
Domino Antimagic Squares and Rectangles

Alison M. Marr1, Christina Napier2, Lauren M. Nelsen3, Luke L. Nelsen4, and

Violeta Vasilevska5

1Southwestern University , marra@southwestern.edu
2Cedarville University , christinanapier@cedarville.edu

3University of Colorado-Colorado Springs , lnelsen@uccs.edu
4Colorado Springs, Colorado , luke.l.nelsen@gmail.com
5Utah Valley University , Violeta.Vasilevska@uvu.edu

Abstract

A domino antimagic square of order n is an n× n array formed from a subset of

the standard set of 28 dominoes such that the sums of the rows, columns, and two

main diagonals form a set of 2n + 2 distinct, consecutive integers while an m × n
domino antimagic rectangle is an m × n rectangular array formed from a subset of

the standard set of 28 dominoes such that the sums of the rows and columns form

a set of m + n distinct, consecutive integers. This paper outlines what the possible

dimensions are for m×n domino antimagic rectangles and provides many examples

of both domino antimagic rectangles and squares. Many open questions are given

at the end of the paper for future exploration.

Keywords: antimagic square, dominoes, domino magic square, domino antimagic
square.

1 Introduction

The idea of creating magic squares using dominoes has been around for centuries.
Martin Gardner describes the history of dominoes and some of the fun puzzles (including
domino magic squares) people have attempted with dominoes in [Gar69]. The original
idea was to use all the dominoes to form a 7× 7 square with a column of zeros (thus, in
actuality a 7 × 8 rectangle). As mathematicians studied these domino squares further,
they formed squares of even order (i.e., 2× 2, 4× 4, and 6× 6) and created odd domino
magic squares by leaving a hole in the center [ZaS06]. See Figure 1 for two examples. Note
that for each square the rows, columns, and main diagonals have equal sums and neither
square has a repeated domino. Domino magic rectangles have also been studied, as have
counting the number of di�erent domino magic squares of a certain order [SpG08, Fir11].

@2024 Alison M. Marr, Lauren M. Nelsen, Luke L. Nelsen, Christina Napier, Violeta Vasilevska).
This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Recreational Mathematics Magazine, pp. 27�40
DOI 10.2478/rmm-2024-0010



Domino Antimagic Squares and Rectangles 28

Figure 1: Domino magic squares.

Antimagic squares (as opposed to magic squares) were �rst de�ned by J.A. Lindon
in 1962 in Recreational Mathematics Magazine [Lin62]. An antimagic square of order n
is a square array of the �rst n2 positive integers such that no two of the rows, columns,
or main diagonals have the same sum and the list of sums formed is a set of consecutive
integers. No antimagic square of order 2 exists as there would need to be six di�erent
sums and with the numbers 1 through 4 only �ve di�erent sums of two numbers are
possible. It has also been shown that no antimagic square of order 3 exists using a case
by case analysis of the possible placements of the even numbers in the order 3 square
[Tri69]. Hence, the smallest possible antimagic squares are of order 4. An example of
an antimagic square of order 4 is shown in Figure 2 proving that order 4 is the smallest
possible order for an antimagic square.

Figure 2: An antimagic square of order 4.

Given the existing work on antimagic squares and domino magic squares, it is natural
to combine the two concepts. In this article, we uncover the world of domino antimagic
squares and rectangles and provide some open questions for further exploration.
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2 De�nitions

A domino is a 1×2 rectangle with its two 1×1 squares labeled by the natural numbers.
Here we consider the familiar double-6 set of 28 dominoes in which both labels (or pip
counts) are from 0 to 6, inclusive.

De�nition 2.1. A domino antimagic square of order n is an n×n array tiled by a subset

of the standard set of 28 dominoes such that the sums of the rows, columns, and two main

diagonals form a set of 2n + 2 distinct, consecutive integers.

Unlike with antimagic squares, using dominoes means that some numbers can be
repeated as entries in the square (so long as the dominoes themselves are distinct). In
addition, only the numbers 0 through 6 can be used. By noting there are only 28 dominoes
and hence 56 possible entries covered by the dominoes, we can only possibly construct
domino antimagic squares of order 2, 4, and 6 (odd ordered squares are not possible
since dominoes are of size 1 × 2). However, there are several natural variations and
generalizations of domino antimagic squares. For example, we can consider rectangular
arrays instead of just squares.

De�nition 2.2. An m × n domino antimagic rectangle is an m × n rectangular array

formed from a subset of the standard set of 28 dominoes such that the sums of the rows

and columns form a set of m + n distinct, consecutive integers.

It is important to recognize that not all n×n domino antimagic rectangles are domino
antimagic squares of order n, as the diagonal sums of a domino antimagic rectangle do
not have to be part of the set of consecutive integers formed by the sums. Likewise, not
every domino antimagic square of order n is an n × n domino antimagic rectangle. If
the diagonal sums happen to be in the middle of the list of ordered consecutive integers
formed by the sums, the set of row and column sums would not be a set of consecutive
integers.

Figure 3: Examples of a 2 × 2 domino antimagic rectangle, a domino antimagic square,
and one that is both.

When constructing domino antimagic squares/rectangles, close attention should be
paid to both the antimagic sum properties and the existence of a legal tiling (see Figure 4).
The counting of all possible domino antimagic squares or rectangles will be done up to
symmetry where two domino antimagic squares or rectangles are the same if they can be
obtained from each other by rotations and re�ections.

Two straightforward methods allow us to generate new domino antimagic squares
from a given one, assuming the resulting pip counts are between 0 and 6: adding a
constant c to every cell (since all sums increase by nc) and subtracting every cell from a
constant b (since each sum s becomes nb− s).
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Figure 4: A 4 × 4 square that satis�es the rectangle antimagic sum property, but it is
not a domino antimagic square.

De�nition 2.3. Two domino antimagic squares of order n are equivalent if one can be

obtained from the other by adding the same integer value to all of the pip counts.

De�nition 2.4. The complement of a domino antimagic square of order n is another

domino antimagic square of order n created by replacing each entry i of the original

domino antimagic square with entry 6− i.

The concepts of equivalence and complements of squares cannot generally be extended
to m× n domino antimagic rectangles as these operations might not shift the row sums
in the same way as the column sums since m may not equal n. In this paper, we seek to
�nd distinct domino antimagic squares up to symmetry, equivalence, and complements.

3 Domino antimagic rectangles

We �rst investigate domino antimagic rectangles, which despite having fewer condi-
tions and therefore a greater �exibility, do not allow for as many possible sizes as one
might expect.

3.1 Initial necessary conditions

Let's consider an m× n rectangle, m 6 n, that is tiled with a subset of the standard
double-6 dominoes set without repetition.

� There are a �nite number of possible rectangular arrays.

� The number of entries mn is at most 56 and must be an even number (since each
domino covers exactly two entries). Hence, n 6 56

m and m,n cannot be both odd
numbers at the same time.

3.2 Additional parity conditions

Let ΣR denote the sum of the row sums, ΣC denote the sum of the column sums, and
ΣE denote the sum of all entries. Then ΣR = ΣC = ΣE , which means that the sum of all
row and column sums ΣR + ΣC = 2ΣE is an even integer. If the row and column sums
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form a set of distinct, consecutive integers, then we can write the least of these sums as
k and we have

ΣR + ΣC =
k+m+n−1∑

i=k

i =
m+n−1∑

i=0

(k + i)

= (m + n)k +
(m + n− 1)(m + n)

2
(1)

= (m + n)

[
k +

m + n− 1

2

]
(2)

Equation (1) shows that the case m + n ≡ 2 mod 4 is impossible since ΣR + ΣC

would be odd. If m + n is odd, then by equation (2) the values k and m+n−1
2 must have

the same parity. We will now see that most of the remaining cases are also impossible.

3.3 Antimagic rectangle sizes must be somewhat balanced

By considering that the integer entries of the m × n rectangle are nonnegative, we
can extract a relationship between m and n by using information about the least sum k.
Since ΣC is at least the sum of the smallest n possible sums, we have

ΣC >
k+n−1∑
i=k

i =
1

2
(n2 + 2kn− n)

Similarly, since ΣR is at most the sum of the greatest m possible sums we have

ΣR 6
k+n+m−1∑
i=k+n

i =
1

2
(m2 + 2km + 2nm−m)

Since ΣC = ΣR, this gives us the inequality

n2 + n(2k − 2m− 1) + (m− 2km−m2) 6 0 (3)

n2 + n(−2m− 1) + (m−m2) 6 0

where the last step uses the assumptions that k is nonnegative and m 6 n. Solving this
last inequality for n yields

n 6
1

2

(
1 + 2m +

√
8m2 + 1

)
(4)

So we have an upper bound for the number of columns in terms of the number of
rows. When 1 6 m 6 4, this upper bound is better than the area condition n 6 56

m .
In Tables 1 and 3 the � � symbol indicates that the sizes m × n meet the necessary
conditions for a domino antimagic rectangle and to simplify the presentation, we assume
m 6 n. In addition, an �E� symbol means that k must be even, while �O� means that k
is odd.
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m\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

1 O

2 E O

3 O E

4 E O E

5 O E O

6 E O

7 O

Table 1: Table of possible sizes for domino antimagic rectangles.

An interesting note: By applying the Triangle Inequality in (4) we can show that
n 6 m + m

√
2 + 1. So regardless of whether dominoes are being used, we have the

following �balance� for any m × n rectangular array of nonnegative integers which has
distinct row and column sums forming a set of consecutive integers: the ratio n

m cannot

exceed 1 +
√

2 + 1
m .

3.4 Tighter bounds using domino sums

While the previously mentioned balance condition for antimagic rectangles is perhaps
of independent interest when entries can be any nonnegative integers, there is a stricter
relationship between m and n in a domino antimagic rectangle. Because entries in a
domino antimagic rectangle must be placed from the standard set of dominoes, the least
sum k can take on only certain values. By using inequality (3) and these values of k, we
can use the additional information from the dominoes to identify more impossible cases.

As an example of how the sum of domino pips can provide much more additional
information, consider the 7×8 case. Since all 28 dominoes must be used in the rectangle,
ΣE = 8

∑6
i=0 i = 168. From equation (1) we obtain

336 = 2ΣE = ΣR + ΣC = 15k + 105

which implies k = 15.4, which is impossible. Hence, no 7× 8 domino antimagic rectangle
can be constructed.

In general, we can use equation (1) and ΣR + ΣC = 2ΣE to solve for k:

k =
2ΣE − 1

2(m + n− 1)(m + n)

m + n
(5)

However, in our remaining cases we have mn < 56 and not all 28 dominoes would be used
in the rectangular array. Although we cannot exactly calculate a single value for ΣE , we
can still calculate exact bounds for ΣE . Let s(N) and S(N) denote the minimum and
maximum values, respectively, that can be obtained by adding the pips from N distinct
dominoes from the standard set. (For ease of reference, we have included the values of
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N 0 1 2 3 4 5 6 7 8 9 · · · 26 27 28

s(N) 0 0 1 3 5 8 11 15 19 23 · · · 145 156 168

S(N) 0 12 23 33 43 52 61 69 77 85 · · · 167 168 168

Table 2: Values of s and S for number of dominoes N . Note that s(N) is the sequence
of partial sums of OEIS A55086 for N 6 19.

the functions s and S in Table 2.) Replacing ΣE in equation (5) the following lower and
upper bounds for k are obtained:

2s
(
mn
2

)
− 1

2(m + n− 1)(m + n)

m + n
6 k 6

2S
(
mn
2

)
− 1

2(m + n− 1)(m + n)

m + n

Every remaining triple m,n, k is now checked and those which do not satisfy inequality
(3) are removed. Finally, k 6 6 · max(m,n) − (m + n − 1) = 5n − m + 1 so that the
required sums do not get too large. The possible values of k for each of the remaining
cases (that obey the necessary bounds and parity conditions) are listed inside each box
in Table 3.

m\n 2 3 4 5 6 7

1

1

2

k 6 9 0,2,4

3

1,3,5,
7,9

2

4

2≤k
≤15

4,6,8,10,
12,14,16

5

7,9,11,
13,15,17

6

8≤k
≤17

10,12,
14,16

Table 3: Table of possible sizes and k values for domino antimagic rectangles.

With this table in hand, a natural question is whether there exist such domino an-
timagic rectangles for these ten remaining possible sizes and their k values. We provide
examples of all 61 cases in Figures 5, 6, and 7.

We also make some remarks in some of the cases:
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� Exactly one 1× 2 domino antimagic rectangle exists (see Figure 5).

� The 2× 2 case is small enough that we have performed an exhaustive search with
computer assistance: there are 70 such rectangles (up to symmetry) which take on
k-values 0 through 9.

� The 2× 3 case is small enough that we have performed an exhaustive search with
computer assistance: there are 331 such rectangles (up to symmetry) which take
on k-values 0, 2, and 4.

� The examples of 4× 4 domino antimagic rectangles shown in Figure 6 are actually
domino antimagic squares of order 4 with the property that their diagonals have
sums k−2 and k−1. This, along with the complements of the examples with k = 9
and k = 10 (which have least sums 15 and 14, respectively), shows the existence of
domino antimagic squares with all possible values for the least sum (0 through 15).

1× 2

k = 1

2× 2

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

2× 3

k = 0 k = 2 k = 4

3× 4

k = 1 k = 3 k = 5 k = 7 k = 9

3× 6

k = 2

Figure 5: Examples of domino antimagic rectangles of dimensions up to 3× 6 and their
possible least sums k.
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4× 4

k = 2 k = 3 k = 4 k = 5 k = 6

k = 7 k = 8 k = 9 k = 10 k = 11

k = 12 k = 13 k = 14 k = 15

4× 5

k = 4 k = 6 k = 8 k = 10

k = 12 k = 14 k = 16

5× 6

k = 7 k = 9 k = 11

k = 13 k = 15 k = 17

Figure 6: Examples of domino antimagic rectangles of dimensions 4× 4, 4× 5, and 5× 6
and their possible least sums k.
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6× 6

k = 8 k = 9 k = 10 k = 11

k = 12 k = 13 k = 14

k = 15 k = 16 k = 17

6× 7

k = 10 k = 12

k = 14 k = 16

Figure 7: Examples of domino antimagic rectangles of dimensions 6 × 6 and 6 × 7 and
their possible least sums k.
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4 Domino antimagic squares

Our investigation into domino antimagic rectangles sheds some light on domino an-
timagic squares, but the latter will require separate attention. As mentioned before, be-
cause of the additional condition of the diagonal sums, not all domino antimagic squares
are domino antimagic rectangles.

4.1 Domino antimagic squares of order 2

First, note that pip counts cannot be repeated as this would create two rows/ columns/
diagonals with the same sum. Hence, a subset of size four from the set {0, 1, 2, 3, 4, 5, 6}
is needed to create the four distinct entries of an antimagic square of order 2. In addition,
from the four distinct integers we need the six possible pairs to have distinct sums that
form a set of consecutive integers.

Let {a, a + i, a + j, a + z}, where 1 6 i < j < z, be our subset of size four and let k
be the least of the six sums (i.e., k = 2a + i). First note that z > 3 and also that each
entry appears in exactly three of the six sums. So we have

3
(
a + (a + i) + (a + j) + (a + z)

)
= k + (k + 1) + · · ·+ (k + 5) = 6k + 15

which gives z = 5 + i − j. So z > 3 since (i, j, z) = (1, 2, 3) is not a solution to this
equation, and z < 5 since i − j < 0. Therefore, we must have z = 4 and j − i = 1.
The list below contains all possible subsets of integers that can be used to create domino
antimagic squares of order 2:

{0, 1, 2, 4} {0, 2, 3, 4} {1, 2, 3, 5} {1, 3, 4, 5} {2, 3, 4, 6} {2, 4, 5, 6}

This list also shows that all sets of entries from domino antimagic squares of order 2
can be obtained from the set {0, 1, 2, 4} via equivalence and complements. Considering
placement of dominoes, each set of entries from the list above can generate six domino
antimagic squares of order 2 up to symmetry (see Figure 8).

Figure 8: The six domino antimagic squares of order 2 formed from the entries {0, 1, 2, 4}
(up to symmetry).

4.2 Domino antimagic squares of larger order

The example in Figure 9 completes the list of possible orders of domino antimagic
squares using the standard double-6 set of dominoes.
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Figure 9: An example of a domino antimagic square of order 6.

5 A domino antimagic square using all dominoes

As shown in the section �Domino Antimagic Rectangles�, it is impossible to use all
28 dominoes to form a 7× 8 antimagic domino rectangle. However, it is possible to use
all 28 dominoes to create a 7 × 8 rectangle containing a 0-pip end lying horizontally on
the right column (see Figure 10) which results in a special antimagic square of order 7 in
the remaining columns. Using similar arguments about the row, column, and diagonal
sums as in the section �Domino Antimagic Rectangles,� we can determine that the only
possible values for the least sum k are k = 16, 17.

Figure 10: A special type of domino antimagic square of order 7 with a column of zeros
for k = 16 and k = 17.
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6 Open Puzzles

6.1 Unsettled possibilities for domino antimagic squares and rectangles

Although we have settled which sizes of domino antimagic squares and rectangles
are possible using the standard double-6 set of dominoes, the question remains largely
open for arbitrary domino sets. Which sizes and sums of domino antimagic rectangles or
squares are possible using dominoes from the set using values up to d?

6.2 Variations on domino antimagic squares of odd order

Using a column of zeros as described in the order 7 case is one way to create a special
type of domino antimagic square of odd order. Another possible way to create a domino
antimagic square of odd order is to include a central hole that is assumed to have value
0. Figure 11 shows examples of domino antimagic squares of order 3 with a central hole.
In particular, are there domino antimagic squares of order 5 and 7 with a central hole?

Figure 11: Two di�erent domino antimagic squares of order 3 with a central hole with
the same underlying entries.

A related question is that of �hole rearrangeability,� by which we mean that a domino
antimagic square of odd order with a central hole can be rearranged so that the hole
is elsewhere and yet the sums of the new rows, columns, and main diagonals still form
a set of distinct, consecutive integers. Are there general conditions which imply hole
rearrangeability or prevent it?

6.3 Placing all dominoes within larger square arrays

The domino antimagic square of order 7 with a column of zeros is the only special
type of domino antimagic square discussed in this paper which allows all 28 dominoes to
be used. By allowing some entries in a square array to be empty and count as 0 (just
like a central hole space), all 28 dominoes could be placed into larger square arrays and
perhaps have antimagic sum properties. Consider an 8×8 array in which the four corners
and four central entries are designated as empty, as shown in Figure 12. Is it possible
to place the 28 dominoes in this array such that the sums formed by the rows, columns,
and main diagonals are distinct and consecutive integers? For what larger squares (of
order up to 12) and empty entry designations (preferably symmetric) can the dominoes
be placed in this way?
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Figure 12: An 8×8 array with designated empty entries to accommodate all 28 dominoes.
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