
A Divide-and-Conquer Algorithm for
Computing Voronoi Diagrams

Elijah Smith, Christian Trefftz, Byron DeVries
School of Computing and Information Systems

Grand Valley State University

Allendale, Michigan

Email: smithel4@mail.gvsu.edu, trefftzc@gvsu.edu, devrieby@gvsu.edu

Abstract—Identifying the closest of a set of locations typically
requires computing the distance to each of these locations, given
a current position. However, Voronoi Diagrams precompute the
geometric areas that each of these locations is closest to in order
to ameliorate the cost of computing distances later on. Problem-
atically, the initial computations required to generate a Voronoi
Diagram can be computationally expensive. Naive approaches
to generating discretized Voronoi Diagrams require every dis-
cretized position to be analyzed with the set of locations. This
paper introduces a new algorithm to compute discretized Voronoi
Diagrams using a divide-and-conquer approach. Rather than
calculate every position, our approach calculates the positions
at the four corners of a quadrant. If the corners belong to the
same region, there is no need to subdivide this quadrant anymore;
but if they are different than the original quadrant is subdivided
into smaller quadrants. The process is repeated recursively until
the entire diagram has been calculated appropriately.

Index Terms—Voronoi Diagram, Divide-and-Conquer

I. INTRODUCTION

Voronoi diagrams [1] divide a two dimensional space into

regions. The starting point for calculating a Voronoi diagram

is a set of n seeds, points that are located in the two

dimensional space. Each region contains the set of points that

are closest to a particular seed. A Voronoi diagram will contain

n regions. Voronoi diagrams are considered “one of the most

fundamental data structures in computational geometry” [1].

Voronoi diagrams are used in a variety of fields from finite

difference methods and image compression [2] in engineering

and computer science to representations of cell biology and

territorial animal behavior in the natural sciences and any other

field or problem requiring the identification of the nearest in

a set of seeds. However, as useful as Voronoi diagrams are, it

is necessary to create them before benefiting from them.

The creation of Voronoi diagrams from a set of seeds may be

calculated on a space with an infinite number of points [1] or

on a discretized range of finite points [3]. In algorithms applied

to a range of finite points, a naive method of Voronoi diagram

generation [3] finds the closest seed for each point in the range

of finite points. Every seed is associated with a particular

color (or shade of grey). All the points that are closest to a

particular seed are assigned the same color (or shade of grey)

as their closest seed. For example, Figure 1 shows different

regions with different shades of grey representing the points

in a two-dimensional plane closest to one of ten seeds, scaled

from the original for display. The original grid is of size

2048 x 2048 and the seeds are located at coordinates: (512,

512), (512, 1024), (512, 1536), (1024, 512), (1024, 1024),

(1024, 1536), (1536, 512), (1536, 1024), (1536, 1536), and

(2000, 2000). Point (0, 0) in the grid is in the upper left

corner. However, given a plane discretized into an m by m
square with n seeds, the computational cost is in O(nm2).
Therefore, faster methods are necessary. The naive algorithm

can be parallelized easily on machines with several processors

(cores) or Graphical Processing Units (GPUs) [3], but parallel

resources are not available to every user. The Jump Flow

Algorithm (JFA) [4] is faster than the naive method described

previously. JFA is described briefly in the related work section.

Fig. 1. A Voronoi Diagram with 10 Seeds

This paper describes a divide-and-conquer algorithm to

reduce the computational cost of generating a Voronoi diagram

without necessitating specialized hardware or reductions in

accuracy beyond the discretization. While a naive approach

treats each discretized point without relation to the others,

the divide-and-conquer approach exploits inferred information

based on similarities between points within the same region of

the diagram in order to reduce the number of computations.

For example, if a single point is entirely surrounded by points

from a single region then the enclosed point must be in that

region. The algorithm presented here recursively computes

boundary points within the discretized range of finite points

until the points within the boundary points can be inferred

without additional calculation, reducing the computational cost

of generating a Voronoi diagram.
The contributions of this paper are as follows:

495

978-1-7281-5317-9/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 06,2024 at 15:49:42 UTC from IEEE Xplore. Restrictions apply.

• We introduce a divide-and-conquer algorithm to generate

Voronoi diagrams,

• We compare the naive approach with the introduced

divide-and-conquer approach, and

• We provide a proof sketch the correctness of the addi-

tional assumptions necessary for the divide-and-conquer

approach to generate correct Voronoi diagrams.

The remainder of the paper is organized into the follow-

ing sections. Section II provides and overview of the back-

ground information, including Voronoi diagrams and divide-

and-conquer algorithms. Section III presents our approach,

proof sketch, and concrete example. Section IV details our

results, while Sections V and VI describes related work and

our conclusions, respectively.

II. BACKGROUND

This section covers background in Voronoi diagrams and

divide-and-conquer algorithms.

A. Voronoi Diagrams

The Voronoi diagram for a set of n seeds in a plane

partitions the plane into n Voronoi regions such that each

region contains only one seeds (also referred to as a site). For

every seed, s, the Voronoi region, or tile, enclosing it contains

all the points in the plane that are closer to s than to any

other seed. In two-dimensional diagrams, Voronoi regions are

usually depicted as a set of polygons, each enclosing a single

black dot (i.e., the seed) and filled with a unique color. The

goal for computing the Voronoi diagram for a set of n seeds,

which can be thought of a scattering of black dots on a white

background, is to determine the regions of the plane that are

closest to each individual seed. Each of these regions closest to

a single individual seed are recorded (e.g., via unique colors)

so that all points in the plane are associated with their closest

seed. In this paper we use Euclidean distance [5].

B. Divide-And-Conquer Algorithms

Divide-and-conquer algorithms use the strategy of dividing

a large problem into smaller pieces, solving the problem for the

smaller pieces, and then to using the solutions for the smaller

pieces to assemble a solution for the original problem. The

division of the problem might take several stages, that is, the

sub-problems may need to be subdivided several times into

smaller and smaller pieces. Divide-and-conquer algorithms

rely on the fact that solutions for very small problems are easy

to compute or they may rely on certain sub-problems having

a trivial solution. Hence the original problem is subdivided

into pieces until the solution to a particular piece is easy to

compute. Once the solutions to the sub-problems have been

found, a second state of the algorithm may require combining

the solutions of the sub-problems into a solution for the

original problem.

A classical example of a divide-and-conquer algorithm is

the merge-sort algorithm [6]. The original list (or array) is

subdivided, recursively, into smaller and smaller segments.

Once a list is of size 2 or 1, solving the sorting problem for that

very small list is trivial. If the list contains a single element,

it is in order. If the list contains two elements, then either the

elements are in order, or they are out of order. If the elements

are in order, no further action is required. If they are out of

order, a swap of the elements suffices to obtain a sorted list.

Those small sub-lists are merged, recursively, until the original

list is sorted.

III. APPROACH

The naive approach to computing Voronoi diagrams is,

for every discretized point in a plane (on GPUs this could

be a pixel), calculate the distance between that discretized

point and every seed in the plane. Whichever seed is closest

indicates which region that discretized point belongs in. Often,

every one of these seeds has a different color (or shade of

grey) associated with it that is associated with the discretized

point. While this method is accurate and easily understood,

its benefits are offset by the growth in computation time as

diagram size increases.
We propose a method that does not require every discretized

point to be individually calculated, but instead relies on

geometric relationships to identify areas that all must be within

the same region.
In the remainder of this section we will cover an overview

of our proposed algorithm. Following our overview, we will

present a proof sketch of the assumptions necessary for our

algorithm to correctly function. Finally, we will provide a

concrete example of our algorithm on a small discretized grid

as well as limitations of our algorithm.

A. Divide-And-Conquer Algorithm Overview
The divide-and-conquer approach can be described as fol-

lows via the following steps:
Step 1: Calculate Points: Assuming that the plane on which

the diagram will be computed is rectangular, find the seeds

closest to each of the four corners of that rectangle using

Euclidean distance. In other words, for every one of the corner

points, calculate the distance to all seeds and select the closest

seed to each of those corner points.
Step 2: Base Case: If all the corner points are closest to

the same seed, then assign all points within the rectangle

bounded by the four corner points to the region associated

with the corners’ closest seed.
Step 3: Subdivide Case: If all the corner points are not

closest to the same seed, subdivide the rectangle enclosed by

the four corner points into four smaller rectangular fragments

consisting of the top-left, top-right, bottom-left, and bottom-

right sub-rectangles of the original plane. Each of these 4 frag-

ments of the original rectangle is then recursively processed

by Step 1: Calculate Points.
This recursive process will continue until all subdivided

rectangles cover a single seed closest to their four corner

points. It is possible that the algorithm may have to keep

subdividing into smaller and smaller rectangles until a single

discretized point is obtained that must be closest to only one

seed. In the event of a tie, the first seed processed is considered

closest.

496

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 06,2024 at 15:49:42 UTC from IEEE Xplore. Restrictions apply.

B. Proof Sketch
The presented divide-and-conquer algorithm depends on the

observation that if the four corners of a rectangular area are

all closest to the same seed, then the entirety of the enclosed

rectangular area must also be closest to that same seed when

using Euclidean distance. A proof sketch for this dependency

is provided below.
If the Euclidean distance is used to calculate the distances

in a Voronoi Diagram, all regions in that Voronoi Diagram are

convex polygons [1].
Our proposition is that any line that connects two points

inside a convex polygon is completely contained by the

polygon. Given that a rectangle is composed of four connected

lines, and any line that connects two points inside a convex

polygon is, based on our proposition, completely contained by

the polygon, we can also say that any rectangle that connects

four points inside a convex polygon is completely contained

by the polygon.

Proof. We will use a proof by contradiction. We assume that

on a plane, 4 points: C1, C2, C3, and C4, form the corners of

a rectangle that encloses point P . Measuring with Euclidean

distance, C1 through C4 are all closer to seed X than any

other, but P is closest to seed Y .

• Since C1-C4 are all closest to X , we know that C1-C4

and X are both within the X-Voronoi region.

• Since P is closest to Y , we know that P and Y are both

within the Y -Voronoi region. Therefore the Y -Voronoi

region must be completely or partially contained within

the X-Voronoi region.

• Since Voronoi regions are convex polygons by definition,

so we can conclude the X-Voronoi region must be a con-

vex polygon and any line that connects two points inside

the polygon is completely contained by the polygon.

However, because the X-region must partially or fully en-

close the Y -region if P is closest to seed Y and P is enclosed

by the rectangle defined by C1-C4, there are inevitably lines

connecting two points (i.e., two from C1-C4) within the X-

region that exit the boundaries of the convex polygon region

despite connecting two points existing within the region. This

is a contradiction.

Now that our assumptions have been validated, it is accurate

to assume the Voronoi region of a rectangle is entirely from

one seed if the closest seed to each corner of the rectangle,

using Euclidean distance, is the same.

C. Example
To illustrate this method, we used a grid of integers to

represent the empty “plane” that will be partitioned. Empty

spaces represent grid points that have not been assigned to

any region yet, and integers represent the location of seeds.

In this form, the Voronoi diagram for a set of seeds can

be determined by hand and used to illustrate the computer-

generated solutions.
In Figure 2 we use an 8 x 8 grid to illustrate how the

algorithm works. The upper left coordinate has coordinates

(0, 0) and the lower right hand corner has coordinates (7, 7).

There are three seed points: 1, 2 and 3 at coordinates (1, 1),

(0, 7) and (6, 6). The seeds are represented using numbers in

boldface.

1

2

3

Fig. 2. Initial state: A Voronoi Diagram with 3 seeds.

The initial step of the algorithm calls for calculating the

closest seeds for the four corners of the grid: Points with

coordinates (0, 0), (0, 7), (7, 7) and (7, 0). Clearly, the closest

seeds for those points are not the same. Hence, the algorithm

calls for dividing the original grid into four smaller sub-grids,

as illustrated in Figure 3 by the thick red lines.

1

2

3

Fig. 3. Initial subdivision.

497

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 06,2024 at 15:49:42 UTC from IEEE Xplore. Restrictions apply.

The algorithm is applied recursively to each of the four

quadrants. Figure 4 illustrates that the upper left quadrant and

the lower right quadrant can be filled at this stage, but further

subdivisions (shown in thick blue lines) are required for the

lower left quadrant and the upper right quadrant.

1

2

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

2

3

Fig. 4. Second subdivision.

The process continues until the final result is calculated, as

shown in Figure 5.

1

2

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

32 1 1 1

2 2 2 3

2 2 2 3

2 2 2

1 1 1 1

1 1 1 3

1 1 3 3

1 3 3 3

1

2

3

Fig. 5. Final result.

A grid of size 8 x 8 can be represented in the computer

using a 2D dimensional integer array of length 8 and width 8.

The indices of the array act as coordinates to their respective

locations in the grid. For example: the integer present in the

first row and second column of integer grid numbers, repre-

sented by integer array numArray, can be returned through

numArray[0][1]. To turn an incomplete grid into a complete

one, every zero in the grid must be replaced by the integer

that represents the seed closest to this grid location. If the top

right “0” is closest to the seed labeled “2”, then it is changed

to a “2”.

D. Limitations
The divide-and-conquer algorithm presented here is limited

to Euclidean distance, as other distances do not result in

Voronoi regions that are convex polygons (e.g., Manhattan

Distance often used in k-means clustering [7]). Additionally,

we have provided a proof sketch for rectangular division only,

though other divisions of the space may also hold the same

properties.

IV. RESULTS

To test the speed of our new method, we created a Java

program that auto-generated two identical copies of a ran-

dom incomplete integer-grid Voronoi diagram like has been

described in the approach (Section III). The Java program then

computes one copy with the naive method and one with the

divide-and-conquer method, recording the total computation

time for both. We performed tests with grids of different sizes,

including 32 x 32, 64 x 64, 128 x 128, 256 x 256, 512 x 512,

1024 x 1024, and 2048 x 2048.
In Figure 6, we graph the time (in seconds) taken for both

the naive and divide-and-conquer algorithms to generate the

Voronoi diagrams for 50 randomly selected seeds. The values

graphed for each grid size were executed with a different

set of randomly selected seeds 50 times, though there is no

appreciable difference in their distribution. For small grids, of

size 32 x 32 or 64 x 64, the naive algorithm was faster than the

proposed divide-and-conquer algorithm. However, for grids of

sizes 128 x 128 or larger, the divide-and-conquer algorithm

was faster and the difference between the two algorithms

increased as the size of the grid increased.

Fig. 6. Execution Times with 50 Seeds

In Figure 7 we graph the time (in seconds) taken for both

the naive and divide-and-conquer algorithms to generate the

498

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 06,2024 at 15:49:42 UTC from IEEE Xplore. Restrictions apply.

Voronoi diagram for a grid of size 2048 x 2048 with increasing

numbers of seeds. It can be observed that the divide-and-

conquer algorithm is faster than the naive algorithm regardless

of the numbers of seeds, though the difference becomes more

pronounced as the number of seeds increases. As before, each

grid with a number of seeds was executed with a different

set of randomly selected seeds 50 times, though there is no

appreciable difference in their distribution.

Fig. 7. Execution Times with a 2048 x 2048 Grid

The proposed divide-and-conquer algorithm presented in

this paper takes less time than the naive approach given an

increasing number of seeds or an increasing grid size.

V. RELATED WORK

The best algorithm for calculating the original Voronoi

Diagram is the sweep line algorithm by Steven Fortune [8].

This algorithm will work with sites (i.e., seeds) with real

coordinates. It produces the line segments that surround the

tiles. Its time complexity is O(nlog(n)), where n is the

number of seeds. This algorithm has the limitation of requiring

special handling for seeds that are located co-linearly, seeds

that will be reached simultaneously by the sweep line. This

algorithm will require an additional stage to visualize the

results on a computer screen. It is also an algorithm that

is difficult to parallelize. In contrast, our divide-and-conquer

algorithm works with discretized points in a grid that is

immediately visualizable and provides direct lookup (O(1))
within the grid after the Voronoi diagram has been generated.

Since there are many data sets that are the results of

”rasterizing” information, in which each point is represented

with integer coordinates, and which will be used frequently

to be displayed on computer screens, the naive algorithm

described previously has been proposed. This algorithm can

be parallelized efficiently using Graphical Processing Units

(GPUs) [3]. However, in embedded or resource constrained ap-

plications where a GPU is not available the divide-and-conquer

method reduces cost without requiring special hardware.

The Jump Flow Algorithm [4] was devised expressly for

Graphical Processing Units. In a first stage, the points adjacent

to each individual seed are colored with the color of the seed

their surround. In the second stage the points that do not have

a color yet and are at a distance of 2 from a seed acquire the

color of that (closest) seed. In stage 3, the points that are a

distant of 4 from a seed acquire the color of that seed. The

process continues until points in the plane have been colored.

The jump flood algorithm occasionally assigns incorrect colors

to certain points in the grid. While the presented divide-and-

conquer method is not specifically designed for GPUs, it is

guaranteed to provide the correct discretized Voronoi diagram.

VI. CONCLUSION

In this paper, we have presented a divide-and-conquer

approach to generate discretized Voronoi diagrams in two

dimensions. We have compared our approach to the naive

approach over an increasing number of seeds and an increasing

grid size. In each case, the proposed divide-and-conquer

approach presented outperformed the naive approach as the

number of seeds or grid size increased.

Given the increased performance and lower computation

cost of the divide-and-conquer approach, we believe that

our proposed method is well suited to applications within

embedded or resource constrained systems.

Future research directions include exploration into how

our approach can be extended to different geometric divi-

sions within our divide-and-conquer algorithm, non-Euclidean

spaces, higher dimensions (e.g., three dimensional Voronoi

diagrams), and parallelization.

ACKNOWLEDGMENT

This work partially funded by Michigan Space Grant Con-

sortium, NASA grant #NNX15AJ20H. The views and conclu-

sions contained herein are those of the authors and should not

be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the Michigan

Space Grant Consortium (MSGC), National Aeronautics and

Space Administration (NASA), Grand Valley State University

(GVSU), or other research sponsors.

REFERENCES

[1] F. Aurenhammer, “Voronoi diagrams—a Survey of a Fundamental Geo-
metric Data Structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3,
pp. 345–405, 1991.

[2] M. Erwig, “The graph Voronoi diagram with applications,” Networks: An
International Journal, vol. 36, no. 3, pp. 156–163, 2000.

[3] I. Majdandzic, C. Trefftz, and G. Wolffe, “Computation of Voronoi
diagrams using a graphics processing unit,” in 2008 IEEE International
Conference on Electro/Information Technology. IEEE, 2008, pp. 437–
441.

[4] G. Rong and T.-S. Tan, “Jump flooding in GPU with applications to
Voronoi diagram and distance transform,” in Proceedings of the 2006
symposium on Interactive 3D graphics and games, 2006, pp. 109–116.

[5] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and
image processing, vol. 14, no. 3, pp. 227–248, 1980.

[6] D. Knuth, “Section 5.2. 4: Sorting by merging,” The Art of Computer
Programming, vol. 3, pp. 158–168, 1998.

[7] A. Singh, A. Yadav, and A. Rana, “K-means with three different distance
metrics,” International Journal of Computer Applications, vol. 67, no. 10,
2013.

[8] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorithmica,
vol. 2, no. 1-4, p. 153, 1987.

499

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 06,2024 at 15:49:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

