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Abstract

In particle swarm optimization (PSO) literatures, the published social coefficient settings are all centralized control manner
aiming to increase the search density around the swarm memory. However, few concerns the useful information inside the particles’
memories. Thus, to improve the convergence speed, we propose a new setting about social coefficient by introducing an explicit
selection pressure, in which each particle decides its search direction toward the personal memory or swarm memory. Due to
different adaptation, this setting adopts a dispersed manner associated with its adaptive ability. Furthermore, a mutation strategy is
designed to avoid premature convergence. Simulation results show the proposed strategy is effective and efficient.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Particle swarm optimization (PSO) [1,2] is a new
swarm intelligent technique inspired by the birds flock-
ing and fish schooling. Due to the fast convergence
speed and easy implementation, it has gained much
attention and wide applications in many areas such
as neural network, dynamic web organizing, fitness
prediction, mountain clustering, parameter selection,
etc. [3–8].

As a population-based evolutionary technique, each
individual (called particle) searches the multi-dimen-
sional domain space with position and velocity infor-
mation, and preserve the best position found by itself.
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Suppose vjk(t) is the kth dimensional value of velocity
vector of particle j at time t , then vjk(t + 1) is calcu-
lated as follows:

vjk(t + 1) = wvjk(t) + c1r1
(
pjk − xjk(t)

)
+ c2r2

(
pgk − xjk(t)

)
(1)

where pjk and pgk are the kth dimensional values of
historical best positions about particle j and the swarm,
in other words, they are kth dimensional values of parti-
cle j ’s memory and the swarm memory. xjk(t) is the kth
value of position of particle j . r1 and r2 are two random
numbers generated with uniform distribution within 0
and 1.

To control excessive roaming of particles outside the
search space, vjk(t + 1) is limited by:
∣∣vjk(t + 1)

∣∣ � vmax (2)
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where velocity threshold vmax is a predefined constant.
Then, the position value xjk(t + 1) is updated with

xjk(t + 1) = xjk(t) + vjk(t + 1) (3)

PSO consists of three parameters: inertia weight, cogni-
tive and social coefficients, and many experiments have
demonstrated the social coefficient plays a more impor-
tant role in the search efficiency. In 1995, J. Kennedy [1]
pointed that the coefficients of cognitive and social
should be the same, and suggested both setting to 2.0,
although E. Ozcanand [9] proposed one different set-
ting c1 = c2 = 1.494. To further enhance the search
density surrounding the historical best position found
by the swarm, A. Ratnaweera [10] published one dy-
namic strategy that cognitive coefficient decreased lin-
early from 2.5 to 0.5, while social coefficient increased
from 0.5 to 2.5. Similarly, G. Venter [11] also noted
that small cognitive coefficient and large social coeffi-
cient can improve the performance greatly. With statis-
tic analysis, Y. Peng [12] proved that the performance
of PSO was mainly affected by social coefficient.

All of these settings are all particle-independent,
in other words, centralized control—the same value
among the swarm in each generation. In this manner,
the swarm tends to search around the historical best po-
sition of the swarm −→pg . Then, some useful information
inside the personal historical best position −→pj may lose,
then decrease the search efficiency. To overcome this
shortcoming, a dispersed control manner is introduced,
in which each particle selects its social coefficient value
to decide the search direction: −→pj or −→pg .

The rest of this paper is organized as follows. Sec-
tion 2 analyzes the shortcomings of the centralized set-
ting about social coefficient, then the details of dis-
persed particle swarm optimization (DPSO) are ex-
plained. Finally, several benchmark functions prove the
proposed method is effective and efficient.

2. Disadvantages of centralized social coefficient
setting

Generally, the centralized social coefficient setting
makes the particles converge onto one position −→pg .
Thus, some useful information among −→pj are neglected.
The following part provides a detailed discuss about this
disadvantages.

2.1. Biology analysis

Partly due to the differences among individuals,
swarm collective behaviors are complex processes. For
a group of birds or fish families, there exist many dif-
ferences. Firstly, in nature, there are many internal dif-
ferences among birds (or fish), such as ages, catching
skills, flying experiences, and muscles’ stretching, etc.
Furthermore, the lying positions also provide an impor-
tant influence on individuals. For example, individuals,
lying in the side of the swarm, can make several choices
differing from center others. Both of these differences
mentioned above provide a marked contribution to the
swarm complex behaviors.

For standard particle swarm optimization, each par-
ticle maintains the same flying (or swimming) rules ac-
cording to (1), (2) and (3). At each iteration, the social
coefficient c2, an important parameter affecting the per-
formance, is the same within the whole swarm of stan-
dard PSO, thus the differences among particles are omit-
ted. Since the complex swarm behaviors can emerge the
adaptation, a more precise model, incorporated with the
differences, can provide a deeper insight of swarm intel-
ligence, and the corresponding algorithm may be more
effective and efficient. Inspired with this method, we
propose a new dispersed social coefficient setting.

2.2. Trajectory analysis

For particle j , the trajectory of the position vector
is [13]

lim
t→+∞

−→xj (t) = c1r1
−→pj + c2r2

−→pg

c1r1 + c2r2
(4)

where −→pj , and −→pg are temporarily setting as constants
independent with time t . Since r1 and r2 are random
numbers uniformly distributed within (0,1), the ex-
pected value of −→xj (t) converges onto

lim
t→+∞E

(−→xj (t)
) = c1

−→pj + c2
−→pg

c1 + c2
(5)

Eq. (5) implies the trajectory of particle j converges
onto a weighted mean of personal historical best posi-
tion −→pj and the best position −→pg found by swarm, as
well as the weights of −→pj and −→pg are c1

c1+c2
, and c2

c1+c2
,

respectively.
Now, let us consider the action of social coefficient.

If c2 → 0, then

lim
t→+∞E

(−→xj (t)
) → −→pj (6)

On the contrary, if c2 >> c1, then

lim
t→+∞E

(−→xj (t)
) → −→pg (7)

This is the base of the methods proposed by A. Rat-
naweera [10] and G. Venter [11], and the algorithm
performance is improved greatly. Formulas (6) and (7)
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illustrate social coefficient c2 can determine the search
direction. For each particle, due to the biological back-
ground mentioned above, each particle should select its
social coefficient associated with the performance. Fol-
lowing this idea, we proposed a probability selection
mechanism in which each particle can select its conver-
gent objective by different probabilities.

3. Dispersed particle swarm optimization

Without loss of generality, this paper considers the
following problem:

minf (X) X ∈ D ⊆ Rn (8)

As a new modified version of PSO, dispersed particle
swarm optimization simulates the natural swarm behav-
iors, and should consider two problems listed as fol-
lows:

(1) Since the social coefficient setting of each particle
is associated with the performance itself. How to choose
the performance and design an index to measure this
performance?

(2) How to design the social coefficient setting strat-
egy based on the proposed index?

3.1. Definition of index to measure the performance

Because the fitness value of current position of each
particle represents its adaptive capability, it is naturally
selected as the performance to distinguish the character-
istic differences. Thus, the better the fitness of current
position is, the more adaptation that particle can get to
enhance its survival ratio.

Since the literatures only consider the extreme value
−→pg , however, they neglect the differences between −→pj

and −→pg . These settings lose some information maybe
useful to find the global optima or escape from a local
optima. Thus, we design a new index by introducing the
performance differences, and the definition is provided
as follows:

Gradeu(t) = fworst(t) − f (xu(t))

fworst(t) − fbest(t)
(9)

where fworst(t) and fbest(t) are the worst and best
fitness values of the swarm at time t , respectively.
Occasionally, the swarm converges onto one point,
that means fworst(t) = fbest(t). In this case, the value
Gradeu(t) of arbitrary particle u is set to 1. Gradeu(t)

is an information index to represent the differences of
particle u at time t , according to its fitness value of the
current position. The better the particle is, the larger
Gradeu(t) is, and vice versa.
3.2. Dispersed social coefficient setting strategy

As we known, in most cases, if the fitness value
of particle u is better than which of particle m, the
probability that global optima falls into u’s neighbor-
hood is larger than that of particle m. In this manner,
the particle u should pay more attentions to exploit its
neighborhood. On the contrary, it may tend to explore
other region with a larger probability than exploitation.
Thus, for the best solution, it should make complete
local search around its historical best position, as well
as for the worst solution, it should make global search
around −→pg . Then, the dispersed social coefficient of par-
ticle j at time t is set as follows:

c2,j (t) = clow + (cup − clow)Gradej (t) (10)

where cup and clow are two predefined numbers, and
c2,j (t) represents the social coefficient of particle j at
time t .

3.3. Mutation strategy

Since an explicit selection pressure Gradej (t) is in-
troduced, the new social coefficient setting encounters
local optima with a more probability than the standard
version of PSO. To avoid premature convergence, a mu-
tation strategy is introduced to enhance the ability es-
caping from the local optima.

This mutation strategy is designed as follows. At
each time, particle j is uniformly random selected
within the whole swarm, as well as the dimensionality k

is also uniformly random selected, then, the vjk(t) is
changed as follows.

vjk(t) =
{

0.5 × xmax × r1, if r2 < 0.5,

−0.5 × xmax × r1, otherwise
(11)

where r1 and r2 are two random numbers generated with
uniform distribution within 0 and 1. In each generation,
only one dimensional value of one particle is applied
with mutation strategy, thus, the mutation probability is

1
Popsize·Dimension .

3.4. The details of the steps of DPSO

Step 1. Initializing the position and velocity vectors
of the swarm, and determining the historical best posi-
tion −→pg and −→pj (j = 1,2, . . . , n);

Step 2. Calculating the dispersed social coefficient
according to formula (9) and (10);

Step 3. Updating the position and velocity vectors
with formula (1), (2) and (3), whereas the social coeffi-
cient c2 is replaced by c2,j (t);
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Step 4. Updating the historical best position −→pg and
−→pj (j = 1,2, . . . , n);

Step 5. Making mutation strategy;
Step 6. If the stop criteria is satisfied, output the fit-

ness value of −→pg ; otherwise, goto Step 2.

4. Simulation results

In order to certify the effectiveness of dispersed par-
ticle swarm optimization (DPSO), we select four fa-
mous benchmark functions: Schwefel Problem 2.26,
Rastrigin, Ackley, and Penalized Function to test the
performance. The comparison is taken among DPSO
and standard PSO (SPSO) and modified PSO with time-
varying accelerator coefficients (MPSO-TVAC) [10].
The details of these test functions can be found in [14].

The coefficients are set as follows: the inertia weight
w is decreased linearly from 0.9 to 0.4. In MPSO-
TVAC, c1 is decreased from 2.5 to 0.5,while c2 in-
creased from 0.5 to 2.5. For DPSO, from a large amount
of experiments, c1 is set to 2.0, as well as cup and clow
are set as 2.0 and 1.0, can make a better algorithm
performance. Total individual is 100, and the dimen-
sionality is 30, 50, 100, 200 and 300, respectively. The
velocity threshold vmax is set to the upper bound of do-
main. In each experiment,the simulation runs 20 times,
while each time the largest evolutionary generations are
50 × dimension. For convenience, the position vector of
each particle is randomly selected within the search do-
main, while the velocity vectors are chosen within the
interval [0, vmax] randomly.

Schwefel Problem 2.26 is an interesting function,
while the global optima lies in (420.9687,420.9687, . . . ,

420.9687). From Table 1, the performance of DPSO al-

Table 1
The comparison results of Schwefel Problem 2.26

Dim. Alg. Mean Std.

30 SPSO −6.72e+003 1.02e+003
TVAC −6.62e+003 6.15e+002
DPSO −8.58e+003 4.63e+002

50 SPSO −1.01e+004 1.32e+003
TVAC −9.77e+003 7.92e+002
DPSO −1.38e+004 7.35e+002

100 SPSO −1.81e+004 2.20e+003
TVAC −1.79e+004 1.51e+003
DPSO −2.72e+004 1.19e+003

200 SPSO −3.13e+004 4.21e+003
TVAC −4.02e+004 4.36e+003
DPSO −5.51e+004 1.99e+003

300 SPSO −4.34e+004 7.01e+003
TVAC −5.69e+004 3.51e+003
DPSO −7.99e+004 4.49e+003
ways surpasses than MPSO-TVAC and SPSO for nearly
25%, no matter from mean value and standard devi-
ation value. For Rastrigin Function, DPSO is better
than MPSO-TVAC and SPSO from 25–50%. How-
ever, Schwefel Problem 2.26 and Rastrigin have little
linkages among different dimensional values. It means
the proposed DPSO can improve the algorithm perfor-
mance than MPSO-TVAC at least above 25%.

Ackley and Penalized are two famous benchmark
functions with a strong linkages among dimensional
values. From Tables 3 and 4, the algorithm performance
of DPSO is more stable than MPSO-TVAC and SPSO.
It is interesting that the performance of DPSO changes
within the same degree when dimensionality is no less
than 100.

Table 2
The comparison results of Rastrigin function

Dim. Alg. Mean Std.

30 SPSO 1.99e+001 5.17e+000
TVAC 1.60e+001 4.06e+000
DPSO 6.40e+000 5.07e+000

50 SPSO 3.99e+001 7.93e+000
TVAC 3.64e+001 6.52e+000
DPSO 1.53e+001 5.58e+000

100 SPSO 9.37e+001 9.96e+000
TVAC 8.81e+001 9.12e+000
DPSO 4.14e+001 7.33e+000

200 SPSO 2.23e+002 1.74e+001
TVAC 1.94e+002 3.08e+001
DPSO 9.98e+001 1.14e+001

300 SPSO 3.63e+002 1.76e+001
TVAC 2.66e+002 2.92e+001
DPSO 2.12e+002 3.71e+001

Table 3
The comparison results of Ackley function

Dim. Alg. Mean Std.

30 SPSO 7.59e–006 1.038e–005
TVAC 6.51e–014 8.53e–014
DPSO 4.78e–011 9.15e–011

50 SPSO 1.70e–004 1.28e–004
TVAC 9.95e–005 1.73e–004
DPSO 1.58e–008 1.78e–008

100 SPSO 3.31e–001 5.01e–001
TVAC 4.69e–001 1.91e–001
DPSO 3.68e–007 1.63e–007

200 SPSO 2.13e+000 2.19e–001
TVAC 6.94e–001 4.08e–001
DPSO 9.49e–007 4.07e–007

300 SPSO 3.15e+000 5.60e–001
TVAC 7.66e–001 3.16e–001
DPSO 1.59e–006 7.38e–007
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Table 4
The comparison results of Penalized function

Dim. Alg. Mean Std.

30 SPSO 7.38e–004 2.79e–003
TVAC 7.93e–023 2.50e–022
DPSO 5.16e–023 1.74e–022

50 SPSO 6.74e–003 5.44e–003
TVAC 1.19e–002 3.03e–002
DPSO 1.62e–017 3.93e–017

100 SPSO 2.90e+001 1.53e+001
TVAC 3.77e–001 6.13e–001
DPSO 8.24e–011 1.79e–010

200 SPSO 1.81e+003 1.74e+003
TVAC 2.17e+000 1.61e+000
DPSO 1.74e–010 1.07e–010

300 SPSO 1.47e+004 9.03e+003
TVAC 3.73e+000 2.68e+000
DPSO 4.03e–011 3.31e–010

Based on the above analysis, we can draw the fol-
lowing two conclusions:

(1) Dispersed particle swarm optimization is fit for
solve high dimensional problem with strong linkages,
especially for dimensionality is larger than 100.

(2) For numerical problem with weak linkages,
DPSO can improve the performance than MPSO-TVAC
and SPSO at least 20%.

5. Conclusion

This paper enlarges the action of social coefficient,
and propose a new dispersed particle swarm optimiza-
tion. In DPSO, the social coefficient uses a dispersed
setting associated with the algorithm performance, and
provides some probabilities to search around the per-
sonal historical best position. To our knowledge, this is
the first report of using social coefficient to improve the
convergent speed. The further research topic includes
the other dispersed setting methods, and the applica-
tions.
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