
Longest Increasing Subsequence
Computation over Streaming Sequences

Youhuan Li , Lei Zou , Huaming Zhang, and Dongyan Zhao

Abstract—In this paper, we propose a data structure, a quadruple neighbor list (QN-list, for short), to support real time queries of all

longest increasing subsequence (LIS) and LIS with constraints over sequential data streams. The QN-List built by our algorithm

requires OðwÞ space, where w is the time window size. The running time for building the initial QN-List takes Oðw logwÞ time. Applying

the QN-List, insertion of the new item takes OðlogwÞ time and deletion of the first item takes OðwÞ time. To the best of our knowledge,

this is the first work to support both LIS enumeration and LIS with constraints computation by using a single uniform data structure for

real time sequential data streams. Our method outperforms the state-of-the-art methods in both time and space cost, not only

theoretically, but also empirically.

Index Terms—Data streams, longest increasing subsequence, enumeration, constraints
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1 INTRODUCTION

SEQUENTIAL data is a time series consisting of a sequence
of data points, which are obtained by successive meas-

urements made over a period of time. Lots of technical
issues have been studied over sequential data, such as
(approximate) pattern-matching query [1], [2], clustering
[3]. Among these, computing the Longest Increasing Subse-
quence (LIS) over sequential data is a classical problem. An
increasing1 subsequence is a subsequence whose elements
are sorted in order from the smallest to the biggest. Note
that a sequence may contain multiple LIS.

Besides the static model (i.e., computing LIS over a given
sequence a), computing LIS has been considered in the
streaming model [4], [5]. Given an infinite time-evolving
sequence a1 = {a1; . . . ; a1} (ai 2 R), we continuously com-
pute LIS over the subsequence induced by the time window
fai�ðw�1Þ; ai�ðw�2Þ; . . . ; aig. The size of the time window is
the number of items that spans in the data stream. Consider
a sequence a ¼ f3; 9; 6; 2; 8; 5; 7g under window W in Fig. 3
(in Section 2). There are four LIS in a: f3; 6; 7g; f3; 6; 8g,
{2,5,7} and {3,5,7}. Besides LIS enumeration, we introduce
some important features of LIS, i.e., gap, weight, slope, range
and compute LIS with various constraints, such as LIS with
maximum gap, where “gap” measures the value difference
between the tail and the head item of LIS. Among four LIS,

f3; 6; 8g and {2,5,7} are both LIS with maximum gap. More
constraints are formally defined in Section 2. We discuss
two examples to demonstrate the usefulness of LIS in differ-
ent applications.

1: Real-time Trend Detection. LIS is a classical measure for
sortedness and trend analysis [6], [7], [8]. The longer the LIS
of a sequence is, the more sorted the sequence shows, which
further indicates an uptrend of a sequence [6]. For example,
LIS-based stock trend detection is studied in Jin et al. [7]. A
company’s stock price forms a time-evolving sequence and
real-time measuring the stock trend is significant for stock
analysis. Given a sequence a of the stock prices within a
period, an LIS of a measures an uptrend of the prices. We
can see that price sequence with a long LIS always shows
obvious upward tendency for the stock price even if there
are some price fluctuations.

Although the LIS length can be used to measure the
uptrend stability, LIS with different gaps indicate different
growth intensity. For example, Fig. 1 presents the stock pri-
ces sequences of two company: A and B. Although both
sequences of A and B have the same LIS length (5), growth
intensity of A’s stock obviously dominates that of B, which
is easily observed from the different gaps in LIS in A and B.
Therefore, besides LIS length, gap is another feature of LIS
that weights the growth intensity. We consider that the
computation of LIS with extreme gap that is more likely
chosen as measurement of growth intensity than a random
LIS. Slope (Definition 5) between two items can also be used
to describe the rising strength of stock prices.

2: Sequence Matching. LIS is also used in sequence match-
ing [4], [9], which is mainly used in biological sequence
query. A typical example is a two-step algorithm (BLAST
+LIS) proposed by Zhang [9] to locate a transcript or protein
sequence in the human genome map. The BLAST (Basic
Local Alignment Search Tool) [10] algorithm is to identify
high-scoring segment pairs (HSPs) between query tran-
script sequenceQ and a long genomic sequence L. Fig. 2 vis-
ualizes the outputs of BLAST. The segments with the same
color (number) denote the HSPs. For example, segment 2

1. Increasing subsequence in this paper is not required to be strictly
monotone increasing andall items ina can also be arbitrarynumerical value.
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(the red one) has two matches in the genomic sequence L,
denoted as 21 and 22. To obtain a global alignment, the
matches of segments 1, 2, 3 in the genomic sequence L
should coincide with the segment order in query sequence
Q, which constitutes exactly the LIS (in L) that are listed in
Fig. 2. For example, LIS f1; 21; 31g represents a global align-
ment of Q over sequence L. Actually, there are three differ-
ent LIS in L as shown in Fig. 2, which correspond to three
different alignments between query transcript/protein Q
and genomic sequence L. Obviously, outputting only a sin-
gle LIS may miss some important findings. Therefore, we
should study LIS enumeration problem.

We extend the above LIS enumeration application into
the sliding window model [11]. In fact, the range of the
whole alignment result of Q over L should not be too long.
Thus, we can introduce a threshold length jwj to discover all
LIS that span no more than jwj items, i.e., all LIS in each
time windowwith size jwj. This is analogous to our problem
definition in this paper. Also, some may limit the distance
between two consecutive HSPs in a certain range which cor-
responds to the range-constrained LIS in Definition 5.

Therefore, LIS are useful and the applications require
efficiently computing both LIS enumeration and con-
strained LIS enumeration simultaneously, but none of the
existing approaches support that. For example, the method
in [5] supports LIS enumeration, but fails to compute con-
strained LIS. In [12], [13] and [14], the method can be used
to compute constrained LIS, but not to enumerate all LIS. A
uniform method to support both LIS enumeration and con-
strained LIS enumeration is desirable.

Moreover, many works are based on static sequences and
techniques developed in these works cannot handle updates
which are essential in the context of data streams. To the
best of our knowledge, there are only three research articles
that addressed the problem of computing LIS over data
stream model [4], [5], [15]. None of them computes con-
strained LIS. Literature review and the comparative studies
of our method against other related work are given in Sec-
tions 6 and 7, respectively.

1.1 Our Contributions
Observed from the above examples, we propose a novel
solution in this paper that studies both LIS enumeration
and computing LIS with constraints with a uniform method
under the data stream model. We propose a novel data struc-
ture to efficiently support both LIS enumeration and LIS
with constraints. Furthermore, we design an efficient
update algorithm for the maintenance of our data structure
so that our approach can be applied to the data stream
model. Theoretical analysis of our algorithm proves that
our method outperforms the state-of-the-arts work. We

prove that the space complexity of our data structure is
OðwÞ, while the algorithm proposed in [5] needs a space of
size Oðw2Þ. Time complexities of our data structure con-
struction and update algorithms are also better than [5]. For
example, [5] needs Oðw2Þ time for the data structure con-
struction, while our method needs OðwlogwÞ time. Besides,
we prove that both our LIS enumeration and LIS with con-
straints query algorithms are optimal output-sensitive algo-
rithms.2 Comprehensive comparative study of our results
against previous results is given in Section 6. Experimental
results on both real and synthetic datasets confirm that our
algorithms outperform existing algorithms. Experimental
codes and datasets are available at Github [16]. We summa-
rize our major contributions in the following:

(1) We are the first to consider the computation of both
LIS with constraints and LIS enumeration in the data
stream model.

(2) We introduce a novel data structure to handle both
LIS enumeration and computation of all existing LIS
with constraints uniformly.

(3) Our data structure is scalable in stream model
because of the linear update algorithm and linear
space cost.

(4) Extensive experiments confirm the superiority of our
method.

2 PROBLEM FORMULATION

Given sequence a ¼ fa1, a2, . . ., ang, an increasing subse-
quence s of a is a subsequence whose elements are sorted in
order from the smallest to the biggest. An increasing subse-
quence s of a is called a Longest Increasing Subsequence if
there is no other increasing subsequence s0 with jsj < js0j. A
sequence a may contain multiple LIS, all of which have the
same length. We denote the set of LIS of a by LISðaÞ. For a
sequence s, the head and tail item of s are denoted as sh and
st, respectively. We use jsj to denote the length of s.

Consider an infinite time-evolving sequence a1 ¼ fa1;
. . . ; a1gðai 2 R). In the sequence a1, each ai has a unique
position i and ai occurs at a corresponding time point ti,
where ti < tj when 0 < i < j. We exploit the tuple-basis
sliding window model [11] in this work. There is an internal
position to tuples based on their arrival order to the system,
ensuring that an input tuple is processed as far as possible
before another input tuple with a higher position. A sliding
window W contains a consecutive block of items in
fa1; . . . ; a1g, and W slides a single unit of position per
move towards a1 continually. We denote the size of the
window W by w, which is the number of items within the
window. During the time ½ti; tiþ1Þ, items of awithin the slid-
ing time window W induce the sequence fai�ðw�1Þ; ai�

Fig. 1. LIS with different gaps of stock price sequence.

Fig. 2. Biological sequence alignment.

2. The algorithm time complexity is linear to the corresponding out-
put size.
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ðw� 2Þ; . . . ; aig, which will be denoted by aðW; iÞ. Note that,
in the sliding window model, as the time window continu-
ally shifts towards a1, at a pace of one unit per move, the
sequence formed and the corresponding set of all its LIS
will also change accordingly. In the remainder of the paper,
all LIS-related problems considered are in the data stream
model with sliding windows.

Definition 1 (LIS-enumeration). Given a time-evolving
sequence a1 ¼ fa1; . . . ; a1g and a time window W of size w,
LIS-enumeration is to report LISðaðW; iÞÞ (i.e., all LIS
within W ) continually as the window W slides. All LIS in the
same time window have the same length.

As mentioned in Introduction, some applications are
interested in computing LIS with constraints instead of sim-
ply enumerating all of them. So far, eight kinds of con-
straints for LIS were proposed in the literature [12], [13],
[14] and our method can easily support all of them. We
study the following constraints over the LIS’s weight (Defini-
tion 2), gap (Definition 3) and width (Definition 4), after
which we define several problems computing LIS with vari-
ous constraints (Definition 5).

Definition 2 (Weight). Let a be a sequence, s be an LIS in
LISðaÞ. The weight of s is defined as

P
ai2s ai, i.e., the sum of

all the items in s, we denote it by weightðsÞ.
Definition 3 (Gap). Let a be a sequence, s be an LIS in LISðaÞ.

The gap of s is defined as gapðsÞ ¼ st � sh, i.e., the difference
between the tail st and the head sh of s.

Definition 4 (Width) [12]. Let a be a sequence, s be an LIS in
LISðaÞ where s ¼ {ai1 , ai2 ; . . . ; aik } (k ¼ jsj). The width of s
is defined as widthðsÞ ¼ ik � i1, i.e., the positional distance
between the tail item(aik ) and the head item(ai1 ) of s.

Definition 5 (Computing LIS with Constraint). Given a
time-evolving sequence a1 ¼ fa1; . . . ; a1g and a sliding win-
dow W , each of the following problems is to report all the LIS
subject to its own specified constraint within W continually as
W slides. Consider an LIS of aðW; tiÞ: s ¼ fai1 ; ai2 ; . . . ; aimg.

� s is an LIS with Maximum/Minimum Weight if s
has maximum/minimum weight among all LIS in
LISðaðW; tiÞÞ.

� s is an LIS with Maximum/Minimum Gap if s has
maximum/minimum gap among all LIS in
LISðaðW; tiÞÞ.

� s is an LIS with Maximum/Minimum Width if s has
maximum/minimum width among all LIS in
LISðaðW; tiÞÞ.

� s is a Slope-constrained LIS(SLIS) if for a nonnegative
slope boundary p and all 1 � k < m, the slope
between two consecutive items in s is not less than p,
i.e.,

aikþ1
�aik

ikþ1�ik
� p.

� s is a Range-constrained LIS(RLIS) if for two ranges
½LI; UI � and ½LV ; UV � where 0 < LI � UI < n,
0 � LV � UV , LI � ikþ1 � ik � UI and LV � aikþ1

�
aik � UV (1 � k < m).

A running example that is used throughout the paper is
given in Fig. 3, which shows a time-evolving sequence a1
and its first time window W . The induced sequence within
the time window is a ¼ fa1 ¼ 3; a2 ¼ 9; a3 ¼ 6; a4 ¼ 2; a5 ¼

8; a6 ¼ 5; a7 ¼ 7g. There are four LIS in a: f3; 6; 7g, f3; 6; 8g,
f2; 5; 7g and f3; 5; 7g. The gaps of these four LIS are 4, 5, 5, 4.
Therefore, f3; 6; 8g and f2; 5; 7g have the maximum gap
while f3; 6; 7g and f3; 5; 7g have the minimum gap. Also,
when we set the slope p ¼ 1:5 (in Fig. 3), then f3; 6; 8g does
not satisfy the slope constraint since the slope between
a3 ¼ 6 and a5 ¼ 8 is ð8� 6Þ =ð5� 3Þ ¼ 1 < 1:5. Similarly,
f3; 6; 7g and f3; 5; 7g do not satisfy the slope constraint and
only f2; 5; 7g is slope-constrained LIS. For the range-con-
strained LIS with ranges [LI ¼ 2, UI ¼ 3] and [LV ¼ 1,
UV ¼ 3], f2; 5; 7g and f3; 5; 7g do not satisfy the range con-
straints since the positional distance between a6 ¼ 5 and
a7 ¼ 7 is 1 < LI ¼ 2. Similarly, a3 ¼ 6 and a7 ¼ 7 cannot
constitute a range-constrained LIS either since 7� 3
¼ 4 > UI ¼ 3. f3; 6; 8g is the only range-constrained LIS.

3 QUADRUPLE NEIGHBOR LIST La

3.1 La—Background and Definition
For the easy of the presentation, we introduce some con-
cepts of LIS before we formally define the quadruple neigh-
bor list (QN-List, for short). Consider a sequence a ¼ fa1
; a2; . . . ; awg and ai, aj 2 a. ai is said to be compatible with aj
if i < j and ai � aj. We denote it by ai ^

a

aj. Also, we use
ISaðaiÞ to denote the set of all increasing subsequences of a
that ends with ai and we define rising length [5]3 of ai,
denoted as RLaðaiÞ, as the maximum length of subsequen-
ces in ISaðaiÞ. For example, consider the sequence a ¼
fa1 ¼ 3; a2 ¼ 9; a3 ¼ 6; a4 ¼ 2; a5 ¼ 8; a6 ¼ 5; a7 ¼ 7g in
Fig. 3. Consider a5 ¼ 8. There are five increasing subsequen-
ces{a5 ¼ 8}, {a1 ¼ 3, a5 ¼ 8}, {a3 ¼ 6, a5 ¼ 8}, {a4 ¼ 2, a5 ¼ 8},
{a1 ¼ 3, a3 ¼ 6, a5 ¼ 8} that end with a5. The maximum
length of these increasing subsequences is 3. Hence,
RLaða5Þ ¼ 3.

Definition 6 (Predecessor). Given a sequence a and ai 2 a,
for some item aj, aj is a predecessor of ai if

aj ^
a

ai AND RLaðajÞ ¼ RLaðaiÞ � 1

and the set of predecessors of ai is denoted as PredaðaiÞ.
In the running example in Fig. 3, a3 is a predecessor of a5

since a3 ^
a

a5 and RLaða3Þð¼ 2Þ ¼ RLaða5Þð¼ 3Þ � 1. Analo-
gously, a1 is also a predecessor of a3.

With the above concepts, we introduce four neighbours
for each item ai as follows:

Definition 7 (Neighbors of an item). Given a sequence a

and ai 2 a, ai has up to four neighbors.

Fig. 3. LIS with constraints in data stream model.

3. Rising length in this paper is the same as height defined in [5]. We
don’t use height here to avoid confusion because height is also defined
as the difference between the head item and tail item of an LIS in [13].
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(1) left neighbor lnaðaiÞ: lnaðaiÞ ¼ aj if aj is the nearest
item before ai such that RLaðaiÞ ¼ RLaðajÞ.

(2) right neighbor rnaðaiÞ: rnaðaiÞ ¼ aj if aj is the near-
est item after ai such that RLaðaiÞ ¼ RLaðajÞ.

(3) up neighbor unaðaiÞ: unaðaiÞ ¼ aj if aj is the nearest
item before ai such that RLaðajÞ ¼ RLaðaiÞ � 1.

(4) down neighbor dnaðaiÞ: dnaðaiÞ ¼ aj if aj is the near-
est item before ai such that RLaðajÞ ¼ RLaðaiÞ þ 1.

Apparently, if ai ¼ lnaðajÞ then aj ¼ rnaðaiÞ. Besides, we
know that left neighbor (also right neighbor) of item ai has
the same rising length as ai and naturally, items linked
according to their left and right neighbor relationship forms
a horizontal list, which is formally defined in Definition 8.
The horizontal lists of a is presented in Fig. 4a.

Definition 8 (Horizontal list). Given a sequence a, consider
the subsequence consisting of all items whose rising lengths
are k: sk ¼ {ai1 , ai2 ; . . . ; aik }, i1 < i2; . . . ; < ik. We know
that for 1 � k0 < k, aik0 ¼ lnaðaik0þ1

Þ and aik0þ1
¼ rnaðaik0 Þ.

We define the list formed by linking items in sk together with
left and right neighbor relationships as a horizontal list,
denoted as Lk

a.

Apparently, for 8 ai 2 Lt
a, predecessor of ai must be in

Lt�1
a (t > 1).

Definition 9 (Quadruple Neighbor List (QN-List)).
Given a sequence a ¼ fa1; . . . ; awg, the quadruple neighbor list
over a (denoted as La) is a data structure containing all hori-
zontal lists (Definition 8) of a and each item ai in La is also
linked directly to its up neighbor and down neighbor. In
essence, La is constructed by linking all items in a with their
four kinds of neighbor relationship. Specifically, jLaj denotes
the number of horizontal lists in La.

Fig. 4b presents the QN-List La of running example
sequence a (Fig. 3) and the curve arrows indicate the left
and right neighbor relationship while the straight arrows
indicate the up and down neighbor relationship. It is easy to
understand that the length of LIS in a is exactly the number
of horizontal lists in La. Besides, QN-list over sequence a of
w items costs only OðwÞ space.

3.2 La—Properties
We discuss some properties of the QN-List, which will be
used in the maintenance algorithm in Section 4 and various
QN-List-based algorithms in Section 5. Proofs for theorems
and lemmas are given in Appendix B, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2017.2761345.4

Lemma 1. Let a ¼ fa1 ; a2; . . . ; awg be a sequence. Consider two
items ai and aj in a horizontal list Lt

a.

(1) Items in each horizontal list Lt
a are monotonically

decreasing while their subscripts (i.e., their original
position in a) are monotonically increasing from the
left to the right.

(2) 8ai 2 a, all predecessors of ai form a nonempty conse-
cutive block in Lt�1

a ðt > 1Þ and unaðaiÞ is ai’s the
rightmost predecessor.

In Fig. 4a, we can see that items in each horizontal list are
increasing from left to the right while their original posi-
tions are decreasing (Lemma 1(1)). Also, Fig. 5 shows that
all predecessors of ai 2 Lt

a form a consecutive block from
unaðaiÞ to the left in Lt�1

a (Lemma 1(2)).

Lemma 2. Given sequence a and La, 8 ai 2 Lt
a :

(1) RLaðaiÞ = t if and only if ai 2 Lt
a.

(2) unaðaiÞ(if exists) is the rightmost item in Lt�1
a which is

before ai in sequence a.
(3) dnaðaiÞ(if exists) is the rightmost item in Ltþ1

a which is
before ai in sequence a. Besides, dnaðaiÞ > ai.

For example, in Fig. 4b, a3 is the rightmost item that is
before a5 in L2

a (RLaða5Þ ¼ 3) and unaða5Þ ¼ a3.

Lemma 3. Given sequence a and its La, for 1 � i; j � jLaj

TailðLi
aÞ � TailðLj

aÞ $ i � j;

where TailðLi
aÞ denotes the last item in list Li

a.

For example in Fig. 4b, we can see that the sequence con-
sisting of tail items: {a4 ¼ 2, a6 ¼ 5, a7 ¼ 7} is in ascending
order.

3.3 La—Construction
The construction of La over sequence a lies in the determi-
nation of the four neighbors of each item in a. We discuss
the construction of La as follows. Fig. 7 visualizes the steps
of constructing La for a sequence a.

Building QN-List La.

(1) Initially, four neighbours of each item ai are set
NULL;

(2) Step 1: L1
a is created in La and a1 is added in L1

a;
(3) Step 2: if a2 < a1, it means RLaða2Þ ¼ RLaða1Þ ¼ 1.

Thus, we append a2 to L1
a. Since a2 comes after a1 in

sequence a, we set rnaða1Þ ¼ a2 and lnaða2Þ ¼ a1.
If a2 � a1, we can find an increasing subsequence

fa1; a2g, i.e., RLaða2Þ ¼ 2. Thus, we create the second
horizontal list L2

a and add a2 to L2
a. Furthermore, it is

straightforward to know a1 is the nearest predeces-
sor of a2; So, we set unaða2Þ ¼ a1;

(4) (By the inductionmethod) Step i: assume that the first
i� 1 items have been correctly added into the QN-
List (in essence, the QN-List over the subsequence of
the first ði� 1Þ items of a is built), let’s consider how
to add the ith item ai into the data structure. Let m
denote the number of horizontal lists in the current
La. Before adding ai into La, let’s first figure out the
rising length of ai. Consider a horizontal list Lt

a, we
have the following two conclusions:

Fig. 4. Horizontal lists and QN-List.

4. All appendixes are given in the supplementary of the submission.
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a) If TailðLt
aÞ > ai, then RLaðaiÞ � t. Assume that

RLaðaiÞ > t. It means that there exits at least one

item aj (2 Lt
a) such that aj ^

a

ai, i.e., aj is a prede-
cessor (or recursive predecessor) of ai. As we
know TailðLt

aÞ is the minimum item in Lt
a (see

Lemma 2). TailðLt
aÞ > ai means that all items in

Lt
a are larger than ai. That is contradicted to aj ^

a

ai ^ aj 2 Lt
a. Thus, RLaðaiÞ � t.

b) If TailðLt
aÞ � ai, then RLaðaiÞ > t. Since TailðLt

aÞ
is before ai in a and TailðLt

aÞ � ai, TailðLt
aÞ is

compatible ai. Let us consider an increasing sub-
seqeunce s ending with TailðLt

aÞ, whose length is
t since TailðLt

aÞ’s rising length is t. Obviously,
s0 ¼ s� ai is a length-(t+1) increasing subse-
quence ending with ai. In other words, the rising
length of ai is at least tþ 1, i.e., RLaðaiÞ > t.

Besides, we know that TailðLt
aÞ � TailðLt0

aÞ if t � t0(see
Lemma 3). Thus, we need to find the first list Lt

a whose tail
TailðLt

aÞ is larger than ai. Then, we append ai to the list.
Since all tail items are increasing, we can perform the binary
search that needs OðlogmÞ time. If there is no such list, i.e.,
TailðLm

a Þ � ai, we create a new empty list TailðLmþ1
a Þ and

insert ai into TailðLmþ1
a Þ.

According to Lemma 1, it is easy to know ai can only be
appended to the end of Lt

a, i.e., rnaðTailðLt
aÞÞ ¼ ai and

lnaðaiÞ ¼ TailðLt
aÞ. Besides, according to Lemma 2(2), we

know that unaðaiÞ is the rightmost item inLt�1
a which is before

ai in a, then we set unaðaiÞ ¼ TailðLt�1
a Þ . Analogously, we set

dnaðaiÞ ¼ TailðLtþ1
a Þ.

So far, we correctly determine the four neighbors of ai.
We can repeat the above steps until all items are inserted to
La. Pseudo codes for building the QN-List La are presented
in Algorithm 1 in Appendix A, available in the online sup-
plemental material.

Apparently, the time complexity building QN-List over a
is OðwlogwÞ.

3.4 LIS Enumeration
Let’s discuss how to enumerate all LIS of sequence a based
on the QN-List La. The last item of each LIS must be located
at the last horizontal list of La and we can enumerate all LIS
of a by enumerating all jLaj length increasing subsequence
ending with items in LjLaj

a . For convenience, we use
MISaðaiÞ to denote the set of all RLaðaiÞ length increasing
subsequences ending with ai. Consider each item ai in the
last list LjLaj

a . We can compute all LIS of a ending with ai by
iteratively searching for predecessors of ai in the above list
from the bottom to up until reaching the first list L1

a. This is
the basic idea of our LIS enumeration algorithm.

For brevity, we virtually create a directed acyclic graph
(DAG) to more intuitively discuss the LIS enumeration on
La. The DAG is defined based on the predecessor

relationships between items in a. Each vertex in the DAG
corresponds to an item in a. A directed edge is inserted
from ai to aj if aj is a predecessor of ai (ai and aj is also
called parent and child respectively).

Definition 10 (DAG GðaÞ). Given a sequence a, the directed
graph G is denoted as GðaÞ ¼ ðV;EÞ, where the vertex set V
and the edge set E are defined as follows:

V ¼ faijai 2 ag; E ¼ fðai; ajÞjaj is a predecessor of aig
The GðaÞ over the sequence a ¼ f3, 9, 6, 2, 8, 5, 7g is pre-

sented in Fig. 6 where each path of length jLaj corresponds
to an LIS. For example, we can find a path a5 ¼ 8 ! a3 ¼
6 ! a1 ¼ 3, corresponding to LIS {3,6,8}. Thus, we can easily
design a DFS-like traverse starting from items in LjLaj

a to out-
put all path with length jLaj in GðaÞ.

Note that we do not actually need to build the DAG in
our algorithm since we can equivalently conduct the DFS-
like traverse on La. First, we can easily access all items in La

which are the starting vertexes of the traverse. Second, the
key operation in the DFS-like traverse is to get all predeces-
sors of a vertex. In fact, according to Lemma 1 which is dem-
onstrated in Fig. 5, we can find all predecessors of ai by
searching Lt�1

a from unaðaiÞ to the left until meeting an item
a� that is not compatible with ai. All touched items (a�

excluded) during the search are predecessors of ai.
We construct LIS s from each item aim in Lm

a (i.e., the last
list) as follows. aim is first pushed into the bottom of an ini-
tially empty stack. At each iteration, the up neighbor of the
top item is pushed into the stack. The algorithm continues
until it pushes an item in L1

a into the stack and output items
in the stack since this is when the stack holds an LIS. Then
the algorithm starts to pop top item from the stack and
push another predecessor of the current top item into stack.
It is easy to see that this algorithm is very similar to depth-
first search (DFS) and more specifically, this algorithm out-
puts all LIS as follows: (1) every item in Lm

a is pushed into
stack; (2) at each iteration, every predecessor (which can be
scanned on a horizontal list from the up neighbor to left
until discovering an incompatible item) of the current top-
most item in the stack is pushed in the stack; (3) the stack
content is printed when it is full. Pseudo code for LIS enu-
meration is presented in Algorithm 2 in Appendix A, avail-
able in the online supplemental material.

Theorem 1. The time complexity for LIS enumeration is
OðOUTPUTÞ, where OUTPUT is the total size of all LIS.

4 MAINTENANCE

When time window slides, a1 is deleted and a new item awþ1

is appended to the end of a. It is easy to see that the quadru-
ple neighbor list maintenance consists of two operations:

Fig. 5. Sketch of predecessors.

Fig. 6. DAG.

1040 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 6, JUNE 2018

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 15,2023 at 06:02:36 UTC from IEEE Xplore.  Restrictions apply. 



deletion of the first item a1 and insertion of awþ1 to the end.
Insertion has been taken care of when we discuss how to
construct QN-List in Section 3 (See Lines 2 to 10 of Algo-
rithm 1, in Appendix A, available in the online supplemen-
tal material). Thus we only consider “deletion” in this
section. The sequence fa2; . . . ; awg formed by deleting a1
from a is denoted as a�. We divide the discussion of the
quadruple neighbor list maintenance into two parts: the
horizontal update for updating left and right neighbors
(Section 4.1) and the vertical update for up and down neigh-
bors (Section 4.2).

4.1 Horizontal Update

Definition 11 (k-Hop Up Neighbor). Let a ¼ fa1; a2; . . . ;
awg be a sequence and La be its corresponding quadruple neigh-
bor list. For 8ai 2 a, the k-hop up neighbor unk

aðaiÞ is
defined as follows:

unk
aðaiÞ ¼ ai k ¼ 0

unaðunk�1
a ðaiÞÞ k � 1:

�

We first illustrate the main idea and the algorithm’s sketch
using a running example. More analysis and algorithm
details are given afterward.

Running example and intuition. Fig. 8a shows the QN-list
La for the sequence a in the running example. After deleting
a1, some items in Lt

a (1 � t � m) should be promoted to the
above list Lt�1

a and the others are still in Lt
a. Theorem 2 tells

us how to distinguish them. In a nutshell, 8 a 2 Lt
a

(1 < t � m), if its ðt� 1Þ-hop up neighbor is a1 (the item to
be deleted), a should be promoted to the above list; other-
wise, a is still in the same list.

For example, Figs. 8a and 8b show the QN-lists before
and after deleting a1. fa2; a3g are in L2

a and their 1-hop up
neighbors are a1 (the item to be deleted), thus, they are
promoted to the first list of La� . Also, fa5g is in L3

a, whose
2-hop up neighbor is also a1. It is also promoted to L2

a� .
More interesting, for each horizontal list Lt

a (1 � t � m), the
items that need to be promoted are on the left part of Lt

a,
denoted as LeftðLt

aÞ, which are the shaded ones in Fig. 8a.
Note that LeftðL1

aÞ ¼ fa1g. The right(remaining) part of Lt
a

is denoted as RightðLt
aÞ. The horizontal update is to couple

LeftðLtþ1
a Þwith RightðLt

aÞ into a new horizontal list Lt
a� . For

example, LeftðL2
aÞ ¼ fa2; a3g plus RightðL1

aÞ ¼ fa4g to form
L1
a� ¼ fa2; a3; a4g, as shown in Fig. 8b. Furthermore, the red

bold line in Fig. 8(a) denotes the separatrix between the left
and the right part, which starts from a1. Algorithm 3 in
Appendix A, available in the online supplemental material,
studies how to find the separatrix to divide each horizontal
list Lt

a� into two parts efficiently.

Analysis and Algorithm. Lemma 4 tells us that the up
neighbour relations of the two items in the same list do not
cross, which is used in the proof of Theorem 2.

Lemma 4. Let a ¼ fa1; . . . ; awg be a sequence and La be its cor-
responding quadruple neighbor list. Let m be the number of
horizontal lists in La. Let ai and aj be two items in Lt

a; t � 1. If
ai is on the left of aj, un

k
aðaiÞ ¼ unk

aðajÞ or unk
aðaiÞ is on the

left of unk
aðajÞ, for every 0 � k < t.

Theorem 2. Given a sequence a ¼ {a1; a2; . . . ; aw} and La. Let
m ¼ jLaj. Let a� ¼ fa2; . . . ; awg be obtained from a by delet-
ing a1. Then for any ai; 2 � i � m 2 Lt

a; 1 � t � m,

(1) If unt�1
a ðaiÞ is a1, then RLa�ðaiÞ ¼ RLaðaiÞ � 1.

(2) If unt�1
a ðaiÞ is not a1, then RLa�ðaiÞ ¼ RLaðaiÞ.

Naive method. With Theorem 2, the straightforward
method to update horizontal lists is to compute unt�1

a ðaiÞ
for each ai in Lt

a. If un
t�1
a ðaiÞ is a1, promote ai into Lt�1

a . After
grouping items into the correct horizontal lists, we sort the
items of each horizontal list by decreasing order of their val-
ues. According to Theorem 2 and Lemma 1(1), we can know
that the horizontal lists obtained by the above process is the
same as re-building La� for sequence a�.

Optimized method. For each item ai in Lt
a (1 � t � m) in

the running example, we report its ðt� 1Þ-hop up neighbor
in Fig. 8a. The shaded vertices denote the items whose
ðt� 1Þ-hop up neighbors are a1 in L1

a; and the others are in
the white vertices. Interestingly, the two categories of items
of a list form two consecutive blocks. The shaded one is on
the left and the other on the right.

Let us recall Lemma 4, which says that the up neighbour
relations of the two items in the same list do not cross. In
fact, after deleting a1, for each ai 2 Lt

a, if un
t�1
a ðaiÞ is a1, then

for any item aj at the left side of ai in Lt
a, un

t�1
a ðajÞ is also a1.

While, if unt�1
a ðaiÞ is not a1, then for any item ak at the right

side of ai in Lt
a, un

t�1
a ðaiÞ is not a1. The two claims can be

proven by Lemma 4. This is the reason why two categories
of items form two consecutive blocks, as shown in Fig. 8a.

Fig. 7. Example of building QN-List for sequence: {a1 ¼ 3, a2 ¼ 9, a3 ¼ 6, a4 ¼ 2, a5 ¼ 8, a6 ¼ 5, a7 ¼ 7}.

Fig. 8. Maintenance.
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After deleting a1, we can divide each list Lt
a into two sub-

lists: LeftðLt
aÞ and RightðLt

aÞ. For any item aj 2 LeftðLt
aÞ,

unt�1
a ðajÞ is a1 while for any item ak 2 RightðLt

aÞ, unt�1
a ðakÞ

is not a1. Instead of computing the ðt� 1Þ-hop up neighbor
of each item, we propose an efficient algorithm (Algorithm 3
in Appendix A, available in the online supplemental mate-
rial) to divide each horizontal list Lt

a into two sublists:
LeftðLt

aÞ and RightðLt
aÞ.

Let’s consider the division of each horizontal list of La. In
fact, in our division algorithm, the division of Lt

a depends
on that of Lt�1

a . We first divide L1
a. Apparently, LeftðL1

aÞ ¼
fa1g and RightðL1

aÞ ¼ fL1
ag � fa1g. Recursively, assuming

that we have finished the division of Lt
a, 1 � t < m, there

are three cases to divide Ltþ1
a . Note that for each item ai 2

LeftðLt
aÞ, unt�1

a ðaiÞ ¼ a1; while for each item ai 2 RightðLt
aÞ,

unt�1
a ðaiÞ 6¼ a1.

(1) IfRightðLt
aÞ ¼ NULL, for 8 aj 2 Ltþ1

a , we have unaðajÞ
2 LeftðLt

aÞ, thus, unt
aðajÞ is exactly a1. Thus, all below

lists are set to be the left part. Specifically, for any
t0 > t, we setLeftðLt0

aÞ ¼ Lt0
a andRightðLt0

a Þ ¼ NULL.
(2) If RightðLt

aÞ 6¼ NULL andHEADðRightðLt
aÞÞ is ak:

a) if dnaðakÞ does not exist, namely, Ltþ1
a is empty

at the time when ak is inserted into Lt
a, then

all items in Ltþ1
a come after ak and their up

neighbors are either ak or item at the right
side of ak, thus, the t-hop up neighbor of each
item in Ltþ1

a cannot be a1. Actually, all below
lists are set to be the right part. Specifically,
for any t0 > t, we set LeftðLt0

aÞ ¼ NULL and
RightðLt0

aÞ ¼ Lt0
a .

b) if dnaðakÞ exists, then dnaðakÞ and items at its left
side come before ak and their up neighbors can
only be at the left side of ak (i.e., LeftðLt

aÞ), thus,
the t-hop up neighbor of dnaðakÞ or items on the
left of dnaðakÞ must be a1. Besides, items at the
right side of dnaðakÞ come after ak, and their up
neighbors is either ak or item at the right side of
ak, thus, the t-hop up neighbor of each item on
the right of dna cannot be a1. Generally, we set
LeftðLtþ1

a Þ as the induced sublist from the head
of Ltþ1

a to dnaðakÞ(included) and set RightðLtþ1
a Þ

as the remainder, namely, RightðLtþ1
a Þ ¼ Ltþ1

a

�LeftðLtþ1
a Þ. We iterate the above process for the

remaining lists.
Finally, for 1 � t � m, the left sublist LeftðLt

aÞ should be
promoted to the above list; andRightðLt

aÞ is still in the tth list.
Specifically, we appendRightðLt

a�Þ toLeftðLtþ1
a� Þ to formLt

a� .
In the running example, we append RightðL1

aÞ ¼ fa2; a3g to
LeftðL2

aÞ ¼ fa4g to form L1
a� ¼ fa2; a3; a4g, as shown in

Fig. 8b.

Theorem 3. The list formed by appending RightðLt
aÞ to

LeftðLtþ1
a Þ is strictly decreasing from the left to the right.

According to Theorem 2 and Lemma 2(1), we can prove
that the list formed by appending RightðLt

aÞ to LeftðLtþ1
a Þ,

denoted as L, contains the same set of items as Lt
a� does.

Besides, according to Lemma 1(2) and Theorem 3, both L
and Lt

a� are monotonic decreasing, thus, we can know that
L is equivalent to Lt

a� and we can derive that the horizontal
list adjustment method is correct.

4.2 Vertical Update

Besides adjusting the horizontal lists, we also need to update
the vertical neighbor relationship in the quadruple neighbor
list to finish the transformation from La to La� . Before pre-
senting our method, we recall Lemma 2(2), which says, for
item ai 2 Lt

a, unaðaiÞ(if exists) is the rightmost item in Lt�1
a

who is before ai in sequence a; while, dnaðaiÞ(if exists) is the
rightmost item in Ltþ1

a who is before ai in sequence a.
Running example and intuition. Let us recall Fig. 8. After

adjusting the horizontal lists, we need to handle updates of
vertical neighbors. The following Lemma 6 tells us which
vertical relations will remain when transforming La into
La� . Generally, when we promote LeftðLt

aÞ to the above
level, we need to change their up neighbors but not down
neighbors. While, RightðLt

aÞ is still in the same level after
the horizontal update. We need to change their down neigh-
bors but not up neighbors.

For example, LeftðL3
aÞ ¼ fa5g is promoted to the L2

a� . In
La, unaða5Þ is a3, but we change it to una�ða5Þ ¼ a4, i.e., the
rightmost item in L1

a� who is before a5 in sequence a�. Anal-
ogously, RightðL2

aÞ ¼ fa6g is still at the second level of La� .
dnaða6Þ is a5, but we change it to null, since there is no item
in L3

a� who is before a6. Formal analysis and algorithm
description of the vertical update are as follows.

Analysis and Algorithm.

Lemma 5. Given a sequence a and La, for any 1 � t � m:

(1) 8ai 2 LeftðLt
aÞ, dnaðaiÞ (if exists) 2 LeftðLtþ1

a Þ.
(2) 8ai 2 RightðLtþ1

a Þ, unaðaiÞ (if exists) 2 RightðLt
aÞ.

Lemma 6. Let a ¼ fa1; a2; . . . ; awÞ be a sequence. Let La be its
corresponding quadruple neighbor list and m be the total num-
ber of horizontal lists in La. Let a

� ¼ fa2; . . . ; awg be obtained
from a by deleting a1. Consider an item ai 2 Lt

a� , where
1 � t � m. According to the horizontal list adjustment, there
are two cases for ai: ai is from LeftðLtþ1

a Þ or ai is from
RightðLt

aÞ. Then, the following claims hold:

(1) Assuming ai is from LeftðLtþ1
a Þ

a) dna�ðaiÞ ¼ dnaðaiÞ (the down neighbor remains).
b) Let x be the rightmost item of LeftðLt

aÞ. If
unaðaiÞ 6¼ x, una�ðaiÞ ¼ unaðaiÞ (the up neigh-
bor remains).

(2) Assuming ai is from RightðLt
aÞ

a) una�ðaiÞ ¼ unaðaiÞ (i.e., the up neighbor remains).
b) Let y be the rightmost item of LeftðLtþ1

a Þ. If
dnaðaiÞ 6¼ y, dna�ðaiÞ ¼ dnaðaiÞ (i.e., the down
neighbor remains)

With Lemma 6, for an item ai 2 Lt
a� , there are two cases

that we need to update the vertical neighbor relations of ai.

(1) Case 1: ai is from LeftðLtþ1
a Þ. Let x be the rightmost

item of LeftðLt
aÞ. We need to update the up neighbor

of ai in La� if unaðaiÞ ¼ x as shown in Fig. 9.
(2) Case 2: ai is from RightðLt

aÞ. Let y be the rightmost
item of LeftðLtþ1

a Þ. We need to update the down
neighbor of ai in La� if dnaðaiÞ ¼ y. Fig. 10 demon-
strates this case.

Case 1. Consider items in LeftðLtþ1
a Þ. According to Theo-

rem 2, LeftðLtþ1
a Þwill be promoted into the list Lt

a� .
Let ai be the rightmost item of LeftðLtþ1

a Þ and x ¼
TailðLeftðLt

aÞÞ. According to Lemma 6(1.b), if unaðaiÞ 6¼ x,
then unaðaiÞ ¼ una�ðaiÞ. It is easy to prove that: If unaðaiÞ 6¼
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x then unaðajÞ 6¼ x, where aj is on the left of ai in LeftðLtþ1
a Þ.

Thus, all items in LeftðLtþ1
a Þ do not change the vertical rela-

tions (see Lines 6-8 in Algorithm 4, available in the online
supplemental material).

Now, we consider the case that unaðaiÞ ¼ x. Let ai0
denote the leftmost item in LeftðLtþ1

a Þ where unaðai0 Þ is x.
The up neighbors of the items in the consecutive block from
ai0 to ai (included both) are all x in La (note that x is the
rightmost item in LeftðLt

aÞ ), as shown in Fig. 9a. These
items’ up neighbors need to be adjusted in La� .

Theorem 4. Given an sequence a and La, assume that unaðaiÞ ¼
x and ai0 denote the leftmost item in LRLaðaiÞ

a where unaðai0 Þ is
x. If dnaðxÞ 6¼ NULL, then ai0 is exactly rnaðdnaðxÞÞ; other-
wise, ai0 isHEADðLRLaðaiÞ

a Þ.
With Theorem 4, we can easily find out ai0 in Oð1Þ time.

Then, we first adjust the up neighbor of ai0 in La� . Initially,
we set a� ¼ unaðai0 Þ ¼ x. Then, we move a� to the right step
by step in Lt�1

a� until finding the rightmost item whose posi-
tion is before ai0 in sequence a�. Finally, we set una� ðai0 Þ ¼
a� (see Line 14 in Algorithm 4 in Appendix A, available in
the online supplemental material).

In the running example, when deleting a1 in Fig. 8a,
LeftðL3

aÞ ¼ fa5g, and unaða5Þ is exactly the tail item a3 of

LeftðL2
aÞ, since L1

a� is fa2 ¼ 9; a3 ¼ 6; a4 ¼ 2g, formed by

appending RightðL1
aÞ(fa2 ¼ 9; a3 ¼ 6g) to LeftðL2

aÞ (fa4 ¼ 2g),
and a4 is the rightmost item in L1

a� who is before a5 in a�,
then we set una�ða5Þ as a4 ¼ 2 (see Fig. 8b).

Iteratively, we consider the items on the right of ai0 . Actu-
ally, the adjustment of the next item’s up neighbor can begin
from the current position of a�. It is straightforward to know
the time complexity for updating up neighbors (Algorithm 4
inAppendixA, available in the online supplementalmaterial)
isOðjLt�1

a� jÞ, since each item inLt�1
a� is scanned atmost once.

Case 2. Consider all items in RightðLt
aÞ. According to the

horizontal adjustment, the down neighbors of items in
RightðLt

aÞ are the tail item (i.e., the rightmost item) of
LeftðLtþ1

a Þ or items in RightðLtþ1
a Þ.

Actually, Case 2 is symmetric to Case 1. We highlight
some important steps as follows. Let ai be the leftmost item
in RightðLt

aÞ and let y be TailðLeftðLtþ1
a ÞÞ, namely, y is the

rightmost item in LeftðLtþ1
a Þ. Obviously, dnaðaiÞ ¼ y (Algo-

rithm 3, available in the online supplemental material).
Then we scan RightðLt

aÞ from ai to the rightmost item ai0
where dnaðai0 Þ is y. The up neighbors of the items in the con-
secutive block from ai to ai0 (included both) are all y (see
Fig. 10a). Items on the right of ai0 need no changes in their
down neighbors, since their down neighbors in La are not y
(see Lemma 6(2.b)).

We only consider the consecutive block from ai to ai0 (see
Fig. 10) as follows. First, we adjust the down neighbor of ai0
in La� . Initially, we set a� ¼ TailðLeftðLtþ1

a ÞÞ, i.e., the

rightmost item of LeftðLtþ1
a Þ. Then, we move a� to the left

step by step in Ltþ1
a� until finding the rightmost item whose

position is before ai0 . Finally, we set dna�ðai0 Þ ¼ a� (see Line
8 in Algorithm 5 in Appendix A, available in the online sup-
plemental material).

In the running example, when deleting a1 ¼ 3, RightðL1
aÞ

is fa4 ¼ 2gwhose head item is a4. And dnaða4Þ is a3 ¼ 6 that
is the tail item of LeftðL2

aÞ. Then, initially, we set dna�ða4Þ as
the tail item of LeftðL3

aÞ, namely, dna�ða4Þ ¼ a5 and scan

L2
a� from the right to the left until finding a rightmost item

who is before a4 in a�. Since there is no such item in L2
a� ,

we set dna�ða4Þ as NULL.
Iteratively, we consider the items on the left of ai0 . Actu-

ally, the adjustment of the down neighbor can begin from
the current position of a� (Line 11 in Algorithm 5 in Appen-
dix A, available in the online supplemental material). Thus,
the time complexity of Algorithm 5, available in the online
supplemental material, is OðjLtþ1

a� jÞ, since Ltþ1
a� is scanned at

most twice.
Finally, we can see that solution to handle the deletion of

the head item a1 in sequence a consists two main phrase.
The first phrase is to divides each list Lt

a (1 � t � m and
then finishes the horizontal update by appending RightðLt

aÞ
to LeftðLtþ1

a Þ . The second phrase is to conduct vertical
update. Pseudo codes for handling deletion are presented
in Algorithm 6 of Appendix A, available in the online sup-
plemental material.

Theorem 5. The time complexity of our deletion algorithm is
OðwÞ, where w denotes the time window size.

5 COMPUTING LIS WITH CONSTRAINTS

In this section, we consider all kinds of constraints that are
defined in Section 2 and compute LIS with different con-
strains over a sequence a and La. Due to space limits, the
computations for LIS with maximum/minimum weight/
gap/width, which has been covered in our previous confer-
ence paper [17], are given in Appendix C, available in the
online supplemental material, and we focus on the compu-
tation for slope-constrained LIS and range-constrained LIS.

5.1 Slope-Constrained LIS (SLIS)
According to the definition of SLIS (Definition 5), we can
find that the slope only constrains each two consecutive
items in an LIS. Thus, the slope is in essence constraints
over the predecessors of an item in the sequence. For an
item ai, the predecessors of ai who satisfy the slope con-
straints are called slope-proper predecessors of ai. Thus, the
naive solution to SLIS is to verify the slope constraints dur-
ing the computation for LIS enumeration. However, repeat-
edly visiting items of no slope-proper predecessors may be
wasteful. A possible optimization is to mark those items
with no slope-proper predecessors and avoid visiting them

Fig. 9. Case 1: Updating up neighbors. Fig. 10. Case 2: Updating down neighbors.
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during LIS enumeration. While, each item may have at most
OðjajÞ predecessors and the marking computation is costly.
Also, an item with slope-proper predecessors may not be in
an SLIS. For example, for an item ai that has only one slope-
proper predecessor aj, if aj has no slope-proper predeces-
sor, ai will never exist in an SLIS. Based on these observa-
tions, we propose a dynamic programming algorithm to
color items (white or black) to determine who are to be
ignored during SLIS computation. We will first introduce
our coloration algorithm (coloring phrase) and then we will
discuss how to efficiently enumerate all SLIS based on the
coloring results (outputting phrase).

Coloration. The coloration process begins at the first level
of QN-list. Initially, all items in L1

a are colored white. We
iteratively precess other levels from L2

a to LjLaj
a . We color ai

white if ai has at least one slope-proper predecessor that has
previously been colored white. After collation, for any white
item ai, there must exist an increasing subsequence s ending
with ai where each item in s is white.

Theorem 6. Given a sequence a and ai, aj 2 Ltþ1
a . Assume that

ai0 , aj0 2 Lt
a are the leftmost white slope-proper predecessors of

ai and aj,respectively. If aj is at the right side of ai, then aj0 is
either ai0 or at the right side of ai0 .

We can know that finding a leftmost white slope-proper
predecessor for ai 2 Ltþ1

a is enough to confirm that ai is
white. With Theorem 6, after determining the leftmost white
predecessor a0i of ai, searching for the leftmost white prede-
cessor of rnaðaiÞ can be conducted from a0i to the right of Lt

a.
Thus, after coloring items in Lt

a, we can color items in
Ltþ1
a by scanning Lt

a and Ltþ1
a only once (Lines 3–12 in

Algorithm 13 of Appendix A, available in the online supple-
mental material).

Outputting SLIS. After the coloration, to output an
SLIS, we can find a white item ai 2 Lm

a ðm ¼ jLajÞ and
visit the leftmost white slope-proper predecessor of ai.
Recursively, we can get an SLIS (Lines 13–21 in Algo-
rithm 13, available in the online supplemental material).
Our method can be easily extended to support output-
ting all SLIS. It is analogous to LIS enumeration
approach but it only visits white item in the QN-list dur-
ing the enumeration. SLIS computation over running
example is presented in Appendix D, available in the
online supplemental material. Coloration for SLIS costs
OðjajÞ time while outputting an SLIS costs OðlÞ time
where l is the SLIS length. Thus, SLIS computation over
La costs OðwÞ time.

5.2 Range-Constrained LIS (RLIS)
Consider a sequence a and two ranges [LI , UI] and [LV ; UV ]
where 0 < LI � UI < n, 0 � LV � UV . For ai0 2 Lt

a and ai
2 Ltþ1

a . We call ai0 as range-proper predecessor of ai if ai � ai0
2 ½LV ; UV � and i� i0 2 ½LI; UI � (Note that since 0 < LI and
0 < LV , then we can easily know that ai0 � ai and i0 < i,

namely, ai0 ^
a

ai).
Coloration. Similar to the solution of SLIS computation,

we also assign color to each item. For each item ai, if
RLaðaiÞ ¼ 1, ai should be white; otherwise, ai will be white
if and only if ai has at least one white range-proper prede-
cessor. Non-white items are called black items. We design
an efficient coloring algorithm which costs only linear time.
Initially, items in L1

a are colored white. We iteratively pre-
cess other levels from L2

a to LjLaj
a . Assuming that we have

finished coloring items in the first t horizontal lists (i.e.,
L1
a;L

2
a; . . . ;L

t
a), let’s discuss how to color items in Ltþ1

a .
For an item ai 2 Ltþ1

a and ai0 2 Lt
a, if ai � ai0 2 ½LV ; UV �

and i� i0 2 ½LI; UI �, then equivalently, ai � UV � ai0 � ai �
LV and i� UI � i0 � i� LI . According to Lemma1(1),
items in Lt

a are monotonically decreasing from the left to
the right while their positions in a are monotonically
increasing. Thus, for ai 2 Ltþ1

a , we can find a leftmost item
al in Lt

a such that al � ai � LV and i� UI � l. Obviously,
for any item ai0 at the right of al, al � ai0 � LV and i0 � UI �
l. Similarly, we use ar to denote the rightmost item such
that ai � Uv � ar and r � i� LI . Apparently, items from al
to ar in Lt

a form a consecutive block which contains exactly
all range-proper predecessors of ai (see Fig. 23 in Appen-
dix D, available in the online supplemental material). If ar
is at the left of al, then there is no range-proper predeces-
sor of ai; otherwise, al is the leftmost range-proper prede-
cessor of ai while ar is the rightmost. However, al could be
black item, which is useless to RLIS computation. There-
fore, we focus on the leftmost white range-proper prede-
cessor of ai.

Theorem 7. Given a sequence a and ai 2 Ltþ1
a , assume that ai0 is

the leftmost white item in Lt
a such that ai0 � ai � LV and

i� UI � i0. Then, we can conclude that either ai0 is the leftmost
white range-proper predecessor of ai or ai has no white range-
proper predecessors (i.e., ai should be black).

Theorem 8. Given a sequence a and La. Consider ai; aj 2 Ltþ1
a .

Assume that ai0 , aj0 2 Lt
a are the leftmost white predecessors of

ai and aj such that ai0 � ai � LV and i� UI � i0 and aj0
� aj � LV and j� UI � j0. Then if aj is at the right side of ai,
aj0 is either ai0 or at the right of ai0 .

With Theorems 8 and 7, after determining the leftmost
white item ai0 in Lt

a such that ai0 � ai � LV and i� UI � i0, if
ai0 is exactly a range-proper predecessor of ai, we color ai
white and set a pointer from ai to ai0 as the leftmost white
range-proper predecessor; otherwise, if ai0 is not a range-
proper predecessor of ai, then color ai black. No matter
what color ai is, the coloration of aj ¼ rnaðaiÞ can be con-
ducted by searching for leftmost white item aj0 from ai0 to
the right such that aj0 � aj � LV and j� UI � j0. It is quite
similar to the process in the coloration for SLIS (Lines 3–15
in Algorithm 14 in Appendix A, available in the online sup-
plemental material).

Outputting RLIS. This phrase is just the same as
that of outputting SLIS(See Lines 16–24 in Algorithm 14
in Appendix A, available in the online supplemental mate-
rial). RLIS computation over running example is presented
in Appendix D, available in the online supplemental
material. Similarly, outputting an RLIS over La cost OðwÞ
time.

6 EXPERIMENTS

We experimentally evaluate our solution against the
comparative approaches. All methods, including compar-
ative methods, are implemented by C++ and compiled
by g++(5.2.0) under default settings. Each comparative
method are implemented according the corresponding
paper with our best effort. The experiments are con-
ducted in Window 8.1 (Intel(R) i7-4790 3.6 GHz, 8 G).
All codes, including those for comparative methods are
provided in Github [16].
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6.1 Dataset
We use four datasets in our experiments: real-world
stock data, gene sequence data, power usage data and syn-
thetic data. The stock data is the historical open prices
of Microsoft Cooperation in the past two decades,5 up to
7400 days. The gene datasets is a sequence of 4,525 matching
positions, which are computed over the BLAST output of
mRNA sequences6 against a gene dataset7 according to the
process in [9]. The power usage dataset is a public power
demand dataset used in [18]. It contains 35,040 power usage
value. The synthetic dataset is a time series benchmark [19]
that contains one million data points. Due to space limits,
the experimental results over power and synthetic data are
presented in Appendix F, available in the online supple-
mental material.

6.2 Comparative Methods
We compare our method (denoted as QN-list) with several
comparative algorithms, including our previous method
(denoted as QN-prev) in [17].

LISSET [5] is the only one which proposed LIS enumera-
tion in the context of “stream model”. It enumerates all LIS
in each sliding window but it fails to compute LIS with dif-
ferent constraints, such as LIS with extreme gaps and LIS
with extreme weights.

MHLIS [13] is to find LIS with the minimum gap but it
does not work under data stream model. To enable the
comparison, we implement two streaming version of
MHLIS: MHLIS+Re and MHLIS+I/D where MHLIS+Re is
to re-compute LIS from scratch in each time window while
MHLIS+I/D is to apply our update method in MHLIS.

A family of static algorithms was proposed in [12]
including LIS of minimal/maximal weight/gap/width
(denoted as VARIANT). For the comparison, we implement
two stream version of VARIANT: VARIANT+Re and VARI-
ANT+I/D where VARIANT+Re is to re-compute LIS from
scratch in each time window and VARIANT+I/D is to
apply our update method in VARIANT.

We include the classical dynamic programming (denoted
as DP) algorithm in the comparative study. The standard
DP algorithm only computes the LIS length and a single
LIS. To enumerate all LIS, we save all predecessors of each
item when determining the maximum length of the increas-
ing subsequence ending with it.

Yang et al. [14] proposed two different approaches for
slope-constrained LIS computation (denoted as YangS) and
range-constrained LIS computation (denoted as YangR),
respectively. They focused on static sequence and use range
maximum/minimum query (RMQ) [20] to support efficient
range constraints check. They only find an RLIS(SLIS) while
our method can find out all LIS satisfying a given constraint.
Thus, to enable comparison, the SLIS/RLIS computation in
this section focus on finding only one eligible LIS. Also, to
enable comparison, the stream version of YangS/YangR is
implemented by re-computing SLIS/RLIS from scratch for
each window.

LISone [4] computed LIS length and output an LIS in the
sliding model. They maintained the first row of Young’s
Tableaux when update happened. The length of the first
row is exactly the LIS length of the sequence in the window.

6.3 Experimental Evaluation
Data Structure Comparison. Evaluation of the data structures
focuses on space, construction time and update time. Since
the optimization of our method (QN-list) over our previous
one (QN-prev) lies in maintenance, the space cost and
construction time remain the same as that of previous
version [17].

The space cost of each method is presented in Fig. 11.
Since space cost for the data structure of each method only
depends on the size of sequence (window), the space cost
will be the same over different dataset and we only present
the space cost over stock dataset. We can see that our
method costs much less memory than LISSET, DP, YangS/
YangR and LISone while slightly more than that of MHLIS
and VARIANT, which results from the extra cost in our
QN-List to support efficient maintenance and computing
LIS with constraints. Note that none of the comparative
methods can support both LIS enumeration and LIS with
constraints; but our QN-List can support all these LIS-
related problems in a uniform manner (Table 3).

We construct each data structure five times and present
their average constuction time in Fig. 12. Similarly, our
method runs much faster than that of LISSET, DP and
LISone, since our construction time is linear but LISSET, DP
and LISone have the square time complexity (see Table 2).
Our construction time is slightly slower than VARIANT but
faster than MHLIS, YangS and YangR, since they have the
same construction time complexity (Table 2).

None of MHLIS, VARIANT, DP or YangS/YangR
addresses maintenance issue. To enable comparison, we
implement two stream versions of MHLIS and VARIANT.
The first is to rebuild the data structure in each time win-
dow(MHLIS+Re, VARIANT+Re). The second is to apply
our update idea into MHLIS and VARIANT (MHLIS+I/D,
VARIANT+I/D). The update efficiency is measured by the
throughput, i.e., the number of items handled per second
without answering any query. Fig. 13 shows that our
method is obviously faster than comparative approaches on
data structure update performance. Besides, in Fig. 14, we
present the ratio of saved item of QN-list over QN-prev to
explicitly measure the optimization (see Theorem 4).

LIS Enumeration. We compare our method on LIS Enu-
meration with LISSET and DP. LISSET is the only previ-
ous work that can be used to enumerate LIS under the
sliding window model. The LIS number is quite huge8

and each method only return not more than 10,000 LIS
for each window. We report the average query response
time in Fig. 15. In data stream model, the overall query

Fig. 11. Space.

5. http://finance.yahoo.com/quote/MSFT/history?ltr=1
6. ftp://ftp.ncbi.nih.gov/refseq/B_taurus/mRNA_Prot/
7. ftp://ftp.ncbi.nlm.nih.gov/genbank/

8. We discuss this in Appendix E, available in the online supplemen-
tal material.
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response time includes two parts, i.e., the data structure
update time and online query time. Our method is faster
than both LISSET and DP, and with the increasing of
time window size, the performance advantage is more
obvious.

LIS with Max/Min Weight. VARIANT [12] is the only pre-
vious work on LIS with maximum/minimum weight.
Fig. 16 confirms the superiority of our method with regard
to VARIANT(VARIANT+Re and VARIANT+I/D).

LIS with Max/Min Gap. VARIANT [12] computes the LIS
with maximum and minimum gap while MHLIS [13] only
computes LIS with the minimum gap. The average running
time in each window of different methods are in Fig. 17.
We can see that our method outperforms other methods
significantly.

LIS with Max/Min Width. VARIANT [12] is the only previ-
ous work on LIS with maximum/minimum width. Fig. 18
confirms the superiority of our method with regard to VAR-
IANT(VARIANT+Re and VARIANT+I/D).

Slope/Range-constrained LIS [14] is the only previous work
on slope-constrained LIS(SLIS) and range-constrained LIS
(RLIS). We set three different ranges(R1 ¼ {LI ¼ 1; UI ¼ 20,
Lv ¼ 0, Uv ¼ 50}, R2 ¼ {LI ¼ 20; UI ¼ 40, Lv ¼ 50, Uv ¼ 100},
R3 ¼ {LI ¼ 40; UI ¼ 60, Lv ¼ 100, Uv ¼ 150}) and three dif-
ferent slopes(S1 ¼ 0, S2 ¼ 0:5, S3 ¼ 1:0) to evaluate the per-
formance. We use the average running time under the three
ranges/slopes for comparison. Also, since the coloration
algorithm would introduce extra cost, we also compare our
method with the solution verifying slope/range constraints

during the LIS enumeration (denoted as QN-nocolor). We
can see from Figs. 19 and 20 that our method on this two
problems are better than the approaches in [14] and the sol-
utions based on LIS enumeration.

LIS length (Output an LIS). We compare our method with
LISone [4] on outputting an LIS (The length comes out
directly). We also add other comparative works into com-
parison they can easily support outputting an LIS. Since
there are user-defined parameters in RLIS and SLIS, we set
the corresponding ranges large enough for RLIS and slope
small enough for SLIS to guarantee the output of an LIS.
Fig. 21 shows that our method is much more efficient than
comparative methods on computing LIS length and output
a single LIS.

7 RELATED WORK

7.1 Solution Perspective
Generally, existing LIS computation approaches can be
divided into following three categories:

1. Dynamic Programming-based. Dynamic programming is
a classical method to compute the length of LIS. Given a
sequence a, assuming that ai denotes the prefix sequence
consisting of the first i items of a, then the dynamic pro-
gramming-based method is to compute the LIS of aiþ1 after
computing the LIS of ai. However, dynamic programming-
based method costs Oðw2Þ time where w denotes the length
of the sequence a. In [14], the solution for computing
range/slope-constrained is also based on dynamic

Fig. 12. Construction.

Fig. 13. Maintenance.

Fig. 14. Optimization of QN-list over QN-prev.

Fig. 15. LIS Enumeration.

Fig. 16. LIS with extreme weight.
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programming, i.e., range/slope-constrained LIS of aiþ1 is
computed from that of ai. Dynamic programming-based
method can also be easily extended to enumerate all LIS in
a sequence which costs Oðw2Þ space.

2. Young’s tableau-based. [21] proposes a Young’s tableau-
based solution to compute LIS in OðwlogwÞ time. The width
of the first row of Young’s tableau built over a sequence a is
exactly the length of LIS in a. Albert et al.[4] followed the
Young’s tableau-based work to compute the LIS length in
sliding window. They maintained the first row of Young’s
tableau, called principle row, when window slides. For a
sequence a in a window, there are n ¼ jaj suffix subsequen-
ces and the prime idea in [4] is to compress all principle
rows of these suffix subsequence into an array, which can
be updated in OðwÞ time when update happens. They out-
put an LIS with a tree that costs Oðw2Þ space.

3. Partition-based. There are also some work computing
LIS by partitioning items in the sequence [5], [12], [13], [15].
They classify items into l partitions: P1; P2 . . . ; Pl, where l is
the length of LIS of the sequence. For each item a in Pk

(k ¼ 1; . . . ; l), the maximum length of the increasing subse-
quence ending with a is exactly k. Thus, when partition is
built, we can start from items in Pl and then scan items in
Pl�k (1 � k < l) to construct an LIS. The partition is called
different names in different approaches, such as greedy-cover
in [12], [15], antichain in [5]. Note that [12] and [13] conduct
the partition over a static sequence to efficiently compute
LIS with constraints. [15] use partition-based method as
subprogram to find out the largest LIS length among n� w
windows where w is the size of the sliding window over a
sequence a of size n. Their core idea is to avoid constructing
partition on the windows whose LIS length is less than
those previously found. In fact, they re-compute the
greedy-cover in each of the windows that are not filtered
from scratch. None of the partition-based solutions address
the data structure maintenance issues expect for [5]. [5] is
the only one to study the LIS enumeration in streaming

Fig. 17. LIS with extreme gap.

Fig. 18. LIS with extreme width.

Fig. 19. Slope-constrained LIS.

Fig. 20. Range-constrained LIS.

Fig. 21. LIS length.
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model. Both of their insertion and deletion algorithms cost
OðwÞ time [5]. Besides, they assign each item with OðwÞ
pointers and thus their method costs Oðw2Þ space.

Our approach belongs to the partition-based solution
where each horizontal list (Definitions 8) is a partition.
While, our data structure costs only OðwÞ space and OðwÞ
time for each update and supports both LIS enumeration
and LIS with various constraints. More theoretical analysis
and feasibility comparison are discussed in Section 7.2.

7.2 Problem Perspective
We briefly position our problem in existing work on LIS
computation in computing task and computing model. First,
there are three categories of LIS computing tasks. The first is
to compute the length of LIS and output a single LIS (not
enumerate all) in sequence a [4], [15], [21], [22], [23]. The
second is LIS enumeration, which finds all LIS in a sequence
a [5], [24]. [24] computes LIS enumeration only on the
sequence that is required to be a permutation of {1,2; . . . ; n}
rather than a general sequence (such as {3, 9, 6, 2, 8, 5, 7} in

the running example). The last computing task studies LIS
with constraints, such as gap, weight [12], [13]. Besides,
there are two computing models for each of these LIS com-
puting tasks. One is the static model assuming that the
sequence a is given without changes [12], [13], [14], [21],
[25]. The other model is the data stream model that has
been considered in some recent work [4], [5].

Table 3 illustrates the existing works considering both
computing task and computing model. We can see that there is
no existing uniform solution for all LIS-related problems,
such as LIS length, LIS enumeration and LIS with con-
straints. No algorithm supports computing LIS with con-
straints in the streaming context. Therefore, the major
contribution of our work lies in the uniform solution for all
LIS-related issues in the streaming context.

We also present theoretical comparison of existing
work (More details of comparative works are available
in Section 6.2) over these LIS computing tasks.

Data Structure Comparison. We compare the space, con-
struction time and update time of our data structure against
those of other works in Table 2 (The time complexities are
based on the worst case analysis). We can see that our
approach is better or not worse than any comparative work
on any metric. Our data structure is better than LISSET on
both space and time complexity. Furthermore, the insertion
time OðlogwÞ in our method is also better than the time
complexity OðwÞ in LISSET. Also, none of MHLIS, VARI-
ANT, DP or YangS/YangR addresses the data structure
update issue. Thus, they need OðwlogwÞ (Oðw2Þ for DP)
time to re-build data structure in each time window. Obvi-
ously, ours is better than theirs.

Online Query Comparison. Table 1 shows online query
time complexities of different approaches. The online query
response time in the data stream model consists of online
query time and the update time. We can see that, our online
query time complexities are the same with the comparative
ones. However, the data structure update time complexity
in our method is better than others. Therefore, our overall
query response time is better than the comparative ones
from the theoretical perspective.

8 CONCLUSION

In this paper, we propose a uniform data structure to sup-
port enumerating all LIS and LIS with specific constraints
over sequential data stream. The data structure we propose
only takes linear space and can be updated in linear time,
which makes our approach practical in handling high-speed
sequential data streams. To the best of our knowledge, our
work is the first to proposes a uniform solution (the same

TABLE 2
Data Structure

Methods Space Complexity Time Complexity

Construction Insert Delete

QN-list/QN-prev OðwÞ OðwlogwÞ OðlogwÞ OðwÞ
LISSET [5] Oðw2Þ Oðw2Þ OðwÞ OðwÞ
MHLIS [13] OðwÞ OðwlogwÞ OðlogwÞ –
VARIANT [12] OðwÞ OðwlogwÞ OðlogwÞ –
DP Oðw2Þ Oðw2Þ OðwÞ –
YangS [14] OðwÞ OðwlogwÞ OðlogwÞ –
YangR [14] OðwÞ OðwlogwÞ OðlogwÞ –
LISone [4] Oðw2Þ Oðw2Þ OðwÞ OðwÞ

TABLE 3
Compaison on Supported Computing Task

Methods
Stream

Model

LIS

Enumeration

LIS with

extreme

weight

LIS with

extreme

gap

SLIS RLIS
LIS

length

QN-list/QN-prev @ @ @ @ @ @ @
LISSET @ @ • • • • @
MHLIS • • • @ • • @
VARIANT • • @ @ • • @
DP • @ • • • • @
YangS • • • • @ • @
YangR • • • • • @ @
LISone @ • • • • • @

TABLE 1
Theoretical Comparison on Online Query

Method LIS Enumeration LIS with max Weight LIS with min Weight LIS with max Gap LIS with min Gap SLIS RLIS LIS Length

QN-list/QN-prev OðOUTPUT Þ OðOUTPUT Þ OðOUTPUT Þ OðwþOUTPUT Þ OðwþOUTPUT Þ OðwÞ OðwÞ Oð1Þ
LISSET [5] OðOUTPUT Þ – – – – – – Oð1Þ
MHLIS [13] – – – – OðwþOUTPUT Þ – – Oð1Þ
VARIANT [12] – OðOUTPUT Þ OðOUTPUT Þ OðwþOUTPUT Þ OðwþOUTPUT Þ – – Oð1Þ
DP OðOUTPUT Þ – – – – – – Oð1Þ
YangS [14] – – – – – OðwÞ – Oð1Þ
YangR [14] – – – – – – OðwÞ Oð1Þ
LISone [4] – – – – – – – Oð1Þ

1048 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 6, JUNE 2018

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 15,2023 at 06:02:36 UTC from IEEE Xplore.  Restrictions apply. 



data structure and computing framework) to address all
LIS-related issues in the data stream scenario. Our method
outperforms the state-of-the-art work not only theoretically,
but also empirically.
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