
Citation: Kadane, J.B. Two Kadane

Algorithms for the Maximum Sum

Subarray Problem. Algorithms 2023,

16, 519. https://doi.org/

10.3390/a16110519

Academic Editor: Alicia Cordero

Received: 10 October 2023

Revised: 4 November 2023

Accepted: 8 November 2023

Published: 14 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Communication

Two Kadane Algorithms for the Maximum Sum Subarray Problem
Joseph B. Kadane

Department of Statistics and Data Science, Dietrich College of Humanities and Social Sciences, Carnegie Mellon
University, Pittsburgh, PA 15213, USA; kadane@stat.cmu.edu

Abstract: The maximum sum subarray problem is to find a contiguous subarray with the largest
sum. The history of algorithms to address this problem is recounted, culminating in what is known
as Kadane’s algorithm. However, that algorithm is not the algorithm Kadane intended. Nonetheless,
the algorithm known as Kadane’s has found many uses, some of which are recounted here. The
algorithm Kadane intended is reported here, and compared to the algorithm attributed to Kadane.
They are both linear in time, employ just a few words of memory, and use a dynamic programming
structure. The results proved here show that these two algorithms differ only in the case of an input
consisting of only negative numbers. In that case, the algorithm Kadane intended is more informative
than the algorithm attributed to him.

Keywords: dynamic programming; Kadane’s algorithm; linear algorithm; maximum sum subarray
problem

1. History

In the late 1970s, Jon Bentley, Michael Shamos (both Computer Science), and I (Statis-
tics) jointly taught a seminar course at Carnegie Mellon on the stochastic analysis of
algorithms. The idea was to examine the relative usefulness of worst-case analysis (grow-
ing from minimax ideas of von Neumann and Morgenstern [1]) and average case analysis
(growing from Savage’s [2] Bayesian ideas). Although worst-case analyses were the dom-
inant paradigm in computer science, they seemed too pessimistic. For example, linear
programming (Dantzig) [3] has a poor worst-case analysis (Klee and Minty) [4], but had
been used successfully on very large problems.

The course was loosely structured, in part to encourage discussion about whatever
technical issues people wanted to discuss. One day, Shamos took the floor to talk about a
problem he and Bentley had been discussing. Ulf Grenander at Brown had been studying
how to analyze two-dimensional array data. The maximum likelihood estimate under his
model required finding a contiguous area with high likelihood. To simplify the problem in
the hope of better understanding its structure, he proposed a one-dimensional problem:
given a vector of numbers, find the contiguous subvector with the largest sum. Grenander
knew that a brute force method was of order n3, and had constructed an n2 algorithm.
Shamos had devised a divide-and-conquer n log n algorithm, and Bentley and Shamos
reported that they were having difficulty proving that n log n was the best possible rate for
this problem. (The details of these algorithms are given in Bentley [5].)

I had never heard of this problem before, but it felt to me that Shamos’ algorithm was
ignoring the contiguity constraint rather than using it as part of the solution. So I said “I
wouldn’t do it that way, I’d do it this way”. I cannot reconstruct the description I gave of
my proposed algorithm, but it used contiguity in an essential way to implement a dynamic
programming-type algorithm. This idea was linear in n, as it scanned the input a single
time. Furthermore, it required only a handful of memory locations. So this explained why
Bentley and Shamos were having difficulty proving that n log n was the best possible rate:
it is not.

Algorithms 2023, 16, 519. https://doi.org/10.3390/a16110519 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110519
https://doi.org/10.3390/a16110519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1548-5912
https://doi.org/10.3390/a16110519
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110519?type=check_update&version=1


Algorithms 2023, 16, 519 2 of 6

Bentley [5] recounts this history, and gives a linear algorithm he attributes to me. In
broad outline, it is a method similar to what I proposed in class. However, a key detail is
different.

The remainder of this paper is organized as follows: Section 2 gives my way of thinking
about the problem, and the algorithm I thought I was proposing. Section 3 gives Bentley’s
version and Section 4 compares the algorithms. Section 5 concludes.

2. Growing Champions

There are two simple conditions that the adjacent subsequences with the largest sum
must have:

(a) A maximal adjacent subsequence cannot have a starting sub-subsequence with a nega-
tive sum. Eliminating such a starting sub-subsequence and starting over must result
in a larger sum for the subsequence, so the original subsequence cannot be optimal.

(b) After eliminating starting sub-subsequences with negative sums, the ensuing sub-
subsequence must start non-negatively, so including it in the subsequence must
increase (zeros do not affect the sum) the resulting sum. Thus, an optimal subse-
quence must start immediately after the elimination of starting sub-subsequences with
negative sums.

The algorithm is designed to exploit these ideas.
The Champ step eliminates negative starts (see (a) above) and then begins immediately

(see (b) above).
Suppose the algorithm reports S as the largest sum among contiguous intervals. A

user might want to know at least one starting and ending index of the interval whose
sum is S. Since Algorithm 1 is constructive, it can be modified to record the interval as it
advances. This is implemented in Algorithm 2.

Algorithm 1 Linear algorithm based on Champ

MaxSoFar : = − inf
Champ : = − inf
For I = 1 to N do

Champ : = X[I] + Max(0.0, Champ)
MaxSoFar : = Max(MaxSoFar, Champ).

Algorithm 2 Algorithm 1 modified to report the start and end of the first interval whose
sum is maximum
MaxSoFar : = − inf
Champ : = − inf
Start : = 1
End : = 1
Cstart : = 1
For I = 1 to N do

if Champ < 0 then
Cstart : = I
Champ : = X[I]

else Champ : = X[I] + Champ
if MaxSoFar < Champ

Start : = Cstart
End : = I
MaxSoFar : = Champ.

The sum S = MaxSoFar(N) is unique, but the Start and End values are not. As the
algorithm is written, the Start and End values are those that pertain to the first subarray
whose sum is S.



Algorithms 2023, 16, 519 3 of 6

A user might want to know even more: the start and end of every interval whose sum
is maximum. This might be inadvisable. For example, if the input vector is all zeros, the
required storage for all possible optimal intervals is of order n2.

How do we know that Algorithm 1 (2) is correct? Every interval satisfying (a) and
(b) is offered to MaxSoFar. Since the optimal interval must satisfy (a) and (b), the value of
MaxSoFar after step N is optimal.

These algorithms were designed with the thought that the input vector would include
both positive and negative elements. If the input is entirely positive, then the optimal
contiguous sequence is the entire input, and the sum of the input is the optimal sum.
However, what happens with an entirely negative input? There are two possible kinds
of answer a user might desire. The first is the largest of the input numbers (smallest in
absolute value). Algorithms 1 and 2 deliver this result without change. The second kind
of answer a user might want is the empty set. This can be offered by adding a line at the
end of those algorithms (outside the loop) to report the empty set (designated however one
wishes) if BestSoFar(N) is negative.

3. The Linear Algorithm Bentley Gave Me Credit for

This algorithm recursively calculates “BestEndingHere” at each stage. Formally, it
looks like this:

As in Algorithm 1, Algorithm 3 honors (a) by restarting in MaxEndingHere, and (b) by
restarting immediately.

Algorithm 3 Same as Algorithm 4 in Bentley [5]

MaxSoFar : = 0.0
MaxEndingHere : = 0.0
for I = 1 to N do

MaxEndingHere : =Max(0.0, MaxEndingHere + X[I])
MaxSoFar : = Max(MaxSoFar, MaxEndingHere).

The next question is whether Algorithm 3 can be modified to give the start and end
positions of an optimal subsequence. The following algorithm does that.

Algorithm 4 Algorithm 3 modified to report the start and end of an optimal subsequence

MaxSoFar : = 0.0
MaxEndingHere : = 0.0
Start : = 1
End : = 1
Mstart : = 1
for I = 1 to N do

if MaxEndingHere + X[I] < 0.0 then
Mstart : = I
MaxEndingHere : = 0.0

else MaxEndHere : = MaxEndhere + X[I]
if MaxSoFar < MaxEndingHere then

MaxSoFar : = MaxEndingHere
Start = MStart
End = I.

The correctness of Algorithm 3 can be seen by induction. If MaxEndingHere at I-1 is
correct, then so is MaxEndingHere at I.

An input vector that has only negative numbers leads, using Algorithm 3, to a MaxSo-
Far of zero, and the empty set. In this particular, it differs in behavior from Algorithm 1. A
result of 0 could also occur if the input is non-positive and includes at least one 0. Hence,
an Algorithm 3 result of 0 is ambiguous.



Algorithms 2023, 16, 519 4 of 6

Is this algorithm merely a toy? No, it has been used in applications. Its origin came
from efforts to find two-dimensional regions of high response in images [5]. The two-
dimensional case is substantially more difficult than the one-dimensional case because
the input is not simply ordered. Nonetheless, some of the algorithms proposed for the
two-dimensional case use Algorithm 3 as a subroutine [6–9]. The time complexity of these
algorithms for an r × c input is [min(r, c)]2 + max(r, c). An application of these methods to
optical and radio astronomy is given in [10]. Of course there are analogous problems for
arrays of arbitrary dimensions, but one has to expect algorithms to be slower and demand
more memory as the dimensions increase.

The algorithm is also used in computational biology, for example, in [11–13]. These
applications make use of the linear speed on long DNA chains.

Additionally, electrical bio-engineers have found it useful. The R-peak is one of the
parameters used in the analysis of electrocardiogram (ECG) data. In a study of a prototype
of a wearable ECG system, Xiang et al. [14] use a modification of the algorithm to capture
and compress R-peak data.

Computer scientists have used the algorithm to explore string matching, which has
many uses [15].

While these applications show that the algorithm is useful in certain problems, such
applications are only part of the story. What explains that Leetcode has had 6.9 million
downloads of the maximum subarray problem [16]?

The first answer, I believe, is its widespread use as an interview question for coders
seeking employment. Leetcode introduces themselves as “the best platform to help you
advance your skills, expand your knowledge and prepare for technical interviews." Why
would this be an attractive question to test a candidate coder? The problem is easy to state.
The algorithm is simple to code, if the candidate understands it. Additionally, there are
various ways of disguising it, such as proposing an array of positive numbers, and asking
for the subarray with the largest product.

There is a second answer as well. The algorithm is an application of dynamic pro-
gramming. For teaching purposes, it can be introduced as a simple example of dynamic
programming, a powerful method when it applies [17].

4. Comparing Algorithms 1 and 3

These algorithms look very similar. The driving mechanism of Algorithm 1 is

Champ = X[I] + Max(0.0, Champ), (1)

while that of Algorithm 3 is

MaxEndingHere = Max(0.0, MaxEndingHere + X[I]). (2)

To make them look even more similar, (1) can be rewritten as

Champ = Max(X[I], Champ + X[I]). (3)

Nonetheless, they are different. The relationship between the two algorithms is given
in the following proposition:

MaxEndingHere = Max(0, Champ). (4)

The proof of (4) is given in Appendix A.
Corollary to Proposition: If the input array X has at least one positive element, then

the maximum sum subarrays found by Algorithms 1 and 3 are equal. The proof of the
corollary is also in Appendix A. The corollary shows that Algorithms 1 and 3 can differ
only in the case of an all non-positive input.

Table 1 compares the two algorithms.



Algorithms 2023, 16, 519 5 of 6

Table 1. Comparison of Algorithms 1 and 3.

Algorithm 1 Algorithm 3
Time 0 (n) 0 (n)
Space 0 (1) 0 (1)

Correct? Yes Yes
Modify to report start and end Algorithm 2 Algorithm 4

Negative input Either empty set or
largest element Empty set only

I slightly prefer Algorithms 1 and 2 to Algorithms 3 and 4 because they handle the
all-negative-input case more smoothly.

5. Discussion

Memories are tricky things. Bentley (private communication) was writing their col-
umn some five years after the seminar. He believes that at the time of the seminar he
understood my algorithm to be Algorithm 1, but that his later reconstruction of it resulted
in Algorithm 3. That it took 40 years to recognize that such a misunderstanding had
occurred is entirely on me.

We now have two similar but different light-weight algorithms for the maximum
subarray problem. Even though algorithmically they are virtually identical, they reflect
different ways of thinking about the maximum subarray problem. That there are two is
a gain in our knowledge, and raises new questions. Are there other such algorithms that
are similarly light-weight, or are these two unique in some sense? Can the ideas behind
these algorithms aid in the two-dimensional problem of Grenander, either with an exact
algorithm or heuristically? Algorithms are continuously fascinating.

Funding: This research received no external funding.

Data Availability Statement: No data reported.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Proposition 4

Proof. Proof by induction on I.

At I = 1, Champ[1] = X[1]; MaxEndHere[1] = Max(0, X[1]) = Max(0, Champ[1]).

Suppose the proposition is true at I.
Case 1: Champ[I] ≥ 0. Then, by the inductive hypothesis,

MaxEndingHere[I] = Champ[I] ≥ 0

so
MaxEndingHere[I + 1] = Max(0, MaxEndingHere[I] + X[I + 1])

= Max(0, Champ[I] + X[I + 1])
= Max(0, Champ[I + 1]).

Case 2: Champ[I] < 0. Then, by inductive hypothesis, MaxEndingHere[I] = 0, and then

MaxEndingHere[I + 1] = Max(0, MaxEndsHere[I]) + X[I + 1]
= Max(0, X[I + 1]).

Champ[I + 1] = X[I + 1] + Max(0, Champ[I]) = X[I + 1].

Hence,
MaxEndingHere[I + 1] = Max(0, Champ[I + 1])



Algorithms 2023, 16, 519 6 of 6

Proof. Proof of Corollary
Algorithm 3 finds

MaxSoFar(N) = Max(MaxEndingHere)
= Max(Max(0, Champ)),

using the Proposition.
By assumption, there is some I such that X[I] > 0. Hence, using (1), Champ[I] > 0.
Finally, Max(Max(0, Champ)) = Max(Champ), which is the output of Algorithm 1.

References
1. von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944.
2. Savage, L. Foundations of Statistics; J. Wiley and Sons: New York, NY, USA, 1954.
3. Dantzig, G. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1963.
4. Klee, V.; Minty, G.J. How good is the simplex algorithm? In Inequalities III, Proceedings of the Third Symposium on Inequalities,

Los Angeles, CA, USA, 1–9 September 1969; Dedicated to the Memory of Theodore S. Motzkin; Oved, S., Ed.; Academic Press:
New York, NY, USA; London, UK, 1972; pp. 159–175.

5. Bentley, J. Algorithm Design Techniques. Commun. ACM 1984, 27, 865–871. [CrossRef]
6. Maximum Sum Rectangle in a 2D Matrix. Available online: https://www.geeksforgeeks.org/maximum-sum-rectangle-in-a-2d-

matrix-dp-27 (accessed on 2 November 2023).
7. Maximum Sum Rectangle in a 2D Matrix—Kadane’s Algorithm Application (Dynamic Programming). Available online:

https://www.youtube.com/watch?V=FgseNO-6Gk (accessed on 2 November 2023).
8. Ray, T. Maximum Sum Rectangular Submatrix in Matrix Dynamic Programming/2D Kadane. Available online: https://www.

youtube.com/watch?v=yCQN096CwWM (accessed on 2 November 2023).
9. Saleh, S.; Abdellah, M.; Abdel Raouf, A.; Kadah, Y. High Performance CUDA-based Implementation for the 2D Version of the

Maximum Subarray Problem (MSP). In Proceedings of the 2012 Cairo International Biomedical Engineering Conference, Giza,
Egypt, 20–21 December 2012.

10. Waddell, S.; Takaoka, T.; Read, T.; Candy, R. Maximum subarray algorithms for use in optical and radio astronomy. In Proceedings
of the SPIE 8500 Image Reconstruction from Incomplete Data VII, San Diego, CA, USA, 12–16 August 2012. . [CrossRef]

11. Rakocevic, G.; Semenyuk, V.; Lee, W.; Spencer, J.; Browning, J.; Johnson, I.J.; Arsenijevic, V.; Nadj, J.; Ghose, K.; Suciu, M.C.; et al.
Fast and accurate genomic analyses using genome graphs. Nat. Genet. 2019, 51, 354–362. [CrossRef] [PubMed]

12. Zhao, J.; Song, X.; Wang, K. IncScore: Alignment-free identification of long noncoding RNA from assembled novel transcripts.
Sci. Rep. 2016, 6, 34838. [CrossRef] [PubMed]

13. Wu, J.; Lee, W.P.; Ward, A.; Walker, J.A.; Konkel, M.K.; Batzer, M.A.; Gabor, T. Tangram: A comprehensive toolbox for mobile
element insertion detection. BMC Genom. 2014, 15, 795. [CrossRef] [PubMed]

14. Xiang, J.; Dong, Y.; Xue, X.; Xiang, H. Transactions on Biomedical Circuits and Systems; IEEE: New York, NY, USA, 2019; Volume 13,
pp. 68–79.

15. Aygun, R. Using Maximum Sum Subarrays for Approximate String Matching. Ann. Data Sci. 2017, 4, 503–531. [CrossRef]
16. Available online: https://leetcode.com/problems/maximum-subarray/ (accessed on 2 November 2023)
17. Miriello, B. Kadane’s Algorithm: Gateway to Dynamic Programming. 2020. Available online: https://levelup.gitconnected.com/

kadanes-algorithm-gateway-to-dynamic-programming-26e95ec13c7f (accessed on 2 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/358234.381162
https://www.geeksforgeeks.org/maximum-sum-rectangle-in-a-2d-matrix-dp-27
https://www.geeksforgeeks.org/maximum-sum-rectangle-in-a-2d-matrix-dp-27
https://www.youtube.com/watch?V=FgseNO-6Gk
https://www.youtube.com/watch?v=yCQN096CwWM
https://www.youtube.com/watch?v=yCQN096CwWM
.
http://dx.doi.org/10.1117/12.928318
http://dx.doi.org/10.1038/s41588-018-0316-4
http://www.ncbi.nlm.nih.gov/pubmed/30643257
http://dx.doi.org/10.1038/srep34838
http://www.ncbi.nlm.nih.gov/pubmed/27708423
http://dx.doi.org/10.1186/1471-2164-15-795
http://www.ncbi.nlm.nih.gov/pubmed/25228379
http://dx.doi.org/10.1007/s40745-017-0117-0
https://leetcode.com/problems/maximum-subarray/
https://levelup.gitconnected.com/kadanes-algorithm-gateway-to-dynamic-programming-26e95ec13c7f
https://levelup.gitconnected.com/kadanes-algorithm-gateway-to-dynamic-programming-26e95ec13c7f

	History
	Growing Champions
	The Linear Algorithm Bentley Gave Me Credit for
	Comparing Algorithms 1 and 3
	Discussion
	Appendix A
	References

