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a b s t r a c t

Within the area of stock market prediction, forecasting price values or movements is one of the
most challenging issue. Because of this, the use of machine learning techniques in combination with
technical analysis indicators is receiving more and more attention. In order to tackle this problem,
in this paper we propose a hybrid approach to generate trading signals. To do so, our proposal
consists of applying a technical indicator combined with a machine learning approach in order to
produce a trading decision. The novelty of this approach lies in the simplicity and effectiveness of the
hybrid rules as well as its possible extension to other technical indicators. In order to select the most
suitable machine learning technique, we tested the performances of Linear Model (LM), Artificial Neural
Network (ANN), Random Forests (RF) and Support Vector Regression (SVR). As technical strategies for
trading, the Triple Exponential Moving Average (TEMA) and Moving Average Convergence/Divergence
(MACD) were considered. We tested the resulting technique on daily trading data from three major
indices: Ibex35 (IBEX), DAX and Dow Jones Industrial (DJI). Results achieved show that the addition
of machine learning techniques to technical analysis strategies improves the trading signals and the
competitiveness of the proposed trading rules.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Predicting stock prices is a growing area of interest in both
cademic and financial economy fields. Despite the efforts made
o develop new techniques, strategies and measures, none of
hem have proven to be particularly effective. Stock market pre-
iction is a challenging problem since it is affected by different
actors (many of which are unknown) and the market volatility
hat is difficult to capture in a model. Furthermore, this kind
f data is very hard to predict since it presents non-linear re-
ationships that are non-stationary with high heteroscedasticity
1–5].

Such difficulties have led to the efficient-market hypothesis [6]
EMH), which states that asset prices already take into account
he information based both on past and future events. According
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to EMH, it is not possible to predict future prices based on
historical data since for such purpose it is necessary to possess
privileged information. Some critics to EMH point to the psycho-
logical biases that investors exhibit under uncertainty, leading to
irrational and unpredictable behaviors [7]. Nowadays there is no
consensus about EMH and the debate is still ongoing.

In a more recent work, the adaptive markets hypothesis [8]
(AMH) has been proposed to overcome the behavioral critics
made to EMH arguing that markets are not rational, but are rather
driven by fear and greed. AMH tackles the stock market from a bi-
ological perspective within an evolutionary framework in which
prices evolve according to competition, adaptation, and natural
selection to financial interactions. According to AMH, predictable
patterns may appear over time for short periods.

Traditionally, the two most widely used approaches to analyze
stock market data are fundamental and technical analysis [9].
Fundamental analysis relies on the concept of intrinsic value,
hich means that the current price is based on quantitative and
ualitative information. This approach adopts the EMH in the
ong-term. However, in the short term it assumes that there may
e some inefficiencies. Technical analysis, on the other hand, is
ased on historical data to find patterns and predicts the future
rice movements of a stock. In contrast to fundamental analysis,
his approach is mainly focused on the short term [10].
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In addition to technical and fundamental analysis, many re-
searchers formulate the problem of stock price prediction as a
problem of time series forecasting. Within this approach, there
are basically two categories of techniques: conventional and ma-
chine learning methods. Conventional strategies include, among
others, statistical analysis, smoothing and regression-based tech-
niques. For example, in [11] regression-based methods have been
evaluated on the top 4 stock exchanges—New York, London,
NASDAQ and Karachi stock exchange. They also evaluated them
on the top 3 companies—Apple, Microsoft, and Google. The auto-
regressive integrated moving average (ARIMA) is used in [12] for
short-term prediction of New York Stock Exchange (NYSE) and
Nigeria Stock Exchange (NSE), while in [13], it is also used for
short-term prediction of Amman Stock Exchange (ASE).

In recent years, there has been a growing interest in machine
learning based techniques. The main reason is that in contrast
to conventional methods, these techniques are more suitable to
handle complex data with non-linear relationships. Within this
field, artificial neural networks (ANNs) are a very popular ap-
proach and have been applied in numerous works. In [14], several
ANN models are applied to forecast daily NASDAQ data. This
method has also been applied to tick data from Indian stock index
in [15]. An ANN with a different optimization function is proposed
in [16] and is tested on daily data from seven stock indices. In
more recent works, Deep Learning (DL) is gaining popularity. For
example, [17] and [18] use a DL strategy to forecast daily data
from Dow 30 companies and National Stock Exchange of India
(NSEI) and the NYSE, respectively. Other popular techniques are
Support Vector Regression [19], tree-based algorithms [20], etc.

In this work we propose a novel hybrid trading strategy that
combines machine learning techniques with technical analysis
indicators to generate Profitable trades. For such purpose, the
trading rules are designed taking into account the asymmetric re-
turn distribution [21] to avoid false signals and achieve successful
trading transactions. Results suggest that the integration of the
information about the predicted trend (using machine learning)
to the technical analysis leads to more robust signals.

The machine learning techniques analyzed in this paper are:
Multivariate Linear Regression or Linear Model (LM), Artificial
Neural Network (ANN), Random Forests (RF) and Support Vector
Regression (SVR). As technical analysis strategies, the Triple Ex-
ponential Moving Average (TEMA) crossover, a strategy based on
the Exponential Moving Average (EMA) indicator, and the Moving
Average Convergence Divergence (MACD) are used. The proposed
strategy was tested on three major indices – Ibex35 (IBEX), DAX
and Dow Jones Industrial (DJI) – from 2011 to 2019. We can
summarize the contributions of this work as follows:

• Analyze the performance of the predictive models induced
with LM, ANN, RF and SVR.

• Study the return of the technical analysis-based strategies
TEMA and MACD.

• Propose a hybrid trading strategy that combines machine
learning and technical analysis.

• Develop a workflow to calculate the performance of the pro-
posed strategy and compare it with technical analysis-based
strategies.

The rest of the paper is organized as follows. Section 2 in-
troduces the problem studied. Then, in Section 3, the machine
learning methods, the technical indicators and strategies are pre-
sented. The data used in order to assess the effectiveness of our
proposal is described in Section 4. The experimental results are
presented in Section 5, and finally, we draw the main conclusions
and discuss possible future developments in Section 6.
2

2. Stock market forecasting

Stock market values consist of a discrete sequence of time-
ordered data points measured at equal time intervals. Given E a
et of n samples characterized by T real values x1, . . . , xT , (1 ≤

≤ T ) so that xi represents the recorded value at time i, let w
e the historical window and h the prediction horizon so that
+ h ≤ T . Then, the associated time series forecasting problem

an be formulated as the problem of predicting the values of
w+1, . . . , xw+h, given x1, . . . , xw(w + h ≤ T ), with the objective
f minimizing the error between the predicted value x̂w+i and the
ctual value xw+i(1 ≤ i ≤ h). A more extensive introduction to

time series analysis can be found in [22].

2.1. Related work

As previously mentioned, the application of machine learning
techniques to the stock market forecasting problem has gained
popularity in recent years. This is due, among others, for the
suitability of such techniques to handle complex relations and the
advances in computer technology that allow to process massive
amounts of data.

In an early work, Yao et al. [23] investigate the performance
of the autoregressive integrated moving average (ARIMA) and the
ANNs techniques for forecasting the Kuala Lumpur Composite
Index (KLCI). The indicators moving average (MA), momentum
(M), Relative Strength Index (RSI), and stochastics %K and moving
average of stochastics %D (KD) are used as the inputs of the
ANN. The trading rules, which are based on such predictions, are
tested on daily data collected from January 3, 1984 to October
16, 1991. In another work, Pérez-Rodríguez et al. [24] propose
a combination of the filter techniques [25] trading strategy with
smooth transition autoregression (STAR) models and ANNs. The
study is conducted on daily data from the Spanish IBEX stock
index return gathered over the period going from December 30,
1989 to February 10, 2000. In [26] Chang et al. the authors pro-
pose a combination of ANN with Piecewise Linear Representation
(PLR) model to make trading decisions. This strategy receives as
input, a set of technical indicators — MA, Bias (BIAS), RSI, KD,
MACD, Williams %R (WR), Transaction Volume (TV) and Differ-
ences of technical indexes (∆), which are processed to produce
trading signals. This proposal is tested on nine different stocks
– AU Optronics (AUO), Epistar Corporation (EPISTAR), GP, Silicon
Integrated System Corporation (SiS), SENAO International Corpo-
ration (SENAO), D-Link Corporation (D-LINK), Foxlink Corporation
(FOXLINK), Compal Corporation (COMPAL) and UMC Corporation
(UMC) – collected from January 2, 2004 to April 12, 2006.

Teixeira and Oliveira [27] combine technical analysis and k
nearest neighbor (kNN) classifier for automatic trading. The in-
dicators MA, RSI, KD, and Bolinger Bands (BB) are calculated and
used as input of the kNN model. Authors compare the results of
the proposed trading rule with a buy-and-hold strategy on fifteen
stocks from São Paulo Stock Exchange. The data collected covered
a period going from April 1, 1990 to March 9, 2009. In another
work R. Dash and K. Dash [28] propose a decision support system
that integrates technical analysis and a computational efficient
functional link ANNs (CEFLANNs). First, the proposed workflow
learns the trends from data computed from the technical in-
dicators MA, MACD, KD, RSI and WR. This information is then
applied to the trading rules. The same workflow is compared us-
ing the machine learning techniques Naive Bayes, Support Vector
Machine (SVM), kNN and Decision Tree (DT). In this work five
years of historical stock index price values from BSE SENSEX and
S&P500 is used. The data was collected in the period comprised
between January 2010 and December 2014.

Sang and Di Pierro [29] propose the use of an ANN to improve

technical analysis trading strategies. For each strategy considered
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able 1
ummary of the related works described. In the Tasks column, F refers to Forecasting, C to classification and T to trading.
Year Indicators Methods Tasks Stocks Period Ref.

1999 MA, M, RSI, KD ARIMA, ANN F, T KLCI 03/01/1984–
16/10/1991

[23]

2005 – STAR, ANN F, T IBEX35 30/12/1989–
10/02/2000

[24]

2009 MA, BIAS, RSI, KD, MACD,
WR, TV, ∆

PLR, ANN F, T AUO, EPISTAR, GP, SiS,
SENAO, D-LINK,
FOXLINK, COMPAL, UMC

02/01/2004–
12/04/2006

[26]

2010 MA, RSI, KD, BB kNN C, T BM&FBovespa 01/04/1998–
09/03/2009

[27]

2016 MA, MACD, KD, RSI, WR ANN, NB, SVM,
kNN, DT

C, T BSE SENSEX, S&P500 01/01/2010–
01/12/2014

[28]

2019 SMA, RSI, MACD ANN F, T S&P500 01/01/2014–
31/12/2015

[29]

RSI, MA, KD, WD, EMA,
MACD

DL, SVM, LR C, T NSEI 16/11/2016–
15/11/2018

[30]

2020 MACD GA F, T NASDAQ 01/01/2013–
31/12/2019

[31]

SMA, EMA, RSI, CMO, CCI,
MACD, PPO, TMA, KD, CAD,
BB, WR

DL, SVR, LSTM,
CNN, MLP,
MLP+BiLSTM

F S&P500, NASDAQ,
Russell2000, DJ

2/11/2008–
12/07/2019

[32]
— Simple MA (SMA), RSI and MACD, an ANN model is induced in
order to determine whether the strategy will produce a Profit or a
loss. The data used consisted of nine indexes representing entire
sectors under S&P500 recorded in the period 2014–2015. Deep
Learning has also been combined with stock technical indicators
in [30] by Agrawal et al. First, new input features are created
from the RSI, MA, KD, WR, Exponential MA (EMA) and MACD
indicators. Then, the price trend is estimated using DL and such
prediction is incorporated in the trading rule. The performance
of DL is compared with SVM and Linear Regression (LR) on data
from 3 banks listed in the National Stock Exchange of India. The
data encompassed the trading days of 2 years: from November
16, 2016 to November 15, 2018.

In a recent work Aguirre et al. [31] propose to hybridize MACD
ith a Genetic Algorithm (GA) to optimize the parameters that
enerate the buy–sell signals. The proposal is compared with
ACD and Buy & Hold strategies on data from NASDAQ stock in-
ex over a seven-year period: from January 1, 2013 to December
1, 2019. The article from Chen et al. [32] introduce a novel hy-
rid DL model that integrates Attention Mechanism (AM), Multi-
ayer Perceptron (MLP), and Bidirectional Long–Short TermMem-
ry (BiLSTM) ANN. First, the strategy creates a knowledge base
omprised of 31 features obtained from historical prices of stocks,
echnical indicators and natural resources prices and historical
ata of the Google index. Then, the dimensionality is reduced by
pplying Principal Components Analysis (PCA). After this phase,
he hybrid DL approach is applied to forecast the closing price.
he technical indicators used in this work are MA, EMA, RSI,
hande Momentum Oscillator (CMO), Commodity Channel In-
ex (CCI), MACD, Percentage Price Oscillator (PPO), Triangular
oving Average (TMA), KD, Chaiking A/D Oscillator (CAD), BB
nd WR. The model is compared with Support Vector Regres-
ion (SVR), LSTM, Convolutional Neural Network (CNN), MLP and
LP+BiLSTM. The robustness of the proposed model was proven

hrough testing on the stock indexes S&P 500, Dow Jones (DJ),
ASDAQ, and Russell 2000 (Russell2000).
New hybrid models that integrate sentiment analysis data are

lso becoming popular in recent works (see [33–35]). Despite
he potential advantage of incorporating the market sentiment, it
lso presents challenging difficulties such as misspelling, short-
uts and information duplication in text data. Furthermore that
ay led to low efficiency [36]. Ensemble approaches have also
btained good results when applied to the stock market predi-
3

ction problem. Examples of such strategies are, for instance,
[37,38,38–41].

We refer the reader to [42] for a further description of addi-
tional works using machine learning strategies. A summary of the
hybrid models described in this section is shown in Table 1. The
first column indicates the year of the publication followed by the
technical indicators considered in the work. Then, the strategy
used are listed followed by the tasks addressed: F for forecasting,
C for classification and T for trading signals. Next, the stock data
source and the period of time collected are shown, and, finally,
the relative reference is reported.

2.2. Methods

In this section, we will briefly describe the methods used to
produce the predictions of the experiments performed in this
work. As mentioned before, in this paper we use four learning
strategies that are independently trained, named Linear Model,
Artificial Neural Networks, Random Forest and Support Vector
Regression. These methods were selected since they have proven
their good performance in the field. Due to this, they are widely-
used in literature for regression tasks in stock market prediction,
e.g., [43–46].

Linear Model (LM) [47], also called linear regression, is a
statistical approach that is typically used to model the relation-
ship between two variables and also for time series forecasting.
The main idea behind this approach is to find the relationship
between two variables using a linear equation, Y = a + bX , for
representing the association between the independent variable
(X) and the dependent one (Y ), i.e., the variable to be predicted.
This approach can also use multiple independent variables to
determine the final value of the dependent one, which is called
multiple linear regression and it is represented by the equation
Y = a+ b1X1 + · · ·+ bnXn + ϵ, where ϵ is the residual (difference
between the predicted and the observed value) and Xi, 1 ≤ i ≤ n
are the n explanatory variables. In this work, we model different
dependent variables from the same input dataset so, we selected
the multi-output regression. Multi-output regression, also known
in the literature as multi-target, aims to simultaneously predict
multiple output/target variables.

In this paper, we have used the implementation provided by

R caret package [48].
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Fig. 1. General scheme for backtesting the proposed trading strategy.
able 2
ummary of the indices data.
Symbol Start End #observations

IBEX 2011-01-02 2019-12-31 2800
DAX 2011-01-02 2019-12-31 2799
DJI 2011-01-03 2019-12-31 2713

Table 3
Optimal parameters for each learning scheme.
A Parameter Description

LM – –

ANN #It. = 500 Maximum number of iterations
Size = 1 Number of units in the hidden layer
Decay = 0 The weight decay

RF #Trees = 100 Number of trees to grow
#Nodes = 100 Maximum number of terminal nodes

SVR kernel = linear Kernel type
ε = 0.1 Insensitive-loss function
tolerance = 0.001 Tolerance for stopping criterion

Artificial Neural Networks (ANN) [49], are computational
odels for classification and regression. They are inspired by the
uman brain neural networks. An ANN is formed by a set of con-
ected nodes, called (neurons), that are interconnected with each
ther simulating the connections of the brain. The information is
ransmitted from neuron to neuron and the learning is achieved
hrough training data. ANNs are composed by different layers:
n input layer, one or more hidden layers, and an output layer.
onnections among nodes of different layers are weighted. Thus,
he information is carried from one layer to another using an
ctivation function that accounts for the non-linearity in the data.
his process, which is called feed-forward propagation, defines
4

how the data are fed into the next layers. The model learns by
minimizing a loss function that calculates the data prediction
error by adjusting the weight of the connections. The final pre-
diction is computed in the output layer, where a transformation
function is used in the final step. The number of neurons in
the input layer varies and depends on the dimensionality of the
input data, while in the output layer this number depends on the
expected output. In the case of regression tasks, a single neuron
that offers a final numerical value is used.

In this work we use a feed-forward ANN that consists of an
input layer, one hidden layer, and an output layer. No feedback
or lateral connections were used. The algorithm developed in the
R package nnet [50] was used.

Random Forests (RF) is an ensemble method that may be
applied for both classification and regression tasks. The prediction
model induced by RF consists of a set of decision trees, and
the final prediction is computed considering the predictions of
each tree, e.g., with a majority vote in the case of classification.
For regression tasks, the final prediction consists of the average
of the trees’ predictions. The trees induced are independently
trained with a bootstrap sample of the training data (Bagging
ensemble method) selecting a random number of features. RF
was first proposed by Ho [51] and improved by Breiman [52],
combining the random sub-set method with its bagging method.
RFs offer a way of averaging multiple trees with a low variance
for predictions, since each tree is formed with a random subset
of data and features. In this paper we used the implementation
provided by the R package [53], which is based on the Breiman’s
algorithm.1ausugum

Support Vector Regression (SVR) [54], is a variant of support
vector machines (SVM), adapted for being used for regression
and forecasting tasks. SVR applies the same criteria as SVM for
classification. SVR is characterized by the use of kernels, sparse
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Fig. 2. First, the training time series is converted to a supervised learning problem. Next, the data is split into training and validations datasets. w refers to the
mount of the historical data used, while h determines the prediction horizon.
olution, and VC control of the margin and the number of support
ectors. In spite of their similarities, SVR presents some minor
ifferences with SVM.
Since the output is a real number, it is difficult to predict an

xact value, since there are infinite possibilities. However, the
ain idea is the same: minimize the error, finding the hyper
lane that maximizes the margin by taking into account that part
f the error is tolerated.
In this work, the implementation provided by the R caret

ackage was used [48].

.3. Performance metrics

In this section, we introduce the metrics used to assess the
uality of the learning methods used in this paper. In particular,
e use four measures that are commonly used in regression: the
ean absolute error (MAE), the root mean squared error (RMSE),

he mean absolute percentage error (MAPE) and the symmetric
ean absolute percentage error (sMAPE).
Given the sample size n, the actual observation yt at time t ,
≤ t ≤ T , and the prediction yt , the metrics are defined as

follows:

• Mean absolute error (MAE) measures the average over a
sample of the absolute differences between the predicted
and actual observation. It is defined by the following for-
mula:

MAE =
1
n

n∑
t=1

|yt − yt |

The MAE is a linear score. This means that all the single
differences are considered equally in the average. It follows
5

that larger errors will contribute linearly to the total error.
This represents the main drawback of this measure, as out-
liers may affect its meaning. An advantage of using MAE is
that it is an intuitive and easy to interpret measure.

• Root mean squared error (RMSE) also measures the aver-
age magnitude of the errors, and it is defined as:√1

n

n∑
t=1

(yt − yt )2

Notices that this measure is a quadratic scoring rule. It
follows that it measures the average magnitude of the error.
In this sense outliers have a greater impact on this measure.

• Mean absolute percentage error (MAPE) measures how
accurate, as a percentage, a forecasting system is. It is cal-
culated as follows:

MAPE =
1
n

n∑
t=1

⏐⏐⏐⏐yt − ŷt
yt

⏐⏐⏐⏐
We can state that MAPE is basically the percentage equiv-
alent of MAE. MAE is the average magnitude of error pro-
duced by a model, while MAPE represent how far, on av-
erage, the predictions are from the real values. As for MAE,
MAPE is not affected too much by the presence of outliers,
as it is a linear function. MAPE have a problem that is the
denominator is zero, then its value would be undefined.

• Symmetric mean absolute percentage error [55] (sMAPE)
is a modified version of MAPE to fix the issues of being
infinite or undefined due to zeros in the denominator [56],
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Table 4
Performance of each learning algorithm averaged over the historical window w and the prediction
horizon h. For each metric and algorithm, the average results together with its standard deviation is
reported.

w Metric LM ANN RF SVR

MAE 175.76± 2.88 180.40± 2.59 204.08± 9.84 177.35± 5.07
RMSE 226.20± 2.64 231.60± 2.79 259.08± 12.24 228.33± 4.61
sMAPEa 18.45± 0.35 18.92± 0.32 21.50± 1.06 18.58± 0.58IB

EX
MAPEa 18.41± 0.34 18.86± 0.30 21.43± 1.00 18.51± 0.56

MAE 257.97± 3.70 260.00± 4.92 625.47±144.60 259.11± 4.98
RMSE 326.63± 6.05 331.99± 7.81 749.97±148.81 329.75± 8.09
sMAPEa 21.15± 0.31 21.28± 0.40 51.30± 12.13 21.22± 0.41D

AX

MAPEa 21.10± 0.29 21.15± 0.37 53.19± 12.95 21.11± 0.37

MAE 487.69±10.09 476.52± 9.65 4614.25± 63.61 493.45±12.14
RMSE 638.27±11.25 635.91±11.70 4900.81± 93.46 643.72±14.44
sMAPEa 19.46± 0.39 18.99± 0.36 200.62± 3.74 19.69± 0.46D

JI

MAPEa 19.44± 0.40 18.92± 0.35 226.00± 5.03 19.66± 0.46

a
×10−3 .
and is defined in the following way:

sMAPE =
1
n

n∑
t=1

2
⏐⏐yt − yt

⏐⏐⏐⏐yt + yt
⏐⏐

As already stated, sMAPE is a modified MAPE in which the
divisor is half of the sum of the actual and predicted values.

In following we report the values of MAPE and sMAPE mul-
tiplied by 103, in order to avoid presenting extremely small
values.

3. Stock market strategies

In this section, we first introduce the technical analysis indica-
tors used in this paper, namely the Exponential Moving Average,
the Moving Average Convergences/Divergences and the Triple
Exponential Moving Average crossover strategy. We also briefly
describe the trading strategies associated to them. After that, we
continue by describing the strategy proposed in this paper.

3.1. Technical indicators

In our proposal, we use two commonly used indicators in
trading strategy, i.e., the Exponential Moving Average and the
Moving Average Convergence/Divergence indicators.

Exponential Moving Average (EMA). This is one of the most pop-
lar technical indicators. EMA is used to gauge the trend of a
inancial asset. To this aim, EMA smooths the price by filtering out
he noise from random price fluctuations by averaging the price
ver a given period of time m. EMA is based on past prices and,
o, it is a lagging indicator. This means that EMA cannot predict
ew trends, but it can confirms the direction of the trend.
EMA assigns more weight to recent prices, and is defined as in

he following formula:

MAm
t (St ) =

{
S1 if t = 1,

α · St + (1 − α) · EMAm
t−1 if t > 1.

n the above formula, St refers to the current price, m to the
umber of observations and α is a smoothing factor, 0 ≤ α ≤ 1,
hat is calculated as α =

2
m+1 .

oving Average Convergence/Divergence (MACD). This indicator
as first proposed by Gerald Appel in [57] and used to identify
he trend direction and duration by calculating the relationship
etween two EMAs. MACD consists of two series: the MACD line
MACD ) and the MACD signal series (Signal ). The MACD line
t t

6

Table 5
Parameter ranges considered for TEMA and MACD trading strategies to find the
optimal combination.
A Parameter Description

TEMA Fast [1, 25]
Medium [5, 50]
Slow [10, 75]

MACD Fast [1, 25]
Slow [5, 75]
Signal [5, 25]

is obtained as the difference between the faster and the slower
EMAs. The signal is the Moving Average (MA) of the MACD series.
Given the time periods m, n and p so that m < n, then

MACDt = EMAm
t (St ) − EMAn

t (St ),
Signalt = EMAp

t (MACDt ).

3.2. Technical analysis strategies

As trading strategies, two simple strategies based on MACD
and EMA indicators are selected. The description of each strategy
is given below.

MACD strategy. A very common strategy based on the MACD
indicator is the following:

Strategyt+1 =

{
Buy if MACDt > Signalt ,
Sell if MACDt < Signalt .

Therefore, a potential buy signal is generated when MACDt
crosses above the Signalt line and, similarly, we have a potential
sell signal in the opposite scenario.

Triple Exponential Moving Average (TEMA) crossover strategy. This
strategy is used to identify trends in the market and to deal with
false market signals. It is based on three EMAs, for short, mid and
long term periods, respectively. The EMA for short period (fast
EMA) is the first one to detect a possible shift in the trend that is
confirmed once it crosses both the medium and the slow EMAs.
So, giving three periods of time m, n and p so that m < n < p,
the strategy is defined as follows:

Strategyt+1 =

{
Buy if EMAm

t > EMAn
t and EMAm

t > EMAp
t ,

Sell if EMAm
t < EMAn

t and EMAm
t < EMAp

t .

Therefore, the buy signal is generated once the fast MA crosses
above the medium and slow MAs, while the sell signal is pro-
duced in the other case.
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Table 6
The performance of the top 5 combination of parameters for TEMA and MACD.

Strategy Index

IBEX DAX DJI
Parameters PF Parameters PF Parameters PF

TEMA (2, 6, 10) 0.943 (14, 30, 74) 1.364 (18, 34, 54) 3.900
(2, 5, 10) 0.940 (14, 31, 74) 1.364 (18, 35, 54) 3.900
(2, 7, 10) 0.918 (3, 25, 35) 1.341 (18, 36, 54) 3.900
(2, 9, 10) 0.916 (19, 26, 64) 1.330 (21, 22, 50) 3.845
(1, 8, 12) 0.913 (19, 27, 64) 1.330 (21, 23, 50) 3.845

MACD (9, 19, 6) 1.056 (3, 11, 6) 1.629 (3, 28, 9) 2.003
(5, 12, 17) 1.047 (5, 8, 5) 1.629 (2, 34, 11) 1.998
(6, 19, 9) 1.043 (3, 7, 11) 1.621 (2, 25, 13) 1.988

(5, 13, 16) 1.038 (3, 6, 11) 1.619 (2, 27, 11) 1.987
(2, 30, 13) 1.037 (4, 5, 11) 1.619 (2, 29, 12) 1.985
Table 7
Comparison of the performance of the trading strategies with and without hybridization using
the optimal parameter values found for TEMA and MACD indicators.

Index Strategy Parameters #T PF NT T Dmax PP

IBEX TEMA (2, 6, 10) 19 0.705 −403.6 −21.2 −1052.5 42.11
hTEMA 2 ∞ 866.1 433.1 −1033.1 100.00

MACD (9, 19, 6) 19 0.518 −807.6 −42.5 −1627.0 31.58
hMACD 2 ∞ 300.5 150.3 −1228.0 100.00

DAX TEMA (14, 30, 74) 2 ∞ 1350.0 675.0 −1072.0 100.00
hTEMA 1 ∞ 2211.8 2211.8 −1260.6 100.00

MACD (3, 11, 16) 33 1.117 303.9 9.2 −1083.5 36.36
hMACD 3 32.991 1817.1 605.7 −1260.6 66.67

DJI TEMA (18, 34, 54) 4 1.478 470.5 117.6 −2402.3 25.00
hTEMA 1 ∞ 2678.0 2678.0 −2151.5 100.00

MACD (3,28, 9) 20 1.307 1046.1 52.3 −2108.2 40.00
hMACD 2 ∞ 2738.9 1369.5 −2151.5 100.00
3.3. Hybridization of machine learning with technical analysis

The proposed strategy aim at improving the technical analysis
rading signals by incorporating the machine learning techniques
n the trading rules. The general scheme of the proposal is pre-
ented in Fig. 1. First, stock data is collected from the server. The
ata is then split into training and test sets. The training data is
sed to optimize the predictive models and the technical analysis
ased strategies. The so obtained hybrid schema is then built and
ts performance is assessed on the test dataset. Finally, the results
re analyzed to establish the quality of the hybrid strategy. The
ain steps of this workflow are:

(a) Build the optimal learning model.
(b) Optimize the technical analysis strategies.
(c) Backtest the hybrid technical analysis strategy

In the following we describe each step.

a) Build the optimal learning model. The time series is pre-
rocessed as in Divina et al. [58] using a strategy often referred to
s Walk Forward Validation. In a nutshell, this strategy requires
o set the number of historical observations w and the size of the
rediction horizon h. Given the training time series observations
nd the values of w and h, the training supervised learning data
s created by considering a sliding window of size w + h. The
irst instance consists of the first w + h observations. For the
next instance, such a window slides forward one value from x2 to
w+h+1 and so on. Then, the training data is divided into training
nd validation datasets. This process is graphically described in
ig. 2.
Before building the final predictive model, a hyperparameter

uning phase is carried out. For each combination of hyperparam-
ters, the model is built on the training dataset and tested on the
7

validation dataset. As a final step, the model is induced on the full
training data using the optimal hyperparameters found.

(b) Optimize the technical analysis strategies. In this step, the
training data is used for backtesting the technical analysis strate-
gies. For this purpose, a grid search is applied on the entire
training data. The parameters with the best performance will be
selected for the hybridization.

(c) Backtest the hybrid technical analysis strategy. In this last step,
the hybrid strategy is backtested on the test dataset. The pro-
posed trading rules is applied and the performance evaluated.

3.4. Proposed trading rule

MACD and EMA, which belong to the family of lagged indica-
tors, are measurable factors that trail behind the current market
price. Although they are used to create trading signals, actually
they are useful to confirm the strength of a long-term trend since
they look retrospectively at past data [59]. Furthermore, this kind
of indicators may generate false signals due to many factors such
as short-term market fluctuations. Therefore, the integration of
predicted price may lead to a decrease in the number of false
signals.

The proposed rule uses the predictive model to generate trad-
ing signals. For a given day t , Buyt and Sellt refer to the buy
and sell signals given only by the technical analysis strategies.
The learning model provides information about the evolution of
the price. In order to decide about to enter in the market, it is
useful to know the trend on the stock values. For this purpose,
although larger values of h allow us to estimate the price farther
in the future, the prediction error increases with h. So, in order
to balance both issues, a prediction horizon of just over a month
was set in this study.

涉及以往地
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Table A.8
Results achieved by all the methods on IBEX averaged over the prediction horizon h for
each historical window w.

w Metric LM NN RF SVR

MAE 174.36±49.57 179.08±52.89 199.44±51.36 174.05±49.35
RMSE 225.64±63.71 230.46±66.82 254.26±63.98 226.11±63.78
sMAPEa 18.19± 5.19 18.69± 5.54 20.93± 5.43 18.15± 5.166

MAPEa 18.17± 5.18 18.65± 5.52 20.89± 5.41 18.09± 5.13

MAE 174.10±49.65 178.44±52.81 196.79±50.40 173.74±49.28
RMSE 225.24±63.75 229.59±66.62 249.40±62.78 225.69±63.57
sMAPEa 18.17± 5.20 18.63± 5.53 20.64± 5.32 18.12± 5.1512

MAPEa 18.15± 5.19 18.60± 5.52 20.63± 5.32 18.06± 5.12

MAE 174.44±49.74 178.52±52.77 196.00±49.68 173.48±49.11
RMSE 225.69±63.65 229.64±66.36 250.25±62.06 225.17±63.10
sMAPEa 18.23± 5.22 18.65± 5.53 20.59± 5.25 18.10± 5.1424

MAPEa 18.21± 5.21 18.62± 5.52 20.58± 5.24 18.05± 5.11

MAE 173.95±47.63 178.41±50.85 200.48±50.06 172.74±47.14
RMSE 224.69±60.98 229.42±64.22 254.41±61.54 223.94±60.68
sMAPEa 18.21± 5.02 18.66± 5.35 21.10± 5.32 18.06± 4.9548

MAPEa 18.17± 5.00 18.61± 5.32 21.09± 5.30 17.98± 4.91

MAE 172.47±47.21 177.78±51.10 198.23±48.34 172.00±47.15
RMSE 222.42±60.56 227.95±64.30 251.60±59.91 222.57±60.53
sMAPEa 18.11± 5.00 18.65± 5.39 20.90± 5.15 18.03± 4.9772

MAPEa 18.07± 4.98 18.59± 5.37 20.86± 5.13 17.96± 4.94

MAE 172.91±47.49 178.51±51.35 194.93±49.09 174.23±48.28
RMSE 223.38±61.34 229.76±65.41 247.73±60.50 225.09±62.20
sMAPEa 18.18± 5.02 18.74± 5.41 20.57± 5.22 18.28± 5.0896

MAPEa 18.14± 5.01 18.69± 5.39 20.53± 5.19 18.21± 5.04

MAE 175.19±49.46 179.48±52.61 197.99±51.07 176.78±50.02
RMSE 225.41±62.66 230.98±66.44 251.17±62.63 227.48±63.25
sMAPEa 18.43± 5.23 18.86± 5.54 20.88± 5.40 18.56± 5.26120

MAPEa 18.40± 5.22 18.80± 5.52 20.84± 5.37 18.48± 5.22

MAE 180.96±52.97 184.31±55.41 210.29±53.42 184.55±54.35
RMSE 231.11±65.38 235.62±68.39 265.79±64.37 234.60±66.61
sMAPEa 19.06± 5.60 19.39± 5.85 22.21± 5.62 19.38± 5.71168

MAPEa 19.02± 5.59 19.33± 5.81 22.12± 5.57 19.29± 5.65

MAE 180.36±51.95 184.36±54.85 213.81±57.38 184.78±54.36
RMSE 230.32±64.65 235.52±68.08 270.95±68.08 234.71±66.68
sMAPEa 18.99± 5.49 19.38± 5.78 22.55± 6.02 19.42± 5.71192

MAPEa 18.92± 5.46 19.29± 5.73 22.40± 5.93 19.31± 5.66

MAE 176.65±50.26 182.05±54.28 210.87±55.26 181.24±53.10
RMSE 226.94±62.45 234.04±67.30 267.32±66.30 232.49±65.97
sMAPEa 18.58± 5.30 19.13± 5.71 22.24± 5.79 19.03± 5.58216

MAPEa 18.51± 5.27 19.03± 5.66 22.08± 5.70 18.93± 5.52

MAE 177.99±52.21 183.45±56.34 226.01±56.01 183.31±55.06
RMSE 227.35±64.05 234.64±69.01 287.01±67.86 233.75±67.75
sMAPEa 18.76± 5.53 19.32± 5.95 23.85± 5.87 19.29± 5.80240

MAPEa 18.71± 5.51 19.23± 5.91 23.65± 5.76 19.21± 5.75

a
×10−3 .
In this context, to estimate the trend of the market, the strat-
gy compares the price xt at day t with the predicted value x̂t+h
t day t + h. The tendency is considered as an uptrend (UTt+h) if

x̂t+h > xt and a downtrend (DTt+h) if x̂t+h < xt .
It is a well-known fact that the very largest movements in the

market usually correspond to decrements rather than to incre-
ments [21]. This fact may favor the number of false sell signals.
Therefore in our proposal the buy signal at day t +1 is generated
if it is confirmed by the technical indicator at day t or by the
estimated trend. On the other hand, the sell signal is generated
if the technical indicator and the trend identify a down market
movement. So, let Dt+1 be the trading decision at day t + 1, the
trading rule is defined as follows:

Dt+1 =

{
Buy if Buyt or UTt+h

Sell if Sellt and DTt+h

The use of a predictive model improves the estimation of the
price trend in a near future. So, despite the fact that its inclusion
increases the complexity of the strategy, it provides valuable and
relevant information that can yield better trading signals.
8

3.5. Metrics

The metrics used to evaluate the performance of the trading
strategies associated are:

• Profit factor (PF). Relation between Profits and Losses:

PF =

⏐⏐⏐⏐ProfitsLosses

⏐⏐⏐⏐
It follows that if PF < 1, then Losses > Profits.

• Number of trades (#T). The number of trades done. A trade
is composed of a buy and a sell order.

• Maximum drawdown (Dmax). The Worst decline-from-peak
observed in the test period.

• Net Profit (NP). Sum of Profits and Losses:

NP = Profits − Losses

• Average Profit per trade (T ). This metric is calculated by
dividing the net Profit by the number of trades:

T =
NP
#T

1.透過模型預測價格 判斷未來是漲或跌
2.透過技術指標看應該買入或賣出

結合這兩點來決定最終的買賣訊號
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Table A.9
Results achieved by all the methods on DAX averaged over the prediction horizon h for
each historical window w.

w Metric LM NN RF SVR

MAE 253.58± 82.98 253.82± 83.91 788.23±36.07 252.58±82.40
RMSE 318.27± 98.99 321.03±100.76 917.72±31.98 318.43±98.56
sMAPEa 20.77± 6.78 20.77± 6.84 65.02± 3.07 20.68± 6.736

MAPEa 20.77± 6.79 20.68± 6.80 67.90± 3.25 20.63± 6.72

MAE 253.56± 83.39 253.76± 84.23 784.00±36.86 252.70±82.71
RMSE 318.40± 99.73 320.98±101.40 913.47±32.54 318.59±99.18
sMAPEa 20.77± 6.82 20.76± 6.87 64.66± 3.14 20.69± 6.7512

MAPEa 20.76± 6.83 20.68± 6.83 67.50± 3.32 20.64± 6.74

MAE 255.37± 83.51 260.38± 86.87 774.25±35.18 253.77±82.53
RMSE 320.70±100.31 331.16±104.65 903.04±30.91 319.77±99.44
sMAPEa 20.94± 6.83 21.27± 7.06 63.82± 3.00 20.79± 6.7424

MAPEa 20.94± 6.84 21.11± 6.98 66.59± 3.17 20.75± 6.73

MAE 257.37± 83.30 258.24± 84.79 739.87±25.10 257.41±83.48
RMSE 325.21±101.56 328.68±104.12 866.68±20.63 326.82±102.16
sMAPEa 21.10± 6.82 21.15± 6.92 60.88± 2.14 21.08± 6.8248

MAPEa 21.06± 6.80 21.04± 6.87 63.40± 2.24 20.99± 6.77

MAE 256.26± 81.82 257.37± 83.24 693.30±19.57 257.38±82.27
RMSE 325.34±100.65 329.07±103.09 818.95±15.05 329.07±101.84
sMAPEa 21.01± 6.69 21.08± 6.80 56.93± 1.68 21.08± 6.7272

MAPEa 20.95± 6.66 20.96± 6.73 59.15± 1.73 20.96± 6.65

MAE 254.73± 82.71 256.05± 83.87 660.71±19.36 257.72±83.00
RMSE 324.30±101.15 327.52±103.14 785.09±14.64 330.12±102.27
sMAPEa 20.89± 6.76 20.98± 6.85 54.18± 1.66 21.11± 6.7796

MAPEa 20.81± 6.73 20.86± 6.78 56.19± 1.70 20.96± 6.69

MAE 258.13± 84.36 259.22± 85.52 598.70±21.27 260.72±84.12
RMSE 327.14±102.52 330.78±104.98 723.96±15.20 331.86±102.77
sMAPEa 21.19± 6.91 21.25± 6.99 48.95± 1.82 21.37± 6.87120

MAPEa 21.13± 6.89 21.13± 6.92 50.63± 1.86 21.25± 6.81

MAE 259.88± 83.64 261.09± 85.15 526.24±22.22 262.09±83.84
RMSE 332.81±104.96 336.39±107.47 650.74±16.26 335.96±104.70
sMAPEa 21.31± 6.83 21.39± 6.94 42.91± 1.91 21.47± 6.83168

MAPEa 21.22± 6.78 21.25± 6.86 44.22± 1.93 21.31± 6.74

MAE 262.54± 85.69 265.74± 88.87 459.13±25.10 264.54±85.86
RMSE 334.06±105.36 341.63±110.57 580.37±19.47 338.50±105.97
sMAPEa 21.51± 6.99 21.74± 7.23 37.35± 2.15 21.66± 6.99192

MAPEa 21.41± 6.94 21.56± 7.12 38.32± 2.16 21.50± 6.90

MAE 263.62± 84.50 268.11± 88.78 433.33±32.48 266.29±85.06
RMSE 333.45±102.87 343.10±109.36 551.45±27.46 338.95±103.90
sMAPEa 21.62± 6.90 21.94± 7.22 35.24± 2.75 21.81± 6.93216

MAPEa 21.54± 6.88 21.75± 7.12 36.07± 2.78 21.66± 6.85

MAE 262.60± 83.28 266.17± 86.80 422.39±37.95 265.03±84.20
RMSE 333.21±102.40 341.50±107.70 538.23±32.97 339.21±104.59
sMAPEa 21.54± 6.80 21.78± 7.06 34.36± 3.21 21.70± 6.84240

MAPEa 21.49± 6.79 21.62± 6.97 35.12± 3.25 21.55± 6.75

a
×10−3 .
• Percent Profitable (PP). This metric is also known as the
probability of winning and is calculated by dividing the
number of winning trades by the total number of trades:

PP =
#TW
#T

4. Data

In this work we focus on daily stock exchange rates from three
ajor indices: IBEX, DAX and DJI. The IBEX is the major stock
xchange of Spain. It comprehends the 35 most liquid Spanish
tocks traded in the Madrid Stock Exchange General Index. The
AX is the German stock index which measures the performance
f the 30 largest companies according to order book volume
nd market capitalization. Finally, DJI is the stock exchange of
ndustrial companies of the United States. It measures the stock
erformance of 30 large companies.
Data was collected from IG Group and covers a period going

rom January 1, 2011 to December 31, 2019. Each observation is
escribed by five features. In particular, the features used are the
ate, the opening price, the closing price, the highest price and
he lowest price. A summary of the data is shown in Table 2,
 D

9

where for each index, the starting and end days is given followed
by the total number of observations.

5. Experiments

This section describes the experiments conducted to assess
the quality of the proposed strategy. Such experiments can be
summarized as follows:

(a) in Section 5.1, a comparison of the performances of the
machine learning techniques used is proposed.

(b) the optimization of the technical analysis strategies TEMA
and MACD is reported in Section 5.2.

(c) Section 5.3 presents the backtesting performed with the
proposed hybrid trading strategy and its results compared
with TEMA and MACD strategies.

In the experiments, each buy or sell order is executed the next
day after a signal is generated. The order size is the same for all
entrances. In order to fix the spread values, we have considered
the values set by IG Group at regular trading hours in Europe.
Thus, the spread of each trade is fixed to 5, 2, and 2.4 for IBEX ,
AX and DJI respectively.
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Table A.10
Results achieved by all the methods on DJI averaged over the prediction horizon h for each
historical window w.

w Metric LM NN RF SVR

MAE 483.86±165.36 466.21±154.70 4735.42± 7.68 488.15±168.60
RMSE 629.67±190.43 625.06±187.09 5060.00±10.30 632.33±191.88
sMAPEa 19.36± 6.59 18.61± 6.14 207.42± 0.86 19.54± 6.736

MAPEa 19.37± 6.62 18.56± 6.12 235.00± 1.15 19.56± 6.77

MAE 483.05±164.29 466.93±154.67 4680.76± 8.19 487.04±166.35
RMSE 628.65±189.12 624.41±186.13 5005.78±10.99 631.06±189.82
sMAPEa 19.32± 6.55 18.64± 6.14 204.68± 0.88 19.49± 6.6412

MAPEa 19.33± 6.57 18.58± 6.12 231.55± 1.17 19.50± 6.67

MAE 482.09±163.42 467.92±154.92 4606.75± 6.39 486.23±163.96
RMSE 626.82±187.64 623.31±185.19 4930.32± 9.66 628.91±187.72
sMAPEa 19.27± 6.51 18.68± 6.15 200.95± 0.81 19.44± 6.5424

MAPEa 19.27± 6.53 18.61± 6.13 226.83± 1.07 19.45± 6.56

MAE 482.71±162.10 469.09±155.29 4654.86±10.12 486.30±160.86
RMSE 628.25±187.22 625.28±185.52 4964.39±12.78 630.84±186.12
sMAPEa 19.29± 6.46 18.72± 6.17 203.09± 1.01 19.44± 6.4148

MAPEa 19.28± 6.46 18.65± 6.14 229.36± 1.32 19.43± 6.42

MAE 482.15±158.29 479.23±157.60 4652.18±11.89 484.41±156.52
RMSE 636.86±187.59 636.76±187.50 4951.54±14.05 639.31±184.80
sMAPEa 19.22± 6.28 19.10± 6.25 202.76± 1.10 19.31± 6.2172

MAPEa 19.17± 6.26 19.03± 6.23 228.82± 1.42 19.27± 6.21

MAE 475.83±154.16 474.28±152.88 4633.87±16.26 478.95±151.32
RMSE 631.39±182.94 631.28±182.74 4924.34±17.84 634.76±180.41
sMAPEa 18.96± 6.12 18.90± 6.06 201.66± 1.31 19.09± 6.0096

MAPEa 18.90± 6.10 18.83± 6.04 227.34± 1.67 19.03± 5.99

MAE 479.78±153.93 478.22±153.35 4560.91±16.41 488.52±154.87
RMSE 635.39±183.19 635.38±183.17 4845.72±17.98 642.95±183.80
sMAPEa 19.11± 6.11 19.05± 6.08 197.93± 1.29 19.46± 6.14120

MAPEa 19.05± 6.09 18.98± 6.06 222.60± 1.64 19.40± 6.13

MAE 490.49±155.99 474.29±146.65 4584.66±12.42 497.15±153.16
RMSE 644.57±183.44 641.00±180.86 4846.56±14.56 651.35±181.48
sMAPEa 19.58± 6.22 18.90± 5.82 198.65± 1.11 19.82± 6.09168

MAPEa 19.56± 6.22 18.81± 5.79 223.24± 1.42 19.79± 6.08

MAE 496.02±156.12 482.11±149.13 4577.59±16.49 503.18±153.28
RMSE 648.49±183.05 645.82±181.12 4829.97±18.10 656.27±181.69
sMAPEa 19.78± 6.21 19.19± 5.91 198.11± 1.30 20.05± 6.09192

MAPEa 19.77± 6.22 19.11± 5.88 222.46± 1.65 20.02± 6.09

MAE 498.66±157.25 485.03±149.32 4544.00±19.48 509.97±157.85
RMSE 649.19±181.69 646.69±179.51 4788.90±20.16 661.68±183.22
sMAPEa 19.87± 6.26 19.30± 5.92 196.31± 1.44 20.30± 6.27216

MAPEa 19.86± 6.27 19.21± 5.88 220.13± 1.81 20.27± 6.28

MAE 509.90±161.99 498.42±156.53 4525.80±23.90 518.01±158.82
RMSE 661.66±188.15 660.06±187.03 4761.43±23.94 671.47±185.66
sMAPEa 20.31± 6.44 19.82± 6.21 195.22± 1.64 20.60± 6.31240

MAPEa 20.30± 6.45 19.74± 6.17 218.67± 2.04 20.58± 6.32

a
×10−3 .
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5.1. Analysis of the learning schemes

In this section the machine learning techniques used in this
paper, i.e., LM, ANN, RF and SVR, are compared. The hyperparam-
eter optimization for each learning scheme was performed using
a grid search. To facilitate the readability of this section, only the
parameters values found for each technique are shown in Table 3.
Tables reporting the average results over the prediction horizon
h, are presented in Appendix A. In order to select the optimal
parameters, the best values, averaged over w and h, found for
each technique were selected. These values are shown in Table 4.

Table 4 reports the performance of each method on the test
set. For each method and stock market we report the average over
all historical windows w and prediction horizons h of the mea-
ures MAE, RMSE, sMAPE and MAPE, together with the standard
eviation. As it can be noticed, the best results are achieved by
M and ANN, followed closely by SVR. RF models are, by far, the
orse ones. It can be seen that the more the stock values vary,
he higher the error is.
 s
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5.2. Optimize technical analysis strategies

Throughout this section, the performance of MACD and TEMA
strategies will be analyzed. The optimal combination of parame-
ter values are sought for with a grid search on data ranged from
January 1, 2011 to December 31, 2018.

Table 5 presents the range of values considered for each strat-
egy. For TEMA and MACD, the combination of parameter values
were restricted to follow the rules Fast < Medium < Slow and
ast < Slow, respectively.
The top 5 best combinations of parameters are presented in

able 6. We can notice that the behavior of both strategies differ
hen applied to the indices. For both trading strategies, the best
esults are achieved with DJI index, followed by DAX and IBEX.
ACD outperforms TEMA on IBEX and DAX while it underper-

orms on DJI data. On IBEX, TEMA is a non Profitable strategy since
t reaches values below 1. Despite MACD is Profitable, the values
n test data may be unProfitable due to taxes and, furthermore,
he expected return does not compensate the risk taken. On
AX, only in the case of MACD the return expected is interesting
nough. However, if we take into account that the performance
f the strategies are lower on new data, we can discard both
trategies for a real trading. Finally, on DJI, the achieved results
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Fig. B.3. Buy and sell signals found by TEMA and hTEMA trading strategies.
g

t
t
t
h
P
a

an be considered competitive, especially for the case of TEMA,
hich reaches PF values close to 4. To sum things up, we can state
hat only on DJI the TEMA and MACD strategies are competitive
nd are expected to be Profitable according to the Profit factor.

.3. Backtest the trading strategies

Finally, the trading strategies are backtested on 2019 data us-
ng the optimal parameter values of TEMA and MACD strategies.
ccording to the results achieved in Section 5.1, LM and ANN
re the best strategies. Following Occam’s razor principle, we
elected LM. In order to set the size of the historical windows w
Tables A.8, A.9, and A.10 are taken into account. For each stock,
the w with which LM achieved the lowest error was selected. The
LM models were built setting w to 72, 12 and 96 for IBEX, DAX
and DJI, respectively. To generate the trading signal, the model
considered h = 24 since it allows to better capture the trend of
the price.
 d

11
The results on test data are shown in Table 7, where, for each
strategy and index, we report the best combination of parame-
ters found on the training set, the total number of trades (#T),
the Profit factor (PF), the net Profit (NP), the average Profit per
trade (T ) and the maximum drawdown (Dmax). Finally, in the
last column, the percent Profitable (PP) is shown. The proposed
strategies are denoted as hybrid TEMA (hTEMA) and hybrid MACD
(hMACD). The values associated to the metrics NT, T and Dmax are
iven in points.
As it can be seen, the hybridization yield an improvement of

he Profit of each strategy for all indices as well as a reduction of
he number of trades. As previously seen, on IBEX, the hybridiza-
ion allow to have Profitable strategies. On DAX and DJI, despite
aving strategies positive NT, hTEMA and hMACD improved the
rofitability. Furthermore, the proposed strategy does not present
ny lost trade.
It can also be noted that only in the case of IBEX, the draw-

own exceeds the net Profit. hMACD outperforms hTEMA on DAX
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Fig. B.4. Buy and sell signals found by MACD and hMACD trading strategies.
nd DJI while it underperforms on IBEX. If, for example we have a
ortfolio of $10000, and each point is supposed to be equivalent
o $1, then the total Profit on IBEX would be of $866.1 and $300.5
or hTEMA and hMACD respectively. For DAX, the return would be
f $2211.8 and $1817.1 and, finally, for DJI, of $2678 and $2738.9.
The trades with TEMA and hTEMA on IBEX, DAX and DJI are

hown in Fig. B.3 while for MACD and hMACD are in Fig. B.4.

. Conclusions and future work

In this work a novel trading decision making workflow has
een proposed to generate effective buy or sell signals. In this
roposal, the trading rules are based on hybridizing technical
nalysis rules with the predictive power of machine learning
odels.
From among all the machine learning techniques tested, LM

nd ANN were the ones that performed best. The good perfor-
ance of ANN is well known in stock market prediction and, for
12
that reason, has been extensively used in previous work. The good
performance of LM could suggest that for smaller period of time
the linear model is suitable for prediction purposes.

We have tested our proposal with TEMA and MACD trading
strategies, and we have proved the our strategy helped in ob-
taining superior results. Hybridization not only has improved the
Profit but it also has decreased the number of trades as well as
the risk of losses.

It is also worth noticing that, for each algorithm used in
the proposed workflow, the optimal parameters depended on
the index analyzed. Despite the good results achieved, more re-
search is necessary to enhance the understanding of the proposed
workflow and trading rules.

As it has been shown in this work, the hybrid trading strategies
achieve good results. However the prediction horizon length h
can be optimized. Therefore, as future work, we intend to carry
out the optimization of h and validate it on new real data from
other stock market indices, as well as on foreign exchange mar-
ket data. Another possible improvement of the strategy is to
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ncorporate trend information by addressing the problem as a
lassification task. We also intend to address the exploration of
ore technical analysis strategies and new trading rules. Finally,

n order to gain more insight about the predictive models, in
uture works more metrics will be included in the study, such as
recision, recall and F1-score [60] among many others available.
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ppendix A. Results

The tables shown in this section report, for each metric, the
verage results together with its standard deviation. Such values
re computed over the prediction horizon h for each historical
indow w.

ppendix B. Trades

See Figs. B.3 and B.4.
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