
Theoretical Computer Science 1003 (2024) 114607

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Faster space-efficient STR-IC-LCS computation ✩

Yuki Yonemoto a, Yuto Nakashima b, Shunsuke Inenaga b,∗, Hideo Bannai c

a Department of Information Science and Technology, Kyushu University, Fukuoka, Japan
b Department of Informatics, Kyushu University, Fukuoka, Japan
c M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

A R T I C L E I N F O A B S T R A C T

Communicated by R. Giancarlo

Keywords:

String algorithms

Constrained longest common subsequence

Dynamic programming

One of the most fundamental method for comparing two given strings 𝐴 and 𝐵 is the longest
common subsequence (LCS), where the task is to find (the length) of an LCS of 𝐴 and 𝐵. In this
paper, we deal with the STR-IC-LCS1 problem which is one of the constrained LCS problems
proposed by Chen and Chao [J. Comb. Optim, 2011]. A string 𝑍 is said to be an STR-IC-LCS of
three given strings 𝐴, 𝐵, and 𝑃 , if 𝑍 is a longest string satisfying that (1) 𝑍 includes 𝑃 as a
substring and (2) 𝑍 is a common subsequence of 𝐴 and 𝐵. We present three efficient algorithms
for this problem: First, we begin with a space-efficient solution which computes the length of an
STR-IC-LCS in 𝑂(𝑛2) time and 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space, where 𝓁 is the length of an LCS of
𝐴 and 𝐵 of length 𝑛. When 𝓁 = 𝑂(1) or 𝑛 − 𝓁 = 𝑂(1), then this algorithm uses only linear 𝑂(𝑛)
space. Second, we present a faster algorithm that works in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 −𝓁 +1)) time, where
𝑟 is the length of 𝑃 , while retaining the 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space efficiency. Third, we give an
alternative algorithm that runs in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁′ + 1)) time with 𝑂((𝓁′ + 1)(𝑛 − 𝓁′ + 1))
space, where 𝓁′ denotes the STR-IC-LCS length for input strings 𝐴, 𝐵, and 𝑃 .

1. Introduction

Comparison of two given strings (sequences) has been a central task in Theoretical Computer Science, since it has many applica-

tions including alignments of biological sequences, spelling corrections, and similarity searches.

One of the most fundamental method for comparing two given strings 𝐴 and 𝐵 is the longest common subsequence LCS, where the
task is to find (the length of) a common subsequence 𝐿 that can be obtained by removing zero or more characters from both 𝐴 and 𝐵,
and no such common subsequence longer than 𝐿 exists. A classical dynamic programming (DP) algorithm is able to compute an LCS
of 𝐴 and 𝐵 in quadratic 𝑂(𝑛2) time with 𝑂(𝑛2) working space, where 𝑛 is the length of the input strings [2]. In the word RAM model
with 𝜔 machine word size, the so-called “Four-Russian” method allows one to compute the length of an LCS of two given strings in
𝑂(𝑛2∕𝑘 + 𝑛) time, for any 𝑘 ≤ 𝜔, in the case of constant-size alphabets [3]. Under a common assumption that 𝜔 = log2 𝑛, this method
leads to weakly sub-quadratic 𝑂(𝑛2∕ log𝑛) time solution for constant alphabets. In the case of general alphabets, the state-of-the-art
algorithm computes the length of an LCS in 𝑂(𝑛2 log2 𝑘∕𝑘2 + 𝑛) time [4], which is weakly sub-quadratic 𝑂(𝑛2(log log𝑛)2∕ log2 𝑛) time

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: yonemoto.yuuki.240@s.kyushu-u.ac.jp (Y. Yonemoto), nakashima.yuto.003@m.kyushu-u.ac.jp (Y. Nakashima),
inenaga.shunsuke.380@m.kyushu-u.ac.jp (S. Inenaga), hdbn.dsc@tmd.ac.jp (H. Bannai).
Available online 4 May 2024
0304-3975/© 2024 Elsevier B.V. All rights reserved.

1 STR-IC-LCS stands for “subSTRing InCluding LCS” [1].

https://doi.org/10.1016/j.tcs.2024.114607

Received 11 January 2024; Received in revised form 2 April 2024; Accepted 24 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:yonemoto.yuuki.240@s.kyushu-u.ac.jp
mailto:nakashima.yuto.003@m.kyushu-u.ac.jp
mailto:inenaga.shunsuke.380@m.kyushu-u.ac.jp
mailto:hdbn.dsc@tmd.ac.jp
https://doi.org/10.1016/j.tcs.2024.114607
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114607&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114607

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Table 1

Time and space complexities of algorithms for STR-IC-LCS, for input strings 𝐴 and 𝐵 of
length 𝑛 and constraint string 𝑃 of length 𝑟, where 𝑟 ≤ 𝑛. 𝓁 denotes the LCS length of 𝐴
and 𝐵, and 𝓁′ denotes the STR-IC-LCS length of 𝐴, 𝐵, and 𝑃 .

Algorithm Time Complexity Space Complexity

Deorowicz’s Algorithm [9] 𝑂(𝑛2) 𝑂(𝑛2)
Algorithm I

[our work]

𝑂(𝑛2) 𝑂((𝓁 + 1)(𝑛− 𝓁 + 1))
Algorithm II 𝑂(𝑛𝑟∕ log 𝑟+ 𝑛(𝑛− 𝓁 + 1)) 𝑂((𝓁 + 1)(𝑛− 𝓁 + 1))
Algorithm III 𝑂(𝑛𝑟∕ log 𝑟+ 𝑛(𝑛− 𝓁′ + 1)) 𝑂((𝓁′ + 1)(𝑛− 𝓁′ + 1))

for 𝑘 ≤ 𝜔 = log2 𝑛. It is widely believed that such “log-shaving” improvements would be the best possible one can hope, since an
𝑂(𝑛2−𝜖)-time LCS computation for any constant 𝜖 > 0 refutes the famous strong exponential time hypothesis (SETH) [5].

Recall however that this conditional lower-bound under the SETH does not enforce us to use (strongly) quadratic space in LCS
computation. Indeed, a simple modification to the DP method permits us to compute the length of an LCS in 𝑂(𝑛2) time with 𝑂(𝑛)
working space. There also exists an algorithm that computes an LCS string in 𝑂(𝑛2) time with only 𝑂(𝑛) working space [6]. The
aforementioned log-shaving methods [3,4] use only 𝑂(2𝑘 + 𝑛) space, which is 𝑂(𝑛) for 𝑘 ≤ 𝜔 = log2 𝑛.

In this paper, we follow a line of research called the Constrained LCS problems, in which a pattern 𝑃 that represents a-priori
knowledge of a user is given as a third input, and the task is to compute the longest common subsequence of 𝐴 and 𝐵 that meets
the condition w.r.t. 𝑃 [7,8,1,9–11]. The variant we consider here is the STR-IC-LCS problem of computing a longest string 𝑍 which
satisfies that (1) 𝑍 includes 𝑃 as a substring and (2) 𝑍 is a common subsequence of 𝐴 and 𝐵. We present new solutions to the
STR-IC-LCS problem, named Algorithm I, Algorithm II, and Algorithm III.

Algorithm I is the first space-efficient algorithm for the STR-IC-LCS problem running in 𝑂(𝑛2) time with 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1))
working space, where 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵) denotes the length of an LCS of 𝐴 and 𝐵. This solution improves on the state-of-the-art STR-IC-

LCS algorithm of Deorowicz [9] that uses Θ(𝑛2) time and Θ(𝑛2) working space, since 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) ⊆ 𝑂(𝑛2) always holds.
This method requires only sub-quadratic 𝑜(𝑛2) space whenever 𝓁 = 𝑜(𝑛). In particular, when 𝓁 = 𝑂(1) or 𝑛 − 𝓁 = 𝑂(1), which can
happen when we compare very different strings or very similar strings, respectively, then our algorithm uses only linear 𝑂(𝑛) space.
Algorithm I, is built on a non-trivial extension of the LCS computation algorithm by Nakatsu et al. [12] that runs in 𝑂(𝑛(𝑛 − 𝓁 + 1))
time with 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) working space (Section 3).

Algorithm II is a faster version of Algorithm I, which works in faster 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1)) time with the same 𝑂((𝓁 + 1)(𝑛 −
𝓁 + 1)) working space, where 𝑟 = |𝑃 | (Section 4). Recall that 𝑟 ≤ 𝑛 holds.

Algorithm III is an alternative version to Algorithm II, that works in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁′ + 1)) time with 𝑂((𝓁′ + 1)(𝑛 − 𝓁′ + 1))
space, where 𝓁′ is the length of an STR-IC-LCS of 𝐴, 𝐵, and 𝑃 . Since 𝓁′ ≤ 𝓁, 𝑛 −𝓁′ + 1 ≥ 𝑛 −𝓁 +1 holds, implying that Algorithm III
takes at least as much time as Algorithm II. Still, we show that Algorithm III uses less space than Algorithm II for some strings, by
presenting strings for which 𝓁′ =𝑂(1) and 𝓁 =Θ(𝑛) (Section 5).

Table 1 summarizes the complexities of the existing and proposed algorithms for STR-IC-LCS.

We remark that the 𝑂(𝑛2−𝜖)-time conditional lower-bound for LCS also applies to our case since STR-IC-LCS with the pattern 𝑃
being the empty string is equal to LCS, and thus, our solution is almost time optimal.

A preliminary version of this work appeared in [13], in which Algorithm I was proposed. The new materials in this full version
are our second and third solutions, Algorithm II and Algorithm III, described in Sections 4 and 5.

1.1. Related work

There exist four variants of the Constrained LCS problems, STR-IC-LCS/SEQ-IC-LCS/STR-EC-LCS/SEQ-EC-LCS, each of which is to
compute a longest string 𝑍 such that (1) 𝑍 includes/excludes the constraint pattern 𝑃 as a substring/subsequence and (2) 𝑍 is a
common subsequence of the two target strings 𝐴 and 𝐵 [7,8,1,9–11]. Yamada et al. [14] proposed an 𝑂(𝑛𝜎 + (𝓁′′ + 1)(𝑛 − 𝓁′′ + 1)𝑟)-
time and space algorithm for the STR-EC-LCS problem, which is also based on the method by Nakatsu et al. [12], where 𝜎 is the
alphabet size, 𝓁′′ is the length of an STR-EC-LCS and 𝑟 is the length of 𝑃 . However, the design of our solution to STR-IC-LCS is quite
different from that of Yamada et al.’s solution to STR-EC-LCS.

2. Preliminaries

2.1. Strings

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string 𝑆 is denoted by |𝑆|. The empty string 𝜀 is a string
of length 0. For a string 𝑆 = 𝑢𝑣𝑤, 𝑢, 𝑣 and 𝑤 are called a prefix, substring, and suffix of 𝑆 , respectively.

The 𝑖-th character of a string 𝑆 is denoted by 𝑆[𝑖], where 1 ≤ 𝑖 ≤ |𝑆|. For a string 𝑆 and two integers 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑆|, let
𝑆[𝑖..𝑗] denote the substring of 𝑆 that begins at position 𝑖 and ends at position 𝑗, namely, 𝑆[𝑖..𝑗] = 𝑆[𝑖] ⋯ 𝑆[𝑗]. For convenience, let
𝑆[𝑖..𝑗] = 𝜀 when 𝑖 > 𝑗. 𝑆𝑅 denotes the reversed string of 𝑆 , i.e., 𝑆𝑅 = 𝑆[|𝑆|] ⋯ 𝑆[1]. A non-empty string 𝑍 is called a subsequence of
another string 𝑆 if there exist increasing positions 1 ≤ 𝑖1 <⋯ < 𝑖|𝑍| ≤ |𝑆| in 𝑆 such that 𝑍 = 𝑆[𝑖1] ⋯ 𝑆[𝑖|𝑍|]. The empty string 𝜀 is
2

a subsequence of any string. A string that is a subsequence of two strings 𝐴 and 𝐵 is called a common subsequence of 𝐴 and 𝐵.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 1. Let 𝐴 = 𝚋𝚌𝚍𝚊𝚋𝚊𝚋𝚌𝚋, 𝐵 = 𝚌𝚋𝚊𝚌𝚋𝚊𝚊𝚋𝚊, and 𝑃 = 𝚊𝚋𝚋. The length of an STR-IC-LCS of these strings is 6. One of such strings can be obtained by minimal intervals
[4..7] over 𝐴 and [6..8] over 𝐵 because 𝗅𝖼𝗌(𝚋𝚌𝚊, 𝚌𝚋𝚊𝚌𝚋) = 2, |𝑃 | = 3, and 𝗅𝖼𝗌(𝚌𝚋, 𝚌) = 1.

2.2. STR-IC-LCS

Let 𝐴, 𝐵, and 𝑃 be strings. A string 𝑍 is said to be an STR-IC-LCS of two target strings 𝐴 and 𝐵 including the pattern 𝑃 if 𝑍 is a
longest string such that (1) 𝑃 is a substring of 𝑍 and (2) 𝑍 is a common subsequence of 𝐴 and 𝐵.

For ease of exposition, we assume that 𝑛 = |𝐴| = |𝐵|, but our algorithm to follow can deal with the general case where |𝐴| ≠ |𝐵|.
We can also assume that |𝑃 | ≤ 𝑛, since otherwise there clearly is no solution. In this paper, we present a space-efficient algorithm
that computes an STR-IC-LCS in 𝑂(𝑛2) time and 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space, where 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵) is the longest common subsequence
length of 𝐴 and 𝐵. In case where there is no solution, we use a convention that 𝑍 = ⊥ and its length |⊥| is −1. We remark that
𝓁 ≥ |𝑍| always holds.

3. Space-efficient solution (Algorithm I) for STR-IC-LCS problem

In this section, we propose a space-efficient solution for the STR-IC-LCS problem.

Problem 1 (STR-IC-LCS problem). For any given strings 𝐴, 𝐵 of length 𝑛 and 𝑃 , compute an STR-IC-LCS of 𝐴, 𝐵, and 𝑃 .

Theorem 1. The STR-IC-LCS problem can be solved in 𝑂(𝑛2) time and 𝑂((𝓁+1)(𝑛 −𝓁+1)) space where 𝓁 is the length of LCS of 𝐴 and 𝐵.

In Section 3.1, we explain an overview of our algorithm. In Section 3.2, we show a central technique for our space-efficient
solution and Section 3.3 concludes with the detailed algorithm.

3.1. Overview of our solution

Our algorithm is built on the previous algorithm for the STR-IC-LCS problem which was proposed by Deorowicz [9]. Firstly,
we explain an outline of his algorithm. An interval [𝑖..𝑗] over the string 𝐴 is said to be a minimal occurrence of string 𝑃 , if 𝑃 is a
subsequence of 𝐴[𝑖..𝑗] and 𝑃 is not a subsequence of either 𝐴[𝑖 + 1..𝑗] or 𝐴[𝑖..𝑗 − 1]. In what follows, we will simply call such [𝑖..𝑗]
as a minimal interval for an arbitrarily fixed 𝑃 . Let 𝐼𝐴 be the set of minimal intervals over 𝐴, whose size is defined to be the number
of intervals in it. Remark that 𝐼𝐴 is of size linear in the length of 𝐴 since each interval in 𝐼𝐴 cannot contain any other intervals in
𝐼𝐴. There exists a pair of minimal intervals [𝖻𝐴..𝖾𝐴] over 𝐴 and [𝖻𝐵..𝖾𝐵] over 𝐵 such that the length of an STR-IC-LCS is equal to the
sum of the three values 𝗅𝖼𝗌(𝐴[1..𝖻𝐴 − 1], 𝐵[1..𝖻𝐵 − 1]), |𝑃 |, and 𝗅𝖼𝗌(𝐴[𝖾𝐴 + 1..𝑛], 𝐵[𝖾𝐵 + 1..𝑛]) (see also Fig. 1 for an example). First,
the algorithm computes 𝐼𝐴 and 𝐼𝐵 and computes the sum of three values for any pair of intervals. If we have an LCS table 𝑑 of size
𝑛 × 𝑛 such that 𝑑(𝑖, 𝑗) stores 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗]) for any integers 𝑖, 𝑗 ∈ [1..𝑛], we can check any LCS value between prefixes of 𝐴 and 𝐵
in constant time. It is known that this table can be computed in 𝑂(𝑛2) time by using a simple dynamic programming. Since the LCS
tables for prefixes and suffixes require 𝑂(𝑛2) space, the algorithm also requires 𝑂(𝑛2) space.

Our algorithm uses a space-efficient LCS table by Nakatsu et al. [12] instead of the table 𝑑 for computing LCSs of prefixes (suffixes)
of 𝐴 and 𝐵. The algorithm by Nakatsu et al. also computes a table by dynamic programming, but the LCS values of 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗])
for some pairs (𝑖, 𝑗) are missing in their table. In what follows, we show how we can resolve this issue.

3.2. Space-efficient prefix LCS

First, we explain a dynamic programming solution by Nakatsu et al. for computing an LCS of given strings 𝐴 and 𝐵. We give a
slightly modified description in order to describe our algorithm. For any integers 𝑖, 𝑠 ∈ [1..𝑛], let 𝑓𝐴(𝑠, 𝑖) be the length of the shortest
prefix 𝐵[1..𝑓𝐴(𝑠, 𝑖)] of 𝐵 such that the length of the longest common subsequence of 𝐴[1..𝑖] and 𝐵[1..𝑓𝐴(𝑠, 𝑖)] is 𝑠. For convenience,
𝑓𝐴(𝑠, 𝑖) =∞ if no such prefix exists. The values 𝑓𝐴(𝑠, 𝑖) will be computed using dynamic programming as follows:

𝑓𝐴(𝑠, 𝑖) = min{𝑓𝐴(𝑠, 𝑖− 1), 𝑗𝑠,𝑖},

where 𝑗𝑠,𝑖 is the index of the leftmost occurrence of 𝐴[𝑖] in 𝐵[𝑓𝐴(𝑠 −1, 𝑖 −1) +1..𝑛]. Let 𝑠′ be the largest value such that 𝑓𝐴(𝑠′, 𝑖) <∞
for some 𝑖, i.e., the 𝑠′-th row is the lowest row which has an integer value in the table 𝑓𝐴. We can see that the length of the longest
common subsequence of 𝐴 and 𝐵 is 𝑠′ (i.e., 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵) = 𝑠′). See Fig. 2 for an instance of 𝑓𝐴. Due to the algorithm, we do not
need to compute all the values in the table 𝑓𝐴 for obtaining the length of an LCS. Let 𝐹𝐴 be the sub-table of 𝑓𝐴 such that 𝐹𝐴(𝑠, 𝑖)
stores a value 𝑓𝐴(𝑠, 𝑖) if 𝑓𝐴(𝑠, 𝑖) is computed in the algorithm of Nakatsu et al. Intuitively, 𝐹𝐴 stores the first 𝑛 − 𝑙 + 1 diagonals of
3

length at most 𝑙. Let ⟨𝑖⟩ be the set of pairs in the 𝑖-th diagonal line (1 ≤ 𝑖 ≤ 𝑛) of the table 𝑓𝐴:

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 2. The LCS-table 𝑓𝐴 which is defined by Nakatsu et al. of 𝐴 = 𝚋𝚌𝚍𝚊𝚋𝚊𝚋𝚌𝚋. This figure also illustrates the table 𝑓𝐵 of 𝐵 = 𝚌𝚋𝚊𝚌𝚋𝚊𝚊𝚋𝚊.

Fig. 3. A sparse table 𝐹𝐴 of 𝑓𝐴 for 𝐴 = 𝚋𝚌𝚍𝚊𝚋𝚊𝚋𝚌𝚋 and 𝐵 = 𝚌𝚋𝚊𝚌𝚋𝚊𝚊𝚋𝚊 does not give 𝗅𝖼𝗌(𝐴[1..𝑖],𝐵[1..𝑗]) for some (𝑖, 𝑗).

⟨𝑖⟩ = {(𝑠, 𝑖+ 𝑠− 1) ∣ 1 ≤ 𝑠 ≤ 𝑛− 𝑖+ 1}.

Formally, 𝐹𝐴(𝑠, 𝑖) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 if

1. 𝑠 > 𝑖,
2. (𝑠, 𝑖) ∈ ⟨𝑗⟩ (𝑗 > 𝑛 − 𝓁 + 1), or

3. 𝐹𝐴(𝑠 − 1, 𝑖 − 1) ∈ {∞, 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽}.

Any other 𝐹𝐴(𝑠, 𝑖) stores the value 𝑓𝐴(𝑠, 𝑖). Since the lowest row number of each diagonal line ⟨𝑗⟩ (𝑗 > 𝑛 − 𝓁 + 1) is less than 𝓁, we
do not need to compute values which is described by the second item. Actually, we do not need to compute the values in ⟨𝑛 −𝓁 + 1⟩
for computing the LCS since the maximum row number in the last diagonal line is also 𝓁. However, we need the values on the last
line in our algorithm. Hence the table 𝐹𝐴 uses 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space (subtable which need to compute is parallelogram-shaped
of height 𝓁 and base 𝑛 − 𝓁). See Fig. 3 for an instance of 𝐹𝐴.

Now we describe a main part of our algorithm. Recall that a basic idea is to compute 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗]) from 𝐹𝐴. If we have all
the values on the table 𝑓𝐴, we can check the length 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗]) as follows.

Observation 1. The length of an LCS of 𝐴[1..𝑖] and 𝐵[1..𝑗] for any 𝑖, 𝑗 ∈ [1..𝑛] is the largest 𝑠 such that 𝑓𝐴(𝑠, 𝑖) ≤ 𝑗. If no such 𝑠
exists, 𝐴[1..𝑖] and 𝐵[1..𝑗] have no common subsequence of length 𝑠.

However, 𝐹𝐴 does not store several integer values with respect to the second condition of 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 for some 𝑖 and 𝑗. See
also Fig. 3 for an example of this fact. In this example, we can see that 𝗅𝖼𝗌(𝐴[1..7], 𝐵[1..4]) = 𝑓𝐴(3, 7) = 3 from the table 𝑓𝐴, but
𝐹𝐴(3, 7) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 in 𝐹𝐴. In order to resolve this problem, we also define 𝐹𝐵 (and 𝑓𝐵). Formally, for any integers 𝑗, 𝑠 ∈ [1..𝑛], let
𝑓𝐵(𝑠, 𝑗) be the length of the shortest prefix 𝐴[1..𝑓𝐵(𝑠, 𝑗)] of 𝐴 such that the length of the longest common subsequence of 𝐵[1..𝑗]
and 𝐴[1..𝑓𝐵(𝑠, 𝑗)] is 𝑠. Our algorithm accesses the length of an LCS of 𝐴[1..𝑖] and 𝐵[1..𝑗] for any given 𝑖 and 𝑗 by using two tables
𝐹𝐴 and 𝐹𝐵 . The following lemma shows a key property for the solution.
4

Lemma 2. Let 𝑠 be the length of an LCS of 𝐴[1..𝑖] and 𝐵[1..𝑗]. If 𝐹𝐴(𝑠, 𝑖) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽, then 𝐹𝐵(𝑠, 𝑗) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 4. Due to Observation 1, 𝑓𝐴(3, 7) gives the fact that 𝗅𝖼𝗌(𝐴[1..7], 𝐵[1..4]) = 3. However, 𝐹𝐴(3, 7) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. Then we can obtain the fact that 𝗅𝖼𝗌(𝐴[1..7], 𝐵[1..4]) = 3
by using 𝐹𝐵 . Namely, 𝐹𝐵 (3, 4) gives the LCS value.

Fig. 5. This figure shows an illustration for the proof of Lemma 2 (and Lemma 3). The length 𝑠 of an LCS of 𝐴[1..𝑖] and 𝐵[1..𝑗] cannot be obtained over 𝐹𝐴 because
𝐹𝐴(𝑠, 𝑖) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 (the highlighted cell). However, the length can be obtained by 𝐹𝐵(𝑠, 𝑗) over 𝐹𝐵 . The existence of 𝐹𝐵(𝑠 +𝑚, 𝑗𝑠+𝑚) from an LCS path guarantees the
fact that 𝐹𝐵 (𝑠, 𝑗) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽.

This lemma implies that the length of an LCS of 𝐴[1..𝑖] and 𝐵[1..𝑗] can be obtained if we have the two sparse tables (see also
Fig. 4).

Before proving Lemma 2, we show Lemma 3 below:

Lemma 3. Let 𝑈𝐹𝐴 be the set of pairs (𝑠, 𝑖) of integers such that 𝐹𝐵(𝑠, 𝑗) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽, where 𝐹𝐴(𝑠, 𝑖) = 𝑗. For any 1 ≤ 𝑠 ≤ 𝗅𝖼𝗌(𝐴, 𝐵), there
exists 𝑖 such that (𝑠, 𝑖) ∈𝑈𝐹𝐴 ,

Proof. Let 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵). We consider a sequence 𝑖1, … , 𝑖𝑠, … , 𝑖𝓁 of positions in 𝐴 such that 𝐴[𝑖1] ⋯ 𝐴[𝑖𝑠] ⋯ 𝐴[𝑖𝓁] is an LCS of 𝐴 and
𝐵 which can be obtained by backtracking over 𝐹𝐴. Suppose that 𝐹𝐵(𝑠, 𝐹𝐴(𝑠, 𝑖𝑠)) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 for some 𝑠 ∈ [1..𝓁]. 𝐹𝐵(𝑠′, 𝐹𝐴(𝑠′, 𝑖𝑠′)) =
𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 for any 𝑠′ ∈ [𝑠..𝓁], since 𝐹𝐴(1, 𝑖1) <… < 𝐹𝐴(𝓁, 𝑖𝓁) and 𝑠′ increases as one goes either to the next diagonal cell or even
further right. However, 𝐹𝐵(𝓁, 𝐹𝐴(𝓁, 𝑖𝓁)) is not 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. Therefore, 𝐹𝐵(𝑠, 𝐹𝐴(𝑠, 𝑖𝑠)) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 for any 𝑠 ∈ [1..𝓁]. Thus that the
lemma holds. □

Now we are ready to prove Lemma 2 as follows.

Proof of Lemma 2. Let 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵) and 𝑋 =𝐴[𝑖1] ⋯ 𝐴[𝑖𝑠] ⋯ 𝐴[𝑖𝓁] be an LCS of 𝐴 and 𝐵 which can be obtained from 𝐹𝐴, as in the
proof for Lemma 3. We also consider a sequence 𝑗1, … , 𝑗𝑠, … , 𝑗𝓁 of positions in 𝐵 such that 𝐵[𝑖1] ⋯ 𝐵[𝑗𝑠] ⋯ 𝐵[𝑗𝓁] is an LCS of 𝐴 and
𝐵, which satisfies that 𝑗𝑠 = 𝐹𝐴(𝑘, 𝑖𝑠) for each 𝑠 ∈ [1..𝓁].

Assume that 𝐹𝐴(𝑠, 𝑖) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. Let 𝑚 be the largest integer such that 𝑖𝑠+𝑚 ≤ 𝑖 holds and 𝐹𝐴(𝑠 +𝑚, 𝑖𝑠+𝑚) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. If no such
𝑚 exists, namely 𝑖 < 𝑖1, the statement holds since 𝐹𝐴(𝑠, 𝑖) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. Due to Observation 1, 𝐹𝐴(𝑠 +𝑚, 𝑖) > 𝑗. Thus 𝑗 < 𝑗𝑠+𝑚 holds. On
the other hand, we consider the table 𝐹𝐵 (and 𝑓𝐵). Let 𝑖′ = 𝑓𝐵(𝑠, 𝑗) and 𝑖′′ = 𝑓𝐵(𝑠 +𝑚, 𝑗). Due to Observation 1, 𝑖′ ≤ 𝑖 < 𝑖′′ holds. By
Lemma 3, 𝐹𝐵(𝑠 +𝑚, 𝑗𝑠+𝑚) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. This implies that 𝐹𝐵(𝑠 +𝑚, 𝑗) (= 𝑖′′) is not 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. By the definition of 𝑋, 𝑗𝑠+𝑚 − 𝑗 ≥𝑚 −1.
Notice that (𝑠, 𝑗) is in (𝑗 − 𝑠 + 1)-th diagonal line. These facts imply that 𝐹𝐵(𝑠, 𝑗) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽. See also Fig. 5 for an illustration. □

3.3. Algorithm I
5

A pseudo-code of our first space-efficient algorithm is given in Algorithm 1.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Algorithm 1 Algorithm I for computing the length of STR-IC-LCS.

Input: 𝐴, 𝐵, 𝑃 (|𝐴| = 𝑛, |𝐵| = 𝑛, |𝑃 | = 𝑟)
Output: 𝑙, 𝐶
1: compute 𝐼𝐴 and 𝐼𝐵
2: compute 𝐹𝐴, 𝐹𝐵, 𝐹𝐴𝑅 , and 𝐹𝐵𝑅
3: 𝓁← 𝗅𝖼𝗌(𝐴, 𝐵)
4: 𝑙← 0
5: for 𝑖 = 1 to |𝐼𝐴| do

6: 𝑘𝐴1 ← 1, 𝑘𝐵1 ← 1, 𝑘𝐴2 ← 𝓁, 𝑘𝐵2 ← 𝓁
7: for 𝑗 = 1 to |𝐼𝐵 | do

8: 𝑘1 ← 0, 𝑘2 ← 0
9: compute 𝗅𝖼𝗌(𝐴[1..𝖻𝐴(𝑖) − 1], 𝐵[1..𝖻𝐵 (𝑗) − 1]) // as 𝑘1 by Algorithm 2

10: compute 𝗅𝖼𝗌(𝐴[𝖾𝐴(𝑖) + 1..𝑛], 𝐵[𝖾𝐵 (𝑗) + 1..𝑛]) // as 𝑘2 by Algorithm 3

11: if 𝑘1 + 𝑘2 + 𝑟 > 𝑙 then

12: 𝑙← 𝑘1 + 𝑘2 + 𝑟
13: end if

14: end for

15: end for

16: return 𝑙

Algorithm 2 Computing 𝗅𝖼𝗌(𝐴[1..𝖻𝐴(𝑖) − 1], 𝐵[1..𝖻𝐵(𝑗) − 1]) in Algorithm I.

1: for 𝑘 ← 𝑘𝐴1 to 𝓁 do

2: if 𝐹𝐴(𝖻𝐴(𝑖) − 1, 𝑘) ≤ 𝖻𝐵 (𝑗) − 1 then

3: if 𝐹𝐴(𝖻𝐴(𝑖) − 1, 𝑘 + 1) > 𝖻𝐵 (𝑗) − 1 then

4: 𝑘1 ← 𝑘

5: 𝑘𝐴1 ← 𝑘

6: 𝐛𝐫𝐞𝐚𝐤
7: end if

8: else if 𝐹𝐴(𝖻𝐴(𝑖) − 1, 𝑘) > 𝖻𝐵 (𝑗) − 1 then

9: if 𝐹𝐴(𝖻𝐴(𝑖) − 1, 𝑘 − 1) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 then

10: 𝑘𝐴1 ← 𝑘

11: for 𝑘′ = 𝑘𝐵1 to 𝓁 do

12: if 𝐹𝐵 (𝖻𝐵 (𝑗) − 1, 𝑘′) > 𝖻𝐴(𝑖) − 1 then

13: 𝑘1 ← 0
14: 𝑘𝐵1 ← 𝑘′

15: 𝐛𝐫𝐞𝐚𝐤
16: else if 𝐹𝐵 (𝖻𝐵 (𝑗) − 1, 𝑘′ + 1) > 𝖻𝐴(𝑖) − 1 then

17: 𝑘1 ← 𝑘′

18: 𝑘𝐵1 ← 𝑘′

19: 𝐛𝐫𝐞𝐚𝐤
20: end if

21: end for

22: else

23: 𝑘1 ← 0
24: 𝑘𝐴1 ← 𝑘

25: 𝐛𝐫𝐞𝐚𝐤
26: end if

27: end if

28: end for

First, our algorithm computes the sets of minimal intervals 𝐼𝐴 and 𝐼𝐵 (similar to the algorithm by Deorowicz [9]). Second,
compute the tables 𝐹𝐴 and 𝐹𝐵 for computing LCSs of prefixes, and the tables 𝐹𝐴𝑅 and 𝐹𝐵𝑅 for computing LCSs of suffixes (similar to
the algorithm by Nakatsu et al. [12]). Third, for any pairs of intervals in 𝐼𝐴 and 𝐼𝐵 , compute the length of an LCS of corresponding
prefixes/suffixes and obtain a candidate of the length of an STR-IC-LCS. As stated above, the first and the second steps are similar to
the previous work. Here, we describe our method to compute the length of an LCS of prefixes on 𝐹𝐴 and 𝐹𝐵 in the third step. We
can also compute the length of an LCS of suffixes on 𝐹𝐴𝑅 and 𝐹𝐵𝑅 in a similar way.

We assume that 𝐼𝐴 and 𝐼𝐵 are sorted in increasing order of the beginning positions. Let [𝖻𝐴(𝑥)..𝖾𝐴(𝑥)] and [𝖻𝐵(𝑦)..𝖾𝐵(𝑦)] denote
the 𝑥-th interval in 𝐼𝐴 and the 𝑦-th interval in 𝐼𝐵 , respectively. We process 𝑂(𝑛2)-queries in increasing order of the beginning
position of the intervals in 𝐼𝐴. For each interval [𝖻𝐴(𝑥)..𝖾𝐴(𝑥)] in 𝐼𝐴, we want to obtain the length of an LCS of 𝐴[1..𝖻𝐴(𝑥) − 1] and
𝐵[1..𝖻𝐵(1) − 1]. For convenience, let 𝑖𝑥 = 𝖻𝐴(𝑥) − 1 and 𝑗𝑦 = 𝖻𝐵(𝑦) − 1. In the rest of this section, we use a pair (𝑥, 𝑦) of integers to
denote a prefix-LCS query (computing 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑖𝑦])). We will find the LCS by using Observation 1. Here, we describe how to
compute prefix-LCS queries (𝑖𝑥, 𝑗1), … , (𝑖𝑥, 𝑗|𝐼𝐵 |) in this order for a fixed 𝑖𝑥 .

Lemma 4. All required prefix-LCS values for an interval [𝖻𝐴(𝑥)..𝖾𝐴(𝑥)] in 𝐼𝐴 and all intervals in 𝐼𝐵 can be computed in 𝑂(𝑛) time.
6

Proof. There exist two cases for each 𝑖𝑥. Formally, (1) 𝐹𝐴(1, 𝑖𝑥) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 or (2) 𝐹𝐴(1, 𝑖𝑥) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Algorithm 3 Computing 𝗅𝖼𝗌(𝐴[𝖾𝐴(𝑖) + 1..𝑛], 𝐵[𝖾𝐵(𝑗) + 1..𝑛]) in Algorithm I.

1: for 𝑘 = 𝑘𝐴2 to 1 do

2: if 𝐹𝐴𝑅 (𝑛 − 𝖾𝐴(𝑖), 𝑘) ≤ 𝑛 − 𝖾𝐵 (𝑗) then

3: 𝑘2 ← 𝑘

4: 𝑘𝐴2 ← 𝑘

5: 𝐛𝐫𝐞𝐚𝐤
6: else if 𝐹𝐴𝑅 (𝑛 − 𝖾𝐴(𝑖), 𝑘) > 𝑛 − 𝖾𝐵 (𝑗) then

7: if 𝐹𝐴𝑅 (𝑛 − 𝖾𝐴(𝑖), 𝑘 − 1) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 then

8: 𝑘𝐴2 ← 𝑘

9: for 𝑘′ = 𝑘𝐵2 to 1 do

10: if 𝐹𝐵𝑅 (𝑛 − 𝖾𝐵 (𝑗), 𝑘′) ≤ 𝑛 − 𝖾𝐴(𝑖) then

11: 𝑘2 ← 𝑘′

12: 𝑘𝐵2 ← 𝑘′

13: 𝐛𝐫𝐞𝐚𝐤
14: else if 𝐹𝐵𝑅 (𝑛 − 𝖾𝐵(𝑗), 𝑘′ − 1) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽 then

15: 𝑘2 ← 0
16: 𝑘𝐵2 ← 𝑘′

17: 𝐛𝐫𝐞𝐚𝐤
18: end if

19: end for

20: end if

21: end if

22: end for

In the first case, we scan the 𝑖𝑥-th column of 𝐹𝐴 from the top to the bottom in order to find the maximum value which is less
than or equal to 𝑗1. If such a value exists in the column, then the row number 𝑠1 is the length of an LCS. After that, we are given the
next prefix-LCS query (𝑖𝑥, 𝑗2). It is easy to see that 𝑠0 = 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗1]) ≤ 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗2]) since 𝑗1 < 𝑗2. This implies that
the next LCS value is equal to 𝑠0 or that is placed in a lower row in the column. This means that we can start to scan the column
from the 𝑠0-th row. Thus we can answer all prefix-LCSs for a fixed 𝑖𝑥 in 𝑂(𝑛) time (that is linear in the size of 𝐼𝐵).

In the second case, we start to scan the column from the top 𝐹𝐴(𝑖𝑥 − 𝑛 − 𝓁 + 1, 𝑖𝑥) (the first 𝑖𝑥 − 𝑛 − 𝓁 rows are 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽). If
𝐹𝐴(𝑖𝑥 − 𝑛 − 𝓁 + 1, 𝑖𝑥) ≤ 𝑗1, then the length of an LCS for the first query (𝑖𝑥, 𝑗1) can be found in the table (similar to the first case) and
any other queries (𝑖𝑥, 𝑗2), … , (𝑖𝑥, 𝑗|𝐼𝐵 |) can be also answered in a similar way. Otherwise (if 𝐹𝐴(𝑖𝑥 − 𝑛 − 𝓁 + 1, 𝑖𝑥) > 𝑗1), the length
which we want may be in the “undefined” domain. Then we use the other table 𝐹𝐵 . We scan the 𝑗1-th column in 𝐹𝐵 from the top to
the bottom in order to find the maximum value which is less than or equal to 𝑖𝑥 . By Lemma 2, such a value must exist in the column
(if 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗1]) > 0 holds) and the row number 𝑠′ is the length of an LCS. After that, we are given the next query (𝑖𝑥, 𝑗2). If
𝐹𝐴(𝑖𝑥−𝑛 −𝓁+1, 𝑖𝑥) ≤ 𝑗2, then the length can be found in the table (similar to the first case). Otherwise (if 𝐹𝐴(𝑖𝑥−𝑛 −𝓁+1, 𝑖𝑥) > 𝑗2),
the length must be also in the “undefined” domain. Since such a value must exist in the 𝑗2-th column in 𝐹𝐵 by Lemma 2, we scan the
column in 𝐹𝐵 . It is easy to see that 𝑠′ = 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗1]) ≤ 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗2]). This implies that the length of an LCS that we
want to find is in lower row. Thus it is enough to scan the 𝑗2-th column from the 𝑠′-th row to the bottom. Then we can answer the
second query (𝑖𝑥, 𝑗2). Hence we can compute all LCSs for a fixed 𝑖𝑥 in 𝑂(𝑛 + 𝓁) time (that is linear in the size of 𝐼𝐵 or the number of
rows in the table 𝐹𝐵).

Therefore we can compute all prefix-LCSs for each interval in 𝐼𝐴 in 𝑂(𝑛) time (since 𝑛 ≥ 𝓁). □

On the other hand, we can compute all required suffix-LCS values with computing prefix-LCS values. We want a suffix-LCS value
of 𝐴[𝖾𝐴(𝑥) + 1..𝑛] and 𝐵[𝖾𝐵(𝑦) + 1..𝑛] (1 ≤ 𝑦 ≤ |𝐼𝐵|) when we compute the length of an LCS of 𝐴[1..𝖻𝐴(𝑥) − 1] and 𝐵[1..𝖻𝐵(𝑦) − 1].
Recall that we process all intervals of 𝐼𝐵 in increasing order of the beginning positions when computing prefix-LCS values with a
fixed interval of 𝐼𝐴. This means that we need to process all intervals of 𝐼𝐵 in “decreasing order” when computing suffix-LCS values
with a fixed interval of 𝐼𝐴. We can do that by using an almost similar way on 𝐹𝐴𝑅 and 𝐹𝐵𝑅 . The most significant difference is that
we scan the |𝐴[𝖾𝐴(𝑥) + 1..𝑛]|-th column of 𝐹𝐴𝑅 from the 𝓁-th row to the first row.

Overall, we can obtain the length of an STR-IC-LCS in 𝑂(𝑛2) time in total. Also this algorithm requires space for string all minimal
intervals and tables, namely, requiring 𝑂(𝑛 +(𝓁+1)(𝑛 −𝓁+1)) ⊆𝑂((𝓁+1)(𝑛 −𝓁+1)) space in the worst case. Finally, we can obtain
Theorem 1.

In addition, we can also compute an STR-IC-LCS (as a string), if we store a pair of minimal intervals which produce the length of
an STR-IC-LCS. Namely, we can find a cell which gives the prefix-LCS value over 𝐹𝐴 or 𝐹𝐵 . Then we can obtain a prefix-LCS string
by a simple backtracking (a suffix-LCS can be also obtained by backtracking on 𝐹𝐴𝑅 or 𝐹𝐵𝑅). On the other hand, we can also use an
algorithm that computes an LCS string in 𝑂(𝑛2) time and 𝑂(𝑛) space by Hirschberg [6].

4. Faster solution (Algorithm II) for STR-IC-LCS problem

In this section, we propose a faster solution (Algorithm II) for the STR-IC-LCS problem that achieves the following:

Theorem 5. The STR-IC-LCS problem can be solved in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1)) time and 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space where 𝓁 is the
7

length of an LCS of 𝐴 and 𝐵.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 6. 𝜃𝐴 of the set 𝐼𝐴 = {[2, 3], [5, 7], [8, 9]} of minimal intervals on string 𝐴 = 𝚌𝚊𝚋𝚌𝚊𝚍𝚋𝚊𝚋 and pattern 𝚊𝚋, and 𝜃𝐵 of the set 𝐼𝐵 = {[2, 4], [5, 6], [7, 9]} of minimal
intervals on string 𝐵 = 𝚌𝚊𝚌𝚋𝚊𝚋𝚊𝚍𝚋 and pattern 𝚊𝚋.

Algorithm II with 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1)) running time is built on the previous solution Algorithm I with 𝑂(𝑛2) running time.
Thus, in this section we discuss only the differences between Algorithm I and Algorithm II.

An overview of Algorithm II is as follows: First, we compute the sets of minimal intervals 𝐼𝐴 and 𝐼𝐵 by using Das et al.’s
algorithm [15] that works in 𝑂(𝑛𝑟∕ log 𝑟) time and 𝑂(𝑛) space. Second, we compute two arrays 𝜃𝐴 and 𝜃𝐵 from 𝐼𝐴 and 𝐼𝐵 in 𝑂(𝑛)
time and space, respectively. Third, following the approach of Algorithm I, we compute the tables 𝐹𝐴 and 𝐹𝐵 for computing LCSs of
the prefixes, and the tables 𝐹𝐴𝑅 and 𝐹𝐵𝑅 for computing LCSs of the suffixes, in faster 𝑂(𝑛(𝑛 − 𝓁 +1)) time with 𝑂((𝓁 +1)(𝑛 − 𝓁 +1))
space. Finally, for some pairs of intervals in 𝜃𝐴 and 𝜃𝐵 which respectively have intervals from 𝐼𝐴 and 𝐼𝐵 , we compute the length
of an LCS of corresponding prefixes/suffixes and obtain a candidate of the length of an STR-IC-LCS by using the faster method that
works in 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) time. The main idea of this step is to omit rescanning of the same element in 𝐹𝐴 and 𝐹𝐵 .

In the following subsections, we explain the details of Algorithm II. Section 4.1 shows how to compute 𝜃𝐴 and 𝜃𝐵 . Section 4.2

shows the faster method of computing candidates of STR-IC-LCS.

4.1. Computing 𝜃𝐴 and 𝜃𝐵

As stated before, 𝐼𝐴 and 𝐼𝐵 are the sets of minimal intervals over 𝐴 and 𝐵 which have 𝑃 as a subsequence, respectively. We
define two arrays 𝜃𝐴 and 𝜃𝐵 : For each 1 ≤ 𝑖 ≤ 𝑛,

• If there is an interval [𝑖..𝑗] in 𝐼𝐴 that begins with 𝑖, then 𝜃𝐴[𝑖] stores this interval [𝑖..𝑗]. These minimal intervals stored in 𝜃𝐴 are
called interval elements of 𝜃𝐴.

• If there is no interval in 𝐼𝐴 that begins with 𝑖, then 𝜃𝐴[𝑖] stores the smallest index 𝑠 such that 𝑠 > 𝑖 and 𝜃𝐴[𝑠] stores an interval
element. In case where there is no such interval to the right of 𝑖, then 𝜃𝐴[𝑖] stores null.

For example, Fig. 6 shows 𝜃𝐴 of the set 𝐼𝐴 of minimal intervals for string 𝐴 = 𝚌𝚊𝚋𝚌𝚊𝚍𝚋𝚊𝚋 and pattern 𝚊𝚋. The array 𝜃𝐵 is defined
analogously for string 𝐵. These arrays are used for our efficient algorithm in Section 4.2 for computing candidates.

4.2. Computing candidates

Recall that Algorithm I computes candidates by scanning each column of 𝐹𝐴 and some columns 𝐹𝐵 from the top to the bottom.
The total time complexity of Algorithm I is 𝑂(𝑛2) since it depends on the number of minimal intervals which is 𝑂(𝑛2), in other words,
the number of candidates considered by Algorithm I is 𝑂(𝑛2). To achieve a faster solution, Algorithm II excludes some “redundant”
candidates that are considered by Algorithm I but cannot actually be a solution. Below, we explain such candidates.

Here, let us recall the process in Algorithm I in which prefix-LCS queries are performed in this order (𝑖𝑥, 𝑗𝑘), … , (𝑖𝑥, 𝑗|𝐼𝐵 |) for a
fixed 𝑖𝑥 (1 ≤ 𝑘 < |𝐼𝐵|). Assume that 𝐹𝐴(𝑠𝑘, 𝑖𝑥) satisfying 𝐹𝐴(𝑠𝑘, 𝑖𝑥) ≥ 𝑗𝑘 exists. We scan the 𝑖𝑥-th column of 𝐹𝐴 in order to find the
value 𝐹𝐴(𝑠𝑘, 𝑖𝑥). After this scanning, we are given the next prefix-LCS query (𝑖𝑥, 𝑗𝑘+1) and restart to scan the column from 𝐹𝐴(𝑠1, 𝑖𝑥).
In this situation, if 𝑠𝑘 = 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗𝑘]) = 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗𝑘+1]), we scan only 𝐹𝐴(𝑠𝑘, 𝑖𝑥). However, the candidate obtained by
such scanning cannot be a solution of STR-IC-LCS since 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗𝑘]) + |𝑃 | + 𝗅𝖼𝗌(𝐴[𝑖′

𝑥
..𝑛], 𝐵[𝑗′

𝑘
..𝑛]) ≤ 𝗅𝖼𝗌(𝐴[1..𝑖𝑥], 𝐵[1..𝑗𝑘+1]) +

|𝑃 | + 𝗅𝖼𝗌(𝐴[𝑖′
𝑥
..𝑛], 𝐵[𝑗′

𝑘+1..𝑛]) holds, where 𝑖′
𝑥
, 𝑗′
𝑘

and 𝑗′
𝑘+1 satisfy (𝑖𝑥 + 1, 𝑖′

𝑥
− 1) ∈ 𝐼𝐴, (𝑖𝑗 + 1, 𝑖′

𝑗
− 1) ∈ 𝐼𝐵 and (𝑖𝑗+1 + 1, 𝑖′

𝑗+1 − 1) ∈ 𝐼𝐵 ,
respectively. This implies that the rescanning of the same value in 𝐹𝐴 is useless in computing a solution, and the symmetric arguments
hold when we compute 𝐹𝐵 . We will prove Theorem 5 based on this observation.

Algorithm II performs prefix-LCS and suffixes LCS-queries which are given from 𝜃𝐴 and 𝜃𝐵 , respectively. Thus, we describe how
to perform prefix-LCS and suffix-LCS queries by scanning the elements 𝜃𝐴[𝑖] and 𝜃𝐵[1], … , 𝜃𝐵[𝑛] in this order for a fixed 𝑖 (1 ≤ 𝑖 ≤ 𝑛).

Lemma 6. We can compute all prefix/suffix LCSs with respect to 𝜃𝐴 and 𝜃𝐵 in a total of 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) time and space.

Proof. We use an array 𝑊𝐴𝑅 of size 𝑛 such that, for each 1 ≤ 𝑖 ≤ 𝑛, 𝑊𝐴𝑅 [𝑖] initially stores the largest row index of the 𝑖-th column
of 𝐹𝐴𝑅 that stores a non-∞ value. We also use an array 𝑊𝐵𝑅 of size 𝑛 that is built on 𝐹𝐵𝑅 in an analogous manner. See Fig. 7 for
examples of initialized 𝑊𝐴𝑅 and 𝑊𝐵𝑅 . In our faster algorithm to follow, we update these two arrays 𝑊𝐴𝑅 and 𝑊𝐵𝑅 while keeping
the invariants that 𝑊𝐴𝑅 [𝑖] and 𝑊𝐵𝑅 [𝑖] respectively store the row indices of the 𝑖-th columns of 𝐹𝐴𝑅 and 𝐹𝐵𝑅 from which we restart
8

the scanning, for every 1 ≤ 𝑖 ≤ 𝑛.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 7. Sparse tables 𝐹𝐴𝑅 and 𝐹𝐵𝑅 for 𝐴 = 𝚋𝚌𝚊𝚌𝚋𝚊𝚋𝚌𝚋 and 𝐵 = 𝚌𝚋𝚊𝚌𝚋𝚊𝚋𝚋𝚌, and integer arrays 𝑊𝐴𝑅 and 𝑊𝐵𝑅 in their initial states, whose 𝑖-th elements are initialized
with the largest row indices of the 𝑖-th columns of 𝐹𝐴𝑅 and 𝐹𝐵𝑅 storing non-∞ values, respectively.

For each 1 ≤ 𝑖 ≤ 𝑛 such that 𝜃𝐴[𝑖] stores an interval element, let us denote this interval by [𝑖..𝖾𝑖]. For a given 𝑖, if 𝜃𝐴[𝑖] does not
store an interval element, then we access the next interval element in 𝜃𝐴 by updating the index 𝑖 with 𝑖 ← 𝜃𝐴[𝑖]. Let 𝑗 be the least
index in 𝜃𝐵 such that 𝜃𝐵[𝑗] stores an interval element. We then proceed as described above.

There exist two cases for each 𝑖 such that 𝜃𝐴[𝑖] stores an interval element:

(1) When 𝐹𝐴(1, 𝑖 − 1) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽: In this case, first, we compute the prefix-LCS length of 𝐴[1..𝑖 − 1] and 𝐵[1..𝑗 − 1]. We scan the
(𝑖 − 1)-th column of 𝐹𝐴 from the top to the bottom in order to find the maximum value which is less than or equal to 𝑗 − 1. If
such a value exists in the column, then the row number 𝑠 is the length of a prefix-LCS.

Next, we compute the suffix-LCS length of 𝐴[𝖾𝑖 + 1..𝑛] and 𝐵[𝖾𝑗 + 1..𝑛]. If 𝐹𝐴𝑅 (1, 𝑛 − 𝖾𝑖) ≠ 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽, we scan the (𝑛 − 𝖾𝑖)-th
column of 𝐹𝐴𝑅 by the same methods as Algorithm I. If 𝐹𝐴𝑅 (1, 𝑛 − 𝖾𝑖) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽, we scan the (𝑛 − 𝖾𝑖)-th column of 𝐹𝐴𝑅 by the
same method as Algorithm I if 𝐹𝐴(𝖾𝑖 − 𝓁, 𝑛 − 𝖾𝑖) ≤ 𝑛 − 𝖾𝑗 , and otherwise we can scan the (𝑛 − 𝖾𝑗)-th column of 𝐹𝐵𝑅 from the
(𝑊𝐵𝑅 [𝑛 −𝖾𝑗])-th row to the top and we get the row number 𝑠′ since 𝑛 −𝖾𝑖 is decreasing order and 𝗅𝖼𝗌(𝐴[𝖾𝑖+1 +𝑘..𝑛], 𝐵[𝖾𝑗+1..𝑛]) ≥
𝗅𝖼𝗌(𝐴[𝖾𝑖 + 1..𝑛], 𝐵[𝖾𝑗 + 1..𝑛]) for 1 ≤ 𝑘 ≤ 𝑛 − (𝖾𝑖 + 1). Then, in the case that we scan 𝐹𝐵𝑅 , we store 𝑠′ at 𝑊𝐵𝑅 [𝑛 − 𝖾𝑗].
After that, we update 𝑗 with the beginning position of the next interval element, which is either directly stored at 𝜃𝐵[𝐹𝐴(𝑠 +
1, 𝑖 −1) +1] or pointed by a pointer stored at 𝜃𝐵[𝐹𝐴(𝑠 +1, 𝑖 −1) +1]. This operation allows us to skip all interval elements which
can cause rescanning 𝐹𝐴(𝑠, 𝑖 − 1). This way, we can start scanning from 𝐹𝐴(𝑠 + 1, 𝑖 − 1) in order to avoid rescanning 𝐹𝐴(𝑠, 𝑖 − 1).
Thus we can answer all prefix-LCSs for a fixed 𝑖 in time linear in the size of the 𝑖 −1-th row of 𝐹𝐴, meaning that we can compute
the prefix-LCSs for all 𝑖 in time linear in the size of 𝐹𝐴, which is 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)). We remark that, in other words, the
number of candidates has been reduced to the size of 𝐹𝐴.

In addition, for obtaining the next suffix-LCS length of 𝐴[𝖾𝑖 + 1..𝑛] and 𝐵[𝖾𝑗 + 1..𝑛], we can use the same method as in the case
of scanning only 𝐹𝐴𝑅 with Algorithm I. In this case, we scan the (𝑛 − 𝖾𝑗)-th column of 𝐹𝐵𝑅 from the (min{𝑠′, 𝑊𝐵𝑅 [𝑛 − 𝖾𝑗]})-th
row to the top and we obtain the row number 𝑡. Then, we store 𝑡 at 𝑊𝐵𝑅 [𝑛 − 𝖾𝑗].
Overall, since the total number of rescanned cells in 𝐹𝐴𝑅 and 𝐹𝐵𝑅 is linear in the size of 𝐹𝐴, and since the total number of
scanned cells except for the aforementioned rescanned cells is linear in the total size of 𝐹𝐴𝑅 and 𝐹𝐵𝑅 , we can answer the
suffix-LCSs for all 𝑖 in time linear in the total size of 𝐹𝐴𝑅 , 𝐹𝐵𝑅 and 𝐹𝐴, which is 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)).

(2) When 𝐹𝐴(1, 𝑖 − 1) = 𝗎𝗇𝖽𝖾𝖿 𝗂𝗇𝖾𝖽: In this second case, we compute candidates (i.e. the sums of the lengths of pairs of a prefix-LCS
and suffix-LCS) as follows: We start scanning the column from the top 𝐹𝐴(𝑖 − 𝑛 − 𝓁, 𝑖 − 1). If 𝐹𝐴(𝑖 − 𝑛 − 𝓁, 𝑖 − 1) ≤ 𝑗 − 1, then
the length of a prefix-LCS for the first query (𝑖 − 1, 𝑗 − 1) can be found in the table (similar to Case (1)) and next queries about
interval elements can also be answered in a similar way. Otherwise (if 𝐹𝐴(𝑖 −𝑛 −𝓁, 𝑖 −1) > 𝑗−1), the length which we want may
be in the “undefined” domain. Then we use the other table 𝐹𝐵 . We scan the (𝑗 − 1)-th column in 𝐹𝐵 from the top to the bottom
in order to find the maximum value which is less than or equal to 𝑖 − 1. Then, the row number 𝑠 is the length of a prefix-LCS of
𝐴[1..𝑖 − 1] and 𝐵[1..𝑗 − 1]. In addition, we compute the suffix-LCS length of 𝐴[𝖾𝑖 + 1..𝑛] and 𝐵[𝖾𝑗 + 1..𝑛] by the same method as
Case (1).

After that, we compute the prefix-LCS of 𝐴[1..𝑖′ − 1] and 𝐵[1..𝑗 − 1], and the suffix-LCS of 𝐴[𝖾𝑖′ + 1..𝑛] and 𝐵[𝖾𝑗 + 1..𝑛] for the
fixed 𝑗 and the next index 𝑖′ (𝑖 < 𝑖′ ≤ 𝑛) in a similar way, where 𝑖′ is the index of the next interval element that is stored after
𝑖 in 𝜃𝐴. We obtain the next interval element [𝑖′..𝖾𝑖′] or an index to that element from 𝜃𝐴[𝐹𝐵(𝑠 + 1, 𝑗 − 1) + 1]. Here again, we
can start scanning from 𝐹𝐵(𝑠 + 1, 𝑖 − 1) in order to avoid rescanning 𝐹𝐵(𝑠, 𝑖 − 1) for computing the prefix-LCS of 𝐴[𝑖′ − 1..𝑛] and
𝐵[1..𝑗 − 1]. In addition, we compute the suffix-LCS of 𝐴[𝖾𝑖′ + 1..𝑛] and 𝐵[𝖾𝑗 + 1..𝑛] in a similar way to Case (1). The difference
9

is that we scan 𝐹𝐴𝑅 and we use 𝑊𝐴𝑅 instead of 𝑊𝐵𝑅 . We repeat this method up to the end of 𝜃𝐴.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

We then delete the interval element 𝜃𝐵[𝑗] = [𝑗, 𝖾𝑗] and 𝜃𝐵[1] is assigned to 𝑗 + 1, since we have completed computation for the
interval [𝑗, 𝖾𝑗]. With these updates done, we are able to access the interval elements by accessing at most two elements on 𝜃𝐵.
Next, we search 𝜃𝐵[𝑗 + 1] for the next interval and repeat the above operations.

Overall, we can answer all prefix-LCSs in 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) for all 𝑖 (that is linear in the sum of the sizes of 𝐹𝐴 and 𝐹𝐵). In
other words, the number of candidates has been reduced to the total size of 𝐹𝐴 and 𝐹𝐵 . Since the total number of rescanned cells
in 𝐹𝐴𝑅 and 𝐹𝐵𝑅 is linear in the total size of 𝐹𝐴 and 𝐹𝐵 , and since the total number of scanned cells except for the aforementioned
rescanned cells is linear in the total size of 𝐹𝐴𝑅 and 𝐹𝐵𝑅 , we conclude that the suffix-LCSs for all 𝑖 can be computed in time
linear in the total sizes of 𝐹𝐴, 𝐹𝐵 , 𝐹𝐴𝑅 , and 𝐹𝐵𝑅 , which is 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)).

Finally, we can compute all prefix/suffix-LCSs in 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) total time. □

Below we present some concrete examples on how our Algorithm II operates efficiently.

Example 1. Here we show an example of scanning 𝐹𝐴𝑅 , 𝐹𝐵𝑅 and updating 𝑊𝐵𝑅 in prefix/suffix-LCS computation in Algorithm II.
See in Fig. 8 for illustrations.

Consider searching for 𝑠 with 𝑛 − 𝖾𝑖 = 8 and 𝑛 − 𝖾𝑗 = 5 by scanning from 𝐹𝐴𝑅 and 𝐹𝐵𝑅 . Here we cannot obtain 𝑠 from 𝐹𝐴𝑅 . Thus,
we start scanning from 𝐹𝐵𝑅 (𝑊𝐵𝑅 [5], 5) = 𝐹𝐵𝑅 (5, 5) toward the top of the column, and we obtain 𝑠 = 4 from 𝐹𝐵𝑅 (4, 5) = 5 ≤ 8. Then,
we update 𝑊𝐵𝑅 [5] ← 𝑠 = 4.

Next, we search for 𝑠 with 𝑛 − 𝖾𝑖 = 7 and 𝑛 − 𝖾𝑗 = 5 (since 𝑛 − 𝖾𝑖 is in decreasing order). Likewise, we cannot obtain 𝑠 from
𝐹𝐴𝑅 . Then we can restart scanning from 𝐹𝐵𝑅 (𝑊𝐵𝑅 [5], 5) = 𝐹𝐵𝑅 (4, 5) toward the top of the column for 𝑠. This permits us to avoid
rescanning 𝐹𝐵𝑅 [5, 5].

Overall, we can obtain the length of an STR-IC-LCS in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1)) time in total. Also this algorithm requires space
for storing all minimal intervals, tables, and arrays, namely, requiring 𝑂(𝑛 + (𝓁 + 1)(𝑛 − 𝓁 + 1)) =𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) space in the
worst case. We have thus proven Theorem 5.

In addition, we can also compute an STR-IC-LCS (as a string) by storing a pair of minimal intervals that correspond to an STR-IC-

LCS, and then using the same method as Algorithm I.

5. Alternative solution (Algorithm III) for STR-IC-LCS problem

In this section, we present our third solution Algorithm III to STR-IC-LCS. In the sequel, 𝓁′ denotes the solution length of the
STR-IC-LCS for input strings 𝐴, 𝐵, and 𝑃 .

We first compute the minimal intervals in 𝐴 and 𝐵 where 𝑃 occurs as subsequence, using 𝑂(𝑛𝑟∕ log 𝑟) time as in Section 4. Let
max𝖻𝐴 and max𝖻𝐵 respectively denote the beginning positions of the rightmost minimal intervals in 𝐴 and 𝐵 where 𝑃 occurs as
subsequence.

The following observation and lemma are a key to our third solution Algorithm III.

Observation 2. Prefix-LCS queries are never performed in Algorithm II for any pair (𝑖, 𝑗) of positions such that max𝖻𝐴 ≤ 𝑖 ≤ 𝑛 and
max𝖻𝐵 ≤ 𝑗 ≤ 𝑛.

Lemma 7. For any 1 ≤ 𝑖 <max𝖻𝐴 and 1 ≤ 𝑗 <max𝖻𝐵 , 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗]) ≤ 𝓁′.

Proof. Assume on the contrary that there exists a pair (𝑖, 𝑗) of positions in 𝐴 and 𝐵 such that 1 ≤ 𝑖 <max𝖻𝐴, 1 ≤ 𝑗 <max𝖻𝐵 , and
𝑙 = 𝗅𝖼𝗌(𝐴[1..𝑖], 𝐵[1..𝑗]) > 𝓁′. Then, there must exist an STR-IC-LCS of 𝐴, 𝐵, and 𝑃 of length at least 𝑙 + 𝑟 > 𝓁′ + 𝑟 ≥ 𝓁′. However, this
contradicts that 𝓁′ is the STR-IC-LCS of 𝐴, 𝐵, and 𝑃 . □

Due to Observation 2, it suffices for us to work on the prefixes 𝐴̂ =𝐴[1.. max𝖻𝐴 − 1] and 𝐵̂ = 𝐵[1.. max𝖻𝐵 − 1], namely, we build
tables 𝐹

𝐴̂
and 𝐹

𝐵̂
and the other auxiliary tables for 𝐴̂ and 𝐵̂. Then, it follows from Lemma 7 that the sparse tables 𝐹

𝐴̂
and 𝐹

𝐵̂
(and

the other auxiliary tables) require 𝑂((𝓁′ +1)(𝑛 −𝓁′ +1)) space, and can be computed in 𝑂(𝑛(𝑛 −𝓁′ +1)) time, by applying the method
described in Section 4 to 𝐴′ and 𝐵′. We can use the same techniques for suffix-LCS queries.

Overall, we obtain the following:

Theorem 8. The STR-IC-LCS problem can be solved in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁′ + 1)) time and 𝑂((𝓁′ + 1)(𝑛 − 𝓁′ + 1)) space, where 𝓁′ is the
length of an STR-IC-LCS of 𝐴, 𝐵, and 𝑃 .

The merit of Algorithm III when compared to Algorithm II is summarized in the following lemma:
10

Lemma 9. There exist strings of length 𝑛 for which Algorithm III uses only 𝑂(𝑛) space, while Algorithm II needs Θ(𝑛2) space.

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

Fig. 8. An example of scanning 𝐹𝐴𝑅 , 𝐹𝐵𝑅 and updating 𝑊𝐵𝑅 in prefix/suffix-LCS computation in Algorithm II. After the computation in the upper table, we can skip
scanning 𝐹𝐵𝑅 (5, 5) in the lower table.

Proof. Consider two strings 𝐴 = 𝑎𝑛−1 and 𝐵 = 𝑎
𝑛

2 𝑏
𝑛

2 −1 of length 𝑛 − 1 each such that 𝓁 = 𝗅𝖼𝗌(𝐴, 𝐵) = 𝑛∕2. Then, consider strings
𝐴′ = 𝑎𝑖𝑐𝑎𝑛−𝑖−1 and 𝐵′ = 𝑎

𝑛

2 −𝑖𝑐𝑎𝑖𝑏
𝑛

2 −1 of length 𝑛 each, where 𝑐 ∈ Σ ⧵ {𝑎, 𝑏}, and 𝑖 is a constant. Then, the solution length 𝓁′ of the
STR-IC-LCS of 𝐴′, 𝐵′, and 𝑃 = 𝑐 is 2𝑖 + 1 = 𝑂(1). Thus, Algorithm III uses 𝑂((𝓁′ + 1)(𝑛 − 𝓁′ + 1)) = 𝑂(𝑛) space, while Algorithm II
uses 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) =Θ(𝑛2) space for 𝐴′, 𝐵′, and 𝑃 . □

6. Conclusions

This paper proposed three space-efficient algorithms that find an STR-IC-LCS of two given strings 𝐴 and 𝐵 of length 𝑛 with
constrained pattern 𝑃 of length 𝑟.

Our first solution, Algorithm I, works in 𝑂(𝑛2) time with 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) working space, where 𝓁 is the length of an LCS of
𝐴 and 𝐵. This method improves on the space requirements of the algorithm by Deorowicz [9] that uses Θ(𝑛2) space, irrespective of
the value of 𝓁.

Our second solution, Algorithm II, runs in faster 𝑂(𝑛𝑟∕ log 𝑟 +𝑛(𝑛 −𝓁+1)) time with the same 𝑂((𝓁+1)(𝑛 −𝓁+1)) working space.
We have achieved this improved 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1))-time complexity by carefully avoiding redundant scans in the dynamic
programming tables.

Our third solution, Algorithm III, runs in 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁′ + 1)) time with 𝑂((𝓁′ + 1)(𝑛 − 𝓁′ + 1)) working space, where 𝓁′ is
the STR-IC-LCS length.

We note that all of our proposed algorithms are based on Nakatsu et al.’s algorithm [12] for finding (standard) LCS that runs in
𝑂(𝑛(𝑛 − 𝓁 + 1)) time with 𝑂((𝓁 + 1)(𝑛 − 𝓁 + 1)) working space. The only overhead in our faster solution Algorithm II is the 𝑛𝑟∕ log 𝑟
additive factor for finding minimal intervals where 𝑃 occur by using Das et al.’s method [15]. Bille et al. [16] showed that there
11

is no strongly sub-quadratic 𝑂((𝑛𝑟)1−𝜖) time algorithm for finding such minimal intervals unless the famous SETH fails. Thus, as

Theoretical Computer Science 1003 (2024) 114607Y. Yonemoto, Y. Nakashima, S. Inenaga et al.

long as computing such minimal intervals is involved, it might be difficult to drastically improve our 𝑂(𝑛𝑟∕ log 𝑟 + 𝑛(𝑛 − 𝓁 + 1)) time
complexity for STR-IC-LCS.

CRediT authorship contribution statement

Yuki Yonemoto: Writing – original draft, Methodology. Yuto Nakashima: Writing – original draft. Shunsuke Inenaga: Writing
– review & editing, Writing – original draft, Conceptualization. Hideo Bannai: Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP21K17705 (YN), JP20H05964, JP22H03551 (SI), JP20H04141
(HB), and by JST PRESTO Grant Number JPMJPR1922 (SI).

References

[1] Y.-C. Chen, K.-M. Chao, On the generalized constrained longest common subsequence problems, J. Comb. Optim. 21 (3) (2011) 383–392.

[2] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.

[3] W.J. Masek, M. Paterson, A faster algorithm computing string edit distances, J. Comput. Syst. Sci. 20 (1) (1980) 18–31.

[4] P. Bille, M. Farach-Colton, Fast and compact regular expression matching, Theor. Comput. Sci. 409 (3) (2008) 486–496.

[5] A. Abboud, A. Backurs, V.V. Williams, Tight hardness results for LCS and other sequence similarity measures, in: FOCS 2015, 2015, pp. 59–78.

[6] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Commun. ACM 18 (6) (1975) 341–343.

[7] Y.-T. Tsai, The constrained longest common subsequence problem, Inf. Process. Lett. 88 (4) (2003) 173–176.

[8] F.Y. Chin, A.D. Santis, A.L. Ferrara, N. Ho, S. Kim, A simple algorithm for the constrained sequence problems, Inf. Process. Lett. 90 (4) (2004) 175–179.

[9] S. Deorowicz, Quadratic-time algorithm for a string constrained lcs problem, Inf. Process. Lett. 112 (11) (2012) 423–426.

[10] J.-J. Liu, Y.-L. Wang, Y.-S. Chiu, Constrained longest common subsequences with run-length-encoded strings, Comput. J. 58 (5) (2014) 1074–1084.

[11] K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, M. Takeda, Faster STR-IC-LCS computation via RLE, in: CPM 2017, 2017, pp. 20:1–20:12.

[12] N. Nakatsu, Y. Kambayashi, S. Yajima, A longest common subsequence algorithm suitable for similar text strings, Acta Inform. 18 (1982) 171–179.

[13] Y. Yonemoto, Y. Nakashima, S. Inenaga, H. Bannai, Space-efficient STR-IC-LCS computation, in: SOFSEM 2023, in: Lecture Notes in Computer Science, vol. 13878,
Springer, 2023, pp. 372–384.

[14] K. Yamada, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, Faster STR-EC-LCS computation, in: SOFSEM 2020, in: Lecture Notes in Computer Science,
vol. 12011, Springer, 2020, pp. 125–135.

[15] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, J. Kärkkäinen, Episode matching, in: CPM 1997, Springer, 1997, pp. 12–27.
12

[16] P. Bille, I.L. Gørtz, S. Mozes, T.A. Steiner, O. Weimann, The fine-grained complexity of episode matching, in: CPM 2022, in: LIPIcs, vol. 223, 2022, pp. 4:1–4:12.

http://refhub.elsevier.com/S0304-3975(24)00222-6/bib6DAFDE0C146D695076B56C956C476D70s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib89A99ECD65D933E5D50294D7B5A51F23s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib015E7DD8905BA879A5C841223DDE2584s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibE01EA62EFF439F8B83C9DF93B97C6A26s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib14766CE0BB30593312600439BCE0EDBBs1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib951E3B82E0D220C3F1A5DB736E75D02Es1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibCDE83B5F015E3E577A923C924826ABFCs1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib550F7877DC1D9E968DCEB3B0E6D4367Fs1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibB04619091C7051CDB5EED2AB3D7F9DA8s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibC098F831846F369DC7CEF12F9A5F3C1Ds1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibF36D86030DE070205F1696DB4FDAE1CAs1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibCF431E358EBB4A902B7D5475CE7AC023s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib41A5C2B26444F6B31D5AEC3D22062CD7s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib41A5C2B26444F6B31D5AEC3D22062CD7s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib8C775BC7C51BDF47AF8EF25BB9666C6Ds1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib8C775BC7C51BDF47AF8EF25BB9666C6Ds1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bibE19E3E5018FB57608A896A92102C9224s1
http://refhub.elsevier.com/S0304-3975(24)00222-6/bib49EDFE3CB974733DAABAA36E97B01617s1

	Faster space-efficient STR-IC-LCS computation
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Strings
	2.2 STR-IC-LCS

	3 Space-efficient solution (Algorithm I) for STR-IC-LCS problem
	3.1 Overview of our solution
	3.2 Space-efficient prefix LCS
	3.3 Algorithm I

	4 Faster solution (Algorithm II) for STR-IC-LCS problem
	4.1 Computing θA and θB
	4.2 Computing candidates

	5 Alternative solution (Algorithm III) for STR-IC-LCS problem
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

