac.jp
https://doi.org/10.1016/j.tcs.2019.06.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.06.020&domain=pdf

Y. Sakai / Theoretical Computer Science 793 (2019) 132–139 133
time. On the other hand, it was revealed [1,3] that, for any positive constant ε , there exist no O (n2−ε)-time algorithms
for computing the LCS length if the strong exponential time hypothesis (SETH) [11,12] is true. This immediately implies
that, under the assumption of the SETH, neither an LCS can be found nor whether a common subsequence is an LCS can
be determined in O (n2−ε) time. Problems of finding a conditional LCS have also been studied. The constrained LCS (CLCS)
problem [14,5,4] and the restricted LCS (RLCS) problem [8,4] are such problems. The CLCS (resp. RLCS) problem consists
of finding an LCS that has (resp. does not have) P as a subsequence. Here, P is a common subsequence possibly given as
a pattern that is relevant (resp. irrelevant) to the relationship between the two strings in some sense. This problem was
shown to be solvable in O (n3) time [5] (resp. [8,4]). A variant of the CLCS problem, which asks to find an arbitrary LCS that
has P as a substring (i.e., a contiguous subsequence), is also considered [4,6] and was shown to be solvable in O (n2) time
[6]. Note that the conditional LCS found by solving the RLCS problem or the variant of the CLCS problem is not necessarily
maximal. In particular, if we want to find a common subsequence W that is essentially different from an irrelevant pattern
P in the sense that W is not a subsequence of any common subsequence that has P as a subsequence, then the RLCS found
is not necessarily satisfactory. This is because, unless the RLCS is maximal, we can insert a character into this RLCS to obtain
an LCS that has P as a subsequence.

The reason why it takes at least almost quadratic time to find an LCS or a conditional LCS as a pattern common to the
two strings is due to the condition that the pattern to be found should be of the maximum length. Possibly for an analogous
reason, the best asymptotic running time for finding an arbitrary shortest MCS remains cubic [7]. The present article shows
that ignoring such conditions on the length of an MCS to be found, we can find an MCS much faster by proposing an
O (n

√
log n/ log log n)-time, O (n)-space algorithm. This algorithm can also be used to find an MCS that has a given common

subsequence P as a subsequence in the same asymptotic time and space. It is also shown that we can determine whether
a given common subsequence, such as an RLCS, is maximal further faster by proposing an O (n)-time algorithm.

This article is organized as follows. Section 2 defines notations and terminology used in this article. Section 3 proposes an
O (n

√
log n/ log log n)-time, O (n)-space algorithm that finds an MCS of two strings. Section 4 modifies the above algorithm

so as to output an MCS that has a given common subsequence as a subsequence in the same asymptotic time and space.
Section 5 proposes an O (n)-time algorithm that determines if a given common subsequence is maximal. Section 6 concludes
this article.

2. Preliminaries

For any sequences S and T , let S ◦ T denote the concatenation of S followed by T . Let ε denote the empty sequence.
For any sequence S , let |S| denote the length of S . For any index i with 1 ≤ i ≤ |S|, let S[i] denote the ith element of S ,
so that S = S[1] ◦ S[2] ◦ · · · ◦ S[|S|]. A subsequence of S is a sequence obtained from S by deleting an arbitrary number of
elements at any position, i.e., S[i1] ◦ S[i2] ◦ · · · ◦ S[il] for some indices i1, i2, . . . , il with 0 ≤ l ≤ |S| and 1 ≤ i1 < i2 < · · · <

il ≤ |S|. For any sequences S and T , we say that S contains T , if T is a subsequence of S . For any indices g and i with
1 ≤ g ≤ i + 1 ≤ |S| + 1, let S[g, i] denote the contiguous subsequence of S consisting of all elements at position between g
and i, i.e., S[g] ◦ S[g + 1] ◦ · · · ◦ S[i]. For simplicity, we use S[i + 1, i] to denote ε. We call S[g, i] a prefix (resp. suffix) of S ,
if g = 1 (resp. i = |S|).

Let � be an alphabet set of a finite number of ordered characters. We call any sequence of characters over � a string.
We say that two strings are disjoint if they have no non-empty common subsequences, i.e., if any character appearing in
one string does not appear in the other. A common subsequence of two strings is a subsequence of one string that is
also a subsequence of the other. Let a common subsequence of two strings be maximal, if inserting any character into the
subsequence no longer yields a common subsequence of the two strings. We call any common subsequence of two strings
that is maximal a maximal common subsequence (an MCS) of the strings.

The algorithms we will propose in the subsequent sections take as input two strings X and Y , possibly together with a
common subsequence of X and Y . We use n to denote the sum of the length of X and Y , i.e., n = |X | +|Y |. Furthermore, we
assume that any character in � appears in at least one of X or Y . When � does not satisfy this condition, we can remove
as preprocessing all the irrelevant characters each appearing in neither X nor Y from �, for example, in O (n) time using
radix sorting, if � is of size polynomial in n, or otherwise in O (n log log n) time and O (n) space using the integer sorting of
Han [9]. However, for simplicity, we do not consider computational resources required to execute any such preprocessing.

3. Algorithm for finding an MCS

This section proposes an O (n
√

log n/ log log n)-time, O (n)-space algorithm that outputs an MCS of X and Y .
We design the proposed algorithm using the following two lemmas. The first lemma presents an immediate recurrence.

Based on this recurrence, the algorithm finds an MCS by determining each of its elements from the last one to the first
successively. The second lemma allows the algorithm to do so time-efficiently. We present these lemmas using the notations
introduced below.

Definition 1. For any non-empty common subsequence W of X and Y , let gW (resp. hW) denote the index such that
X[1, gW] (resp. Y [1, hW]) is the shortest prefix of X (resp. Y) that contains W . Furthermore, let iW (resp. jW) denote the
index such that X[iW , |X |] (resp. Y [jW , |Y |]) is the shortest suffix of X (resp. Y) that contains W [|W |].

134 Y. Sakai / Theoretical Computer Science 793 (2019) 132–139
Lemma 1. For any non-empty common subsequence W of X and Y , if X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint, then the
concatenation of any MCS of X[1, iW − 1] and Y [1, jW − 1] that contains W [1, |W | − 1] followed by W [|W |] is an MCS of X and Y .

Proof. Suppose that X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint and let W ′ be the concatenation in the lemma. Since
W ′ contains W , gW ≤ gW ′ and hW ≤ hW ′ . This implies that X[gW ′ + 1, |X |] and Y [hW ′ + 1, |Y |] are also disjoint. Therefore,
appending any character to W ′ does not yield a common subsequence of X and Y . On the other hand, due to W ′[|W ′|] =
W [|W |], iW ′ = iW and jW ′ = jW . This implies that W ′[1, |W ′| − 1] is an MCS of X[1, iW ′ − 1] and Y [1, jW ′ − 1]. Therefore,
inserting any character into W ′ at any position before W ′[|W ′|] does not yield a common subsequence of X and Y . �
Lemma 2. For any non-empty common subsequence W of X and Y , if X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint, then iW = gW

or jW = hW .

Proof. Otherwise, X[gW + 1, |X |] and Y [hW + 1, |Y |] would have W [|W |] as a common character, a contradiction. �
For example, if X = eeeaeecebebcd, Y = fafffaffbddcfa, and W = ac, then X[1, gW] = X[1, 7] = eeeaeec,

Y [1, hW] = Y [1, 12] = fafffaffbddc, X[iW , |X |] = X[12, 13] = cd, and Y [jW , |Y |] = Y [12, 14] = cfa. Since X[gW +
1, |X |] = X[8, 13] = ebebcd and Y [hW + 1, |Y |] = Y [13, 14] = fa are disjoint, Lemma 1 guarantees that abc is an MCS
of X and Y . This is because ab is an MCS of X[1, iW − 1] = X[1, 11] = eeeaeecebeb and Y [1, jW − 1] = Y [1, 11] =
fafffaffbdd that contains W [1, |W | − 1] = a. As claimed by Lemma 2, hW and jW in this concrete example represent
the same index, which is 12, because gW (= 7) and iW (= 12) do not represent the same index.

An outline of the proposed algorithm is as follows. The algorithm finds an MCS of X and Y as the output by applying
Lemma 1 recursively. That is, the algorithm obtains the last element of the output by finding a common subsequence W
of X and Y such that X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint and adopting the last element of W . The algorithm
finds such W by repeatedly appending a common character of X[gW + 1, |X |] and Y [hW + 1, |Y |] to W until X[gW + 1, |X |]
and Y [hW + 1, |Y |] become disjoint, where W is initially set to the empty string. The common character to be appended
is searched for by checking if each character in any of X[gW + 1, |X |] or Y [hW + 1, |Y |] appears in the other. After that,
the algorithm regards X[1, iW − 1], Y [1, jW − 1], and W [1, |W | − 1] as X , Y , and the initial W , respectively, to obtain the
second last element of the output in the same manner. To obtain each of the other elements in the output from the third
last one to the first successively, the algorithm iterates the same process until X and Y become disjoint. From initialization
of W in each iteration, Lemma 1 guarantees by induction that the algorithm works correctly.

Due to the outline presented above, the execution time of the algorithm depends on the number of characters checked to
search for a common character of X[gW + 1, |X |] and Y [hW + 1, |Y |]. Our key observation to save this number is that check
of any character can be skipped if the character is already checked in a previous iteration with the same W . This is because
X[gW + 1, |X |] and Y [hW + 1, |Y |] in the present iteration are respectively prefixes of those in the previous iteration. For
each distinct W , the algorithm checks each of characters X[gW + 1], Y [hW + 1], X[gW + 2], Y [hW + 2], X[gW + 3], and
so on alternately in this order until the last element of any of X[gW + 1, |X |] or Y [hW + 1, |Y |] is checked. This process is
interrupted whenever a common character of X[gW + 1, |X |] and Y [hW + 1, |Y |] is found, and restarted with shorter X and
Y just after the algorithm adopts the common character as an element of the output. The number of characters checked for
this W is hence at most 2 min{|X | − gW , |Y | − hW }, where X and Y are the eventual ones such that X[gW + 1, |X |] and
Y [hW + 1, |Y |] are disjoint. As shown later, Lemma 2 guarantees that the sum of this value over all distinct strings W is
bounded from above by O (n).

As an example, Fig. 1 demonstrates how the proposed algorithm finds string abc as an MCS of X = eeeaeecebebcd
and Y = fafffaffbddcfa. Execution of the algorithm for this concrete example of X and Y consists of seven stages,
Stages (a) through (g) performed in this order as follows. Stage (a) with |X | = 13, |Y | = 14, W = ε, gW = 0, and hW = 0
finds a common character a = X[4] = Y [2] of X[1, 13] = eeeaeecebebcd and Y [1, 14] = fafffaffbddcfa by checking
each of elements X[1], Y [1], X[2], and Y [2] in this order to pass W = a, gW = 4, and hW = 2 to Stage (b). Stage (b)
finds a common character a = X[7] = Y [12] of X[5, 13] = eecebebcd and Y [3, 14] = fffaffbddcfa by checking each of
elements X[5], Y [3], X[6], Y [4], and X[7] in this order to pass W = ac, gW = 7, and hW = 12 to Stage (c). Stage (c) confirms
that X[8, 13] = ebebcd and Y [13, 14] = fa are disjoint by checking each of elements X[8], Y [13], X[9], and Y [14] in this
order to obtain character c as the last element of the output and passes |X | = 11, |Y | = 11, W = a, gW = 4, and hW = 2
to Stage (d). Stage (d) finds a common character b = X[9] = Y [9] of X[5, 11] = eecebeb and Y [3, 11] = fffaffbdd by
checking each of elements Y [5], X[8], Y [6], and X[9] in this order to pass W = ab, gW = 9, and hW = 9 to Stage (e). Note
that checking elements in X[5, 7] and elements in Y [3, 4] is skipped due to the previous stage with the same W , which
is Stage (b). Stage (e) confirms that X[10, 11] = eb and Y [10, 11] = dd are disjoint by checking each of elements X[10],
Y [10], and X[11] in this order to obtain character b as the second last element of the output and passes |X | = 10, |Y | = 8,
W = a, gW = 4, and hW = 2 to Stage (f). Stage (f) confirms that X[5, 10] = eecebe and Y [3, 8] = fffaff are disjoint by
checking each of elements Y [7] and X[10] in this order to obtain character a as the third last element of the output and
passes |X | = 3, |Y | = 5, W = ε, gW = 0, and hW = 0 to Stage (g). Note that checking elements in X[5, 9] and elements in
Y [3, 6] is skipped due to the previous stages with the same W , which are Stages (b) and (d). Finally, Stage (g) confirms
that X[1, 3] = eee and Y [1, 5] = fafff are disjoint by checking X[3] to conclude that the entire string of the output has

Y. Sakai / Theoretical Computer Science 793 (2019) 132–139 135
Fig. 1. How the proposed algorithm finds an MCS of a concrete example of X and Y is presented, where we consider X = eeeaeecebebcd and Y =
fafffaffbddcfa. The algorithm executes Stages (a) through (g) in this order. The regions of X[gW +1, |X |] and Y [hW +1, |Y |] in each stage are indicated
by thick boxes. The shaded elements in X (resp. Y) compose W , i.e., strings W in Stages (a) through (g) are ε, a, ac, a, ab, a, and ε, respectively. The
algorithm checks if each element of X or Y indicated by an encircled number is a common character of X[gW + 1, |X |] and Y [hW + 1, |Y |] in ascending
order with respect to the number. Each element of X[gW + 1, |X |] or Y [hW + 1, |Y |] already checked in a previous stage with the same W is indicated by
an underline. Each solid line, appearing in Stage (a), (b), or (d), indicates the common character of X[gW + 1, |X |] and Y [hW + 1, |Y |] to be appended to
W . Each dashed line, appearing in Stage (c), (e), or (f), connects X[iW] and Y [jW].

already been obtained. Note that checking elements in X[1, 2] and elements in Y [1, 2] is skipped due to the previous stage
with the same W , which is Stage (a).

To design methods to determine indices gW , hW , iW , and jW in Lemma 1 as well as methods to check if each character
in one of X[gW + 1, |X |] and Y [hW + 1, |Y |] appears in the other, it is useful to introduce the following notations.

Definition 2. For any index g (resp. i) with 0 ≤ g ≤ |X | (resp. 1 ≤ i ≤ |X | + 1) and any character c in �, let nextX (g, c)
(resp. prevX (i, c)) denote the greatest (resp. least) index such that c does not appear in X[g + 1, nextX (g, c) − 1] (resp.
X[prevX (i, c) + 1, i − 1]). Define indices nextY (h, c) and prevY (j, c) analogously with respect to Y .

The proposed algorithm utilizes the data structure of Beame and Fich [2], which is O (n)-time constructible and supports
O (

√
log n/ log log n)-time queries of index nextX (g, c) (resp. nextY (h, c)) defined above. (If the size of � is constant, then

we can adopt the lookup table, which is constructible in O (n) time and supports O (1)-time queries, to let the proposed
algorithm run in O (n) time.)

A pseudocode of the proposed algorithm is presented as Algorithm findMCS in Fig. 2. In this implementation, the algo-
rithm uses variable Z to store the suffix of the output obtained so far. Variable i (resp. j) is used to represent the index
such that X[i, |X |] (resp. Y [j, |Y |]) is the shortest suffix of X (resp. Y) that contains Z , so that the algorithm can regard
X[1, i − 1] (resp. Y [1, j − 1]) as X (resp. Y) to apply Lemma 1. Furthermore, stack S is maintained so that element (g, h, s)
popped from S consists of indices gW and hW and the number s of elements each in X[g + 1, i − 1] or Y [h + 1, j − 1] that
are already checked. Note that W is represented by S implicitly as X[g2] ◦ X[g3] ◦ · · · ◦ X[g|S|] (= Y [h2] ◦ Y [h3] ◦ · · · ◦ Y [h|S|]),
where the sequence of all elements in S from the bottom one to the top to be popped is (0, 0, s1) ◦ (g2, h2, s2) ◦ (g3, h3, s3) ◦
· · · ◦ (g|S|, h|S|, s|S|). For example, such sequences of elements in S just before Stages (a) through (g) in Fig. 1 are (0, 0, 0),
(0, 0, 4) ◦ (4, 2, 0), (0, 0, 4) ◦ (4, 2, 5) ◦ (7, 12, 0), (0, 0, 4) ◦ (4, 2, 5), (0, 0, 4) ◦ (4, 2, 9) ◦ (9, 9, 0), (0, 0, 4) ◦ (4, 2, 9), and (0, 0, 4),
respectively.

Algorithm findMCS works as follows. After initialization of variables Z , i, and j and stack S by line 1, the algorithm
executes lines 3 through 12 iteratively until S becomes empty. In each iteration, line 3 pops (g, h, s) from S to let the
algorithm know that the possible element that should be checked at the present moment is X[g′], if s is even, or Y [h′],
otherwise, where g′ = g + s/2 + 1 and h′ = h + (s + 1)/2. Let us focus only on the case where s is even, because the
algorithm works analogously for the other case. If g′ < i, then since X[g′] is an element of X[g + 1, i − 1], the algorithm
checks if character X[g′] appears in Y [h + 1, j − 1] to maintain S correctly by executing lines 7 through 10. Line 7 pushes
(g, h, s + 1) into S because the last element of W has not yet been adopted as an element of the output. Lines 8 and 9

136 Y. Sakai / Theoretical Computer Science 793 (2019) 132–139
1: Z ← ε; i ← |X |; j ← |Y |; push (0, 0, 0) into the empty stack S;
2: while S is non-empty,
3: pop (g, h, s) from S;
4: if s is even (resp. odd), then
5: g′ ← g + s/2 + 1 (resp. h′ ← h + (s + 1)/2);
6: if g′ < i (resp. h′ < j), then
7: push (g, h, s + 1) into S;
8: h′ ← nextY (h, X[g′]) (resp. g′ ← nextX (g, Y [h′]));
9: if h′ ≤ j − 1 (resp. g′ ≤ i − 1), then

10: push (g′, h′, 0) into S ,
11: otherwise, if g ≥ 1, then
12: Z ← X[g] ◦ Z ; i ← prevX (i, X[g]); j ← prevY (j, X[g]);
13: output Z .

Fig. 2. Algorithm findMCS.

1: Execute line 1 of Algorithm findMCS;
2: g ← 0; h ← 0;
3: for each index k from 1 to |P |,
4: g ← nextX (g, P [k]); h ← nextY (h, P [k]);
5: push (g, h, 0) into S;
6: execute lines 2 through 15 of Algorithm findMCS.

Fig. 3. Algorithm findCMCS.

check if character X[g′] appears in Y [h + 1, j − 1]. This is done by checking if nextY (h, X[g′]) ≤ j − 1. If the result of this
check is positive, then line 10 pushes (g′, nextY (h, X[g′]), 0) into S because character X[g′] is appended to W , and also
because nextX (g, X[g′]) = g′ . On the other hand, if g′ = i and g ≥ 1, then since no character in X[g + 1, i − 1] appears in
Y [h + 1, j − 1], implying that X[g + 1, i − 1] and Y [h + 1, j − 1] are disjoint, and also since W is non-empty, the algorithm
adopts the last element of W as an element of the output. Since W has X[g] as the last element, line 12 executes the above
by prepending X[g′] to Z and updating i and j to prevX (i, X[g]) and prevY (j, X[g]), respectively. Here, prevX (i, X[g]) and
prevY (j, X[g]) are determined by linear search. Note that line 12 pushes nothing into S because W [1, |W | − 1] is regarded
as W in the succeeding iteration. If g′ = i and g = 0, then since X[1, i − 1] and Y [1, j − 1] are disjoint, implying that Z is
an MCS of X and Y , the algorithm terminates the loop of lines 3 through 12 by doing nothing to leave S empty and outputs
Z by line 13.

Now we have the following theorem.

Theorem 1. Algorithm findMCS outputs an MCS of X and Y in O (n
√

log n/ log log n) time and O (n) space.

Proof. The algorithm correctly outputs an MCS of X and Y due to Lemma 1. Since the data structure supporting queries
of any of nextX (g, c) or nextY (h, c) uses O (n) space and both variable Z and stack S have at most O (n) elements, the
algorithm requires O (n) space. The execution time of the algorithm can be estimated as O (n + t

√
log n/ log logn), where t is

the number of times that the algorithm executes line 8. We can show that t = O (n) as follows. It is easy to verify that t is
equal to the sum of s over all elements (g, h, s) popped from S by line 3 such that g′ = i, if s is even, or h′ = j, otherwise.
Whenever any such element (g, h, s) is popped from S by line 3, s ≤ 2 min{i − g − 1, j − h − 1}. Since X[g + 1, i − 1] and
Y [h + 1, j − 1] are disjoint for this (g, h, s), it follows from Lemma 2 that min{i − g, j − h} ≤ max{i − prevX (i, X[g]), j −
prevY (j, X[g])} unless g = 0. Furthermore, the sum of i − prevX (i, X[g]) (resp. j − prevY (j, X[g])) over all such elements
(g, h, s) with g ≥ 1 plus i − g − 1 (resp. j − h − 1) for the only such element (g, h, s) with g = 0 is equal to |X | (resp. |Y |).
Thus we have that t ≤ 2(|X | + |Y |) = O (n). �
4. Algorithm for finding a constrained MCS

This section modifies Algorithm findMCS so as to output an MCS of X and Y that contains P . Here, P is an arbitrary
common subsequence of X and Y that is given as an additional input. This modification does not increase the asymptotic
time and space.

The only difference between the modified algorithm and the original is that the modified one initializes W to P , instead
of ε. This simple modification works because the output of the original algorithm contains W at any moment. A pseudocode
of this modified algorithm is presented as Algorithm findCMCS in Fig. 3.

Theorem 2. For any common subsequence P of X and Y , Algorithm findCMCS outputs an MCS of X and Y that contains P in
O (n

√
log n/ log log n) time and O (n) space.

Proof. By induction, X[1, g] (resp. Y [1, h]) is the shortest prefix of X (resp. Y) that contains P [1, k] at any execution
of line 4 in Algorithm findCMCS. Using linear search to determine any of nextX (g, P [k]) or nextY (h, P [k]) in line 4, the
algorithm executes lines 2 through 5 in O (n) time. Therefore, we can prove the theorem in a way similar to the proof of
Theorem 1. �

Y. Sakai / Theoretical Computer Science 793 (2019) 132–139 137
Fig. 4. How the proposed algorithm determines if a common string W of strings X and Y is maximal is presented, where we consider X =
cbacaaacacbaa, Y = dadabddbbdbc, and W = aab as a concrete example. The algorithm executes Stages (a) through (d) in this order. The regions of
X[gW + 1, |X |] and Y [hW + 1, |Y |] in each stage are indicated by thick boxes. The shaded elements in X (resp. Y) compose W , i.e., strings W in Stages
(a) through (d) are aab, aa, a, and ε, respectively. In order to maintain indices nextX (g, c) and indices nextY (h, c) for all characters c in �, the algorithm
scans X[gW + 1, |X |] and Y [hW + 1, |Y |] according to the encircled numbers attached to their elements, where the suffixes already scanned by previous
stages are indicated by underlined elements. The algorithm also checks whether each element with the number encircled doubly is a common character of
X[gW + 1, |X |] and Y [hW + 1, |Y |] using the indices maintained. Each dashed line connects X[iW] and Y [jW].

5. Algorithm for determining if a common subsequence is maximal

This section proposes an O (n)-time algorithm that takes a common subsequence W of X and Y as an additional input
and determines whether W is maximal or not. If W is an MCS of X and Y , the algorithm outputs TRUE; otherwise, it
outputs FALSE.

The proposed algorithm is based on the following recurrence, which is obtained as an immediate corollary of Lemma 1.

Corollary 1. For any non-empty common subsequence W of X and Y , if X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint and
W [1, |W | − 1] is an MCS of X[1, iW − 1] and Y [1, jW − 1], then W is an MCS of X and Y .

An outline of the algorithm is as follows. The algorithm determines if W is an MCS of X and Y by applying Corollary 1
recursively. That is, the algorithm obtains FALSE as the output and halts if X[gW +1, |X |] and Y [hW +1, |Y |] are not disjoint,
or otherwise regards X[1, iW − 1], Y [1, jW − 1], W [1, |W | − 1] as X , Y , and W , respectively, to do the same iteratively until
X , Y , and W become no longer defined. In each iteration, in order to determine if X[gW + 1, |X |] and Y [hW + 1, |Y |]
are disjoint, the algorithm maintains indices nextX (g, c) and indices nextY (h, c) for all characters c in �. This is done in
a straightforward way by scanning X[gW + 1, |X |] and Y [hW + 1, |Y |] both from the last element, where any part of this
scan already done in previous iterations is skipped to guarantee that the algorithm runs in linear time. It follows from
Lemma 2 that at least one of X[gW + 1, |X |] or Y [hW + 1, |Y |] is scanned from end to end with no skip. If X[gW + 1, |X |]
is such one, then in order to determine if X[gW + 1, |X |] and Y [hW + 1, |Y |] are disjoint, the algorithm checks whether c
appears in Y [hW + 1, |Y |] using nextY (h, c) for each element c in X[g X + 1, |X |]; otherwise, it checks whether c appears in
X[gW + 1, |X |] using nextX (g, c) for each element c in Y [hW + 1, |Y |]. This does not increase the asymptotic execution time
of the algorithm.

Fig. 4 shows, as a concrete example, how the algorithm above determines if W is an MCS of X and Y for X =
cbacaaacacbaa, Y = dadabddbbdbc, and W = aab with � = {a, b, c, d}. Execution of the algorithm consists of Stages
(a) through (d) in this order. Stage (a) with |X | = 13, |Y | = 12, |W | = 3, gW = 11, and hW = 5 scans X[12, 13] to determine
nextX (11, a) = 12, nextX (11, b) > |X |, nextX (11, c) > |X |, and nextX (11, d) > |X |. After that, it scans Y [6, 12] to determine
nextY (5, a) > |Y |, nextY (5, b) = 8, nextY (5, c) = 12, and nextY (5, d) = 6 and also to confirm that no character c in Y [6, 12]
appears in X[12, 13] by checking if nextX (11, c) > |X |. Finally, it passes |X | = 11, |Y | = 11, |W | = 2, gW = 5, and hW = 4 to
Stage (b). Since suffix Y [6, 10] of Y [5, 10] has already been scanned by Stage (a), Stage (b) scans the remaining prefix Y [5, 5]
to determine nextY (4, a) > |Y |, nextY (4, b) = 5, nextY (4, c) > |Y |, and nextY (4, d) = 6. Then, it scans X[6, 10] to determine

138 Y. Sakai / Theoretical Computer Science 793 (2019) 132–139
1: g ← 0; h ← 0; push (0, 0) into the empty stack S;
2: for each index k from 1 to |W |,
3: g ← nextX (g, W [k]); h ← nextY (h, W [k]);
4: push (g, h) into S;
5: let nextX be the array of variables nextX (c), each initialized to |X | + 1, for all characters c in �;
6: let nextY be the array of variables nextY (c), each initialized to |Y | + 1, for all characters c in �;
7: i ← |X | + 1; j ← |Y | + 1; g′ ← i − 1, h′ ← j − 1;
8: while g′ ≥ 1,
9: pop (g, h) from S;

10: if g′ = i − 1 (resp. g′ < i − 1), then
11: while h′ > h (resp. g′ > g),
12: nextY (Y [h′]) ← h′ (resp. nextX (X[g′]) ← g′);
13: h′ ← h′ − 1 (resp. g′ ← g′ − 1);
14: while g′ > g (resp. h′ > h),
15: nextX (X[g′]) ← g′ (resp. nextY (Y [h′]) ← h′);
16: if nextY (X[g′]) < j (resp. nextX (Y [h′]) < i), then
17: output FALSE and halt,
18: otherwise,
19: g′ ← g′ − 1 (resp. h′ ← h′ − 1);
20: i ← prevY (i, X[g]); j ← prevY (j, X[g]);
21: g′ ← min{g, i − 1}; h′ ← min{h, j − 1};
22: output TRUE.

Fig. 5. Algorithm ifMCS.

nextX (5, a) = 6, nextX (5, b) > |X |, nextX (5, c) = 8, and nextX (5, d) > |X | and also to confirm that no character c in X[6, 10]
appears in Y [5, 10] by checking if nextY (4, c) > |Y |. Finally, it passes |X | = 8, |Y | = 3, |W | = 1, gW = 3, and hW = 2 to Stage
(c). Note that, for example, nextY (4, d) = 6 comes from nextY (5, d) = 6, which is determined by Stage (a), and absence of
character d in Y [5, 5] scanned by Stage (b). Stage (c) passes |X | = 6, |Y | = 1, |W | = 0, gW = hW = 0 to Stage (d) in an
analogous manner. Stage (d) scans prefix X[1, 3] of X[1, 6] to determine nextX (0, a) = 3, nextX (0, b) = 2, nextX (0, c) = 1,
and nextX (0, d) > |X |. After that, it confirms that no character c in Y [1, 1] appears in X[1, 6] by checking if nextX (0, c) > |X |
to eventually output TRUE.

A pseudocode of the algorithm is presented as Algorithm ifMCS in Fig. 5 works as the proposed algorithm. In this
implementation, stack S is maintained so that element (g, h) popped from S consists of indices gW and hW . The algorithm
initializes S by successively pushing the index pair (g, h) such that X[1, g] (resp. Y [1, h]) is the shortest prefix of X (resp.
Y) that contains W [1, k] for each index k from 0 to |W |. This is done by lines 1 through 4 in O (n) time, where line 3
obtains nextX (g, W [k]) and nextY (h, W [k]) by linear search. For example, if X , Y , and W are in Fig. 4, then S is initialized
by pushing (0, 0), (3, 2), (5, 4), and (11, 5) in this order. Variable i (resp. j) is maintained so that the algorithm can regard
X[1, i − 1] (resp. Y [1, j − 1]) as X (resp. Y) to apply Corollary 1. In order to maintain indices nextX (g, c) (resp. nextY (h, c))
for all characters c in �, the algorithm uses array nextX (resp. nextY) consisting of variables nextX (c) (resp. nextY (c))
each representing an index for all characters c in �. For any index g′ (resp. h′) with 0 ≤ g′ ≤ |X | (resp. 0 ≤ h′ ≤ |Y |),
let next

(g′)
X (resp. next

(h′)
Y) denote nextX (resp. nextY) satisfying that nextX (g′, c) = min{nextX (c), i} (resp. nextY (h′, c) =

min{nextY (c), j}) for any character c in �. The algorithm uses variable g′ (resp. h′) to indicate that next
(g′)
X (resp. next

(h′)
Y)

is available. Note that next
(g′)
X (resp. next

(h′)
Y) with g′ ≥ 1 (resp. h′ ≥ 1) can be updated to next

(g′−1)
X (resp. next

(h′−1)
Y) only

by setting nextX (X[g′]) (resp. nextY (Y [h′])) to g′ (resp. h′). The algorithm maintains nextX (resp. nextY) based on this
simple recurrence.

Algorithm ifMCS works as follows. After initializing stack S , arrays nextX and nextY of variables, and variables i, j, g′ ,
and h′ by lines 1 through 6, the algorithm repeats execution of lines 9 through 21 until either line 17 is executed or g′

becomes zero. Due to lines 5 through 7, the algorithm has next
(g′)
X (resp. next

(h′)
Y) as nextX (resp. nextY) just before the

first execution of lines 9 through 21. Each execution of lines 9 through 21 checks if X[g + 1, j − 1] and Y [h + 1, j − 1] are
disjoint and outputs FALSE and halt, if the result of this check is negative, or pass next

(g)
X and next

(h)
Y to the next execution

of lines 9 through 21, otherwise. More precisely, if g′ = i − 1 (resp. g′ < i − 1 and hence h′ = j − 1 due to Lemma 2), then
lines 11 through 13 scan Y [h + 1, h′] (resp. X[g + 1, g′]) from the last element to update nextY (resp. nextX) to next

(h)
Y

(resp. next
(g)
X). After that, lines 14 through 19 scan X[g + 1, i − 1] (resp. Y [h + 1, j − 1]) from the last element to update

nextX (resp. nextY) to next
(g)
X (resp. next

(h)
Y) and also to check if X[g + 1, i − 1] and Y [h + 1, j − 1] are disjoint using

next
(h)
Y (resp. next

(g)
X) obtained in the preceding execution of lines 11 through 13. If X[g + 1, i − 1] and Y [h + 1, j − 1] are

disjoint, then g′ (resp. h′) becomes g (resp. h) eventually and lines 20 and 21 update i, j, g′ , and h′ appropriately, where
line 20 obtains prevX (i, X[g]) and prevY (j, X[g]) by linear search. Finally, if (0, 0) is popped from S as (g, h) by line 9 and
lines 14 through 19 confirm that X[g + 1, i − 1] and Y [h + 1, j − 1] are disjoint, then g′ becomes 0 and hence line 22
outputs TRUE.

Theorem 3. For any common subsequence W of X and Y , Algorithm ifMCS outputs TRUE, if W is an MCS of X and Y , or outputs
FALSE, otherwise, in O (n) time.

Y. Sakai / Theoretical Computer Science 793 (2019) 132–139 139
Proof. The algorithm correctly determines if W is an MCS of X and Y due to Corollary 1. Since values of g and h in lines
1 through 4 never decrease and also values of i, h, g′ , and h′ in lines 8 through 21 never increase, the algorithm runs in
O (n) time. �
6. Conclusion

The present article proposed an O (n
√

log n/ log log n)-time, O (n)-space algorithm that finds a maximal common subse-
quence (an MCS) of two strings over an alphabet set of at most n characters, which are totally ordered. Here, n is the sum
of the length of the two strings and a common subsequence is maximal if inserting any character into it no longer yields
a common subsequence. It was also shown that, without increasing asymptotic time and space complexities, this algorithm
can be used to find a constrained MCS, which contains a common subsequence given arbitrarily, after an appropriate initial-
ization of some variables. Furthermore, an O (n)-time algorithm that determines if a given common subsequence is maximal
was also proposed.

There remain some questions to be solved. These are related to the problems considered in the present article. Our
algorithms run much faster than those proposed so far (and also all possible algorithms under the SETH assumption) for
the LCS-related problems corresponding to ours. One reason for this difference is that any common subsequence is certainly
a subsequence of some MCS but is not necessarily a subsequence of any LCS. This fact naturally poses a question whether
we can find a restricted MCS, which does not contain a common subsequence given arbitrarily, in O (n

√
log n/ log log n) time

and O (n) space. This is because some restricted non-maximal common subsequences are not necessarily subsequences of
any restricted MCS. The gap between asymptotic execution time of the proposed algorithms for finding an MCS and for
determining if a common subsequence given is maximal immediately poses another natural question whether we can find
an MCS in O (n) time.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

The author would like to thank the anonymous referees for their useful comments, especially for pointing out a mistake
in the preliminary version [13] by drawing his attention to Ref. [2].

References

[1] A. Abboud, A. Backurs, V.V. Williams, Tight hardness results for lcs and other sequence similarity measures, in: Proc. of the 56th Annual Symposium
on Foundations of Computer Science, 2015, pp. 59–78.

[2] P. Beame, F.E. Fich, Optimal bounds for the predecessor problem and related problems, J. Comput. Syst. Sci. 65 (2002) 38–72.
[3] K. Bringmann, M. Künnemann, Quadratic conditional lower bounds for string problems and dynamic time warping, in: Proc. of the 56th Annual

Symposium on Foundations of Computer Science, 2015, pp. 79–97.
[4] Y.-C. Chen, K.-M. Chao, On the generalized constrained longest common subsequence problems, J. Comb. Optim. 21 (2011) 383–392.
[5] F.Y.L. Chin, A. De Santis, A. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constrained sequence problems, Inf. Process. Lett. 90 (2004) 175–179.
[6] S. Deorowicz, Quadratic-time algorithm for a string constrained LCS problem, Inf. Process. Lett. 112 (2012) 423–426.
[7] C.B. Fraser, R.W. Irving, M. Middendorf, Maximal common subsequences and minimal common supersequences, Inf. Comput. 124 (1996) 145–153.
[8] Z. Gotthilf, D. Hermelin, G.M. Landau, M. Lewenstein, Restricted LCS, in: Proc. International Symposium on String Processing and Information Retrieval,

2010, pp. 250–257.
[9] Y. Han, Deterministic sorting in O (n log logn) time and linear space, in: Proc. the 34th Annual ACM Symposium on Theory of Computing, 2002,

pp. 602–608.
[10] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (1977) 664–675.
[11] R. Impagliazzo, R. Paturi, On the complexity of k-SAT, J. Comput. Syst. Sci. 62 (2001) 367–375.
[12] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci. 63 (2001) 512–530.
[13] Y. Sakai, Maximal common subsequence algorithms, in: Proc. the 29th Annual Symposium on Combinatorial Pattern Matching, 2018, pp. 1:1–1:10.
[14] Y.-T. Tsai, The constrained longest common subsequence problem, Inf. Process. Lett. 88 (2003) 173–176.
[15] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1974) 168–173.

http://refhub.elsevier.com/S0304-3975(19)30407-4/bib414257s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib414257s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib4246s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib424Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib424Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib4343s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib4353462Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib44656Fs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib46494Ds1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib47484C2Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib47484C2Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib48616Es1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib48616Es1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib486972s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib4950s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib49505As1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib53616Bs1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib547361s1
http://refhub.elsevier.com/S0304-3975(19)30407-4/bib5746s1

	Maximal common subsequence algorithms
	1 Introduction
	2 Preliminaries
	3 Algorithm for ﬁnding an MCS
	4 Algorithm for ﬁnding a constrained MCS
	5 Algorithm for determining if a common subsequence is maximal
	6 Conclusion
	Acknowledgement
	References

