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Introduction: As a convenient and affordable means of transportation, the e-bike is widely used by differ-
ent age rider groups and for different travel purposes. The underlying reasons for e-bike riders suffering
from severe injury may be different in each case. Method: This study aims to examine the underlying risk
factors of severe injury for different groups of e-bike riders by using a combined method, integration of a
classification tree and a logistic regression model. Three-year of e-bike crashes occurring in Hunan pro-
vince are extracted, and risk factor including rider’s attribute, opponent vehicle and driver’s attribute,
improper behaviors of riders and drivers, road, and environment characteristics are considered for this
analysis. Results: E-bike riders are segmented into five groups based on the classification tree analysis,
and the group of non-occupational riders aged over 55 in urban regions is associated with the highest
likelihood of severe injury among the five groups. The logistics analysis for each group shows that several
risk factors such as high-speed roads have commonly significant effects on injury severity for different
groups; while major factors only have significant effects for specific groups. Practical application: Based
on model results, policy implications to alleviate the crash injury for different e-bike riders groups are
recommended, which mainly include enhanced education and enforcement for e-bike risky behaviors,
and traffic engineering to regulate the use of e-bikes on high speed roads.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.
1. Introduction

As a convenient and affordable means of transportation, the
electric bike (e-bike) is widely prevalent in China. Since the
introduction of the legislation to deal with e-bikes in 1998, the
number of e-bikes in China increased from 58,000 to more than
170 million in 2014 (World Health Organization, 2017). Accord-
ingly, the growing popularity of e-bike entails significant safety
concerns as observed in crash statistics. According to China’s
Road Traffic Crash Statistics (National Bureau of Statistics,
2015), 7,201 people died in e-bike related crashes in 2014, rep-
resenting 11.4% of all road traffic deaths.

E-bike is officially defined as a non-motorized transportation
mode in China. Because of a lack of safety awareness and strict traf-
fic law enforcement, e-bike riders are prone to violate the traffic
rules, such as disobeying traffic signals, riding on the motorized
lane, and failing to give right of way (Wu, Yao, & Zhang, 2012;
Du et al., 2013; Yang, Mei, Abdel-Aty, Peng, & Gao, 2015; Wang,
Xu, Xia, & Qian, 2017a; Bai, Liu, Chen, Zhang, & Wang, 2015). These
improper/illegal behaviors will increase the e-bike rider’s own
crash risk, as well as the crash risk of other road users (Li, Xing,
Wang, Liang, & Wang, 2018). Moreover, compared to the tradi-
tional non-motorized modes such as bicycles, e-bikes have a higher
injury risk in crashes because they often move at higher speeds. A
study conducted by Hu, Lv, Zhu, and Fang (2014) found that the
probability of severe injury for e-bike crashes was nearly two times
that of bicycle crashes. The growing popularity of e-bikes and their
high injury risk in crashes highlight urgent needs to examine the
factors that affect injury severity of e-bike crashes in China.

Crash injury severity models associate the likelihood of crash
injury level with various contributing factors such as driver/riders,
traffic and road, vehicle, crash type characteristics, and weather
environment; therefore it is an important quantitative tool to pre-
dict crash injury severity and identify high-risk factors that signif-
icantly aggravate injury severity. The choice of appropriate
analytical methods and the selection of representative explanatory
variables (also called contributing factors or risk factors) are two
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important considerations for establishing an accurate crash injury
severity model. Up to date, studies on injury severity of e-bike
crashes are relatively few. These studies mainly focus on injury-
contributing factors related to rider age and gender, crash charac-
teristics, and road environment (Hu et al., 2014, 2020b; Hu, Hu,
Wan, Chen, & Cao, 2020a). In China, especially in middle and small
sized cities, e-bikes are always used as occupational transportation
modes (such as delivery-e-bikes and taxi-e-bikes). To the best of
our knowledge, contributing factors on crash injury severity of
occupational e-bike riders were not investigated in previous stud-
ies. In addition, the direct factors that contribute to e-bike crash
occurrence--riders/drivers’ improper/illegal behaviors effects on
crash injury severity are still not fully examined.

In regard to analytical methods, discrete choice models such as
logistic regression models are generally applied because injury
severities in crash datasets are often modeled as discrete severity
outcomes (such as fatal injury, serious injury, slight injury, no
injury; Savolainen, Mannering, Lord, & Quddus, 2011). For instance,
Hu et al. (2014) developed a logistics regression for e-bike crash
injury severity using 146 cases of trauma-related patients involved
in e-bike crashes in Hefei, China. Recently, based on China in-depth
crash data, Hu et al. (2020b) used logistics regression model to
examine the fatal/serious injury risk of e-bike riders in relation
to the impact speed and rider’s age.

Although logistic regression models have important superiority
in measuring the marginal effects of the risk factors, it may appear
a low prediction as they have shortcomings in dealing with inter-
actions between various risk factors (Huang, Peng, Wang, Luo, & Li,
2018; Zeng, Wen, & Huang, 2016). In addition, because traffic
crashes might occur under distinct conditions, specific risk factors
may have different magnitude or even opposite direction effects on
injury outcomes (Chang, Xu, Zhou, Chan, & Huang, 2019; Wang,
Huang, & Zeng, 2017b). A general logistic regression model cannot
account for this phenomenon. For this case, an effective measure is
to separate the full sample crash data into homogeneous groups/
segmentations. One common segmentation approach for crash
data is based on expert judgments, such as crashes by collision
types and crashes involving different age groups. However, expert
judgments cannot guarantee a homogeneous group in each seg-
ment, because they may ignore the fact that crash injury severity
is the result of the combination of multiple factors. On the other
hand, data mining techniques (such as tree classification methods)
refer to a statistical analysis aimed at searching hidden structures
or patterns among ‘‘big data;” which have a better ability to iden-
tify homogeneous groups compared with expert judgments (Prati,
Pietrantoni, & Fraboni, 2017; Wang et al., 2017a). Logistic regres-
sion models, combined with data mining techniques, could provide
more powerful insights than applying a general logistic regression
model to the entire data.

In this study, a classification tree-based logistic regression
model is applied to identify the underlying risk factors affecting
crash injury severity for different types of e-bike riders. Specifi-
cally, based on e-bike crash data collected from Hunan province
of China from 2014 to 2016, the chi-squared automatic interac-
tion detection (CHAID) tree is first employed to split the entire
data into several homogeneous groups by considering multiple
riders-related attributes, including rider’s age, gender, occupation
and living region. This tree analysis could help us understand the
question of ‘‘who are the high risk riders associated with high
likelihoods of severe injury.” Then logistic regression models
are used to examine significant factors and their marginal effects
for each group. The results of logistic regression analysis will
provide useful sights for solving the question of ‘‘how to reduce
the crash injury for different types of e-bike riders, especially for
high risk riders.”
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2. Method

2.1. Data preparation

Crash data are obtained from the Traffic Management Sector-
Specific Incident Case Data Report, which is maintained by Hunan
Provincial Department of Traffic Police. The report covers various
aspects of a traffic crash, including demographic characteristics
of the casualties, the cause of the crash, collision types, and vehicle
types; and environmental factors such as weather conditions, the
precise crash time, and location of the crash. Injury severity of
crashes recorded by traffic police is categorized as fatal (i.e., imme-
diate or subsequent death from injuries within 7 days after a
crash), serious (i.e., disability injury), slight (i.e., non-disability
injury) and property damage only (i.e., no injury). Three years
(from 2014 to 2016) of e-bike crashes that occurred in Hunan pro-
vince were extracted from the crash report. The database was rear-
ranged and crash-related variables used for this analysis were
shown in Table1.
2.2. Statistical analysis

Chi-squared Automatic Interaction Detection (CHAID) is a type
of classification tree technology that is used to split the data into
statistically significant homogeneous subgroups based on step-
wise chi-square test. The chi-square test employed by CHAID is
determined by the relationship between the independent variables
(or output variables) and dependent variables (predictor variables).
In the present study, the CHAID is employed to classify the e-bike
riders who are involved in the crashes. We chose CHAID because of
its superior ability to examine all possible splits and thus identify
all subgroups with high homogeneity. The independent variables
used for the classification include four rider-related attributes:
rider’s age, gender (male vs. female), occupation (occupational
rider vs non-occupational rider), and living region (rural vs. urban).
The dependent variable is the injury severity of the e-bike rider.
The injury severity is re-categorized as severe injury (fatal and seri-
ous) and non-severe injury (slight and property damage only). This
dichotomy classification is consistent with the view that convert-
ing target variable to a binary class could mitigate the bias by
selection (Jung, Qin, & Oh, 2016).

Based on the above CHAID technology, e-bike riders are divided
into several homogeneous groups with similar injury severity,
defined by rider’s age, gender, rider’s occupation, and living region.
After that, binary logistic regression models are employed to iden-
tify significant risk factors affecting the crash injury severity for
each group. Specifically, the binary outcomes (i.e., severe and
non-severe) represented by a dummy variable are used as the
response variable; while 10 risk factors are specified as explana-
tory variables: (1) time, (2) week, (3) season, (4) weather, (5) light-
ing, (6) road type, (7) opponent vehicle type, (8) driver age of
opponent vehicle, (9) pre-crash improper behavior of driver, and
(10) pre-crash improper behavior of the rider. The significant risk
factors identified by logistic regression models will provide us a
full understanding of ‘‘how to alleviate the crash injury for differ-
ent groups of e-bike riders.”
3. Results

First, CHAID is used to classify all crash-involved e-bike riders
into different homogeneous groups by considering multiple
riders-related attributes, including rider’s age, gender, rider’s occu-
pation, and living region. For the estimation of CHAID, the total
crash data were randomly split into 50% for learning and 50% for



Table 1
Descriptive statistics for variables.

Variable Coding and description Frequency
(proportion %)

Injury severity 1: Fatality & Serious injury 1464(83.2)
2: Slight injury & Property damage only 296(16.8)

E-bike rider age 1: <25 112(6.4)
2: 25–34 229(13.0)
3: 35–44 339(19.3)
4: 45–54 478(27.2)
5: 55–64 372(21.1)
6: 65–74 206(11.7)
7: �75 24(13.0)

Rider gender 1: Male 986(56.0)
2: Female 774(44.0)

Rider occupation1 1: Occupational 497 (28.3)
2: Non-occupational 1263 (71.7)

Rider living region Rural 515(29.3)
Urban 1245(70.7)

Time 1: 22:00–6:59 240 (13.60)
2: 7:00–8:59 237(13.5)
3: 9:00–16:59 826(46.9)
4: 17:00–18:59 258(14.7)
5: 19:00–21:59 199(11.3)

Week 1: Weekday 1344(76.4)
2: Weekend 416(23.6)

Season 1: Spring 472(26.8)
2: Summer 486(27.6)
3: Autumn 425(24.1)
4: Winter 377(21.5)

Weather 1: Rainy 290(16.5)
2: Others 1470(83.5)

Lighting 1: Daylight 1280(72.7)
2: dawn/dusk 89(5.1)
3: Dark but lighted 303(17.2)
4: Dark 88(5.0)

Road type2 1: high-speed road 275(15.6)
2: low-speed road 1485(84.4)

Opponent vehicle type 1: E-bike 702(39.9)
2: Motorcycle 84(4.8)
3: Truck 173(9.8)
4: Car 716(40.7)
6: Other vehicle 85(4.8)

Driver age of opponent vehicle 1: <25 150(8.5)
2: 25–34 419(23.8)
3: 35–44 453(25.7)
4: 45–54 427(24.3)
5: 55–64 191(10.9)
6: 65–74 97(5.5)
7: �75 23(1.3)

Driver gender of opponent vehicle 1: Male 1293(73.5)
2: Female 461(26.5)

Pre-crash improper behavior of Riders 1: Riding on the wrong lane3 315 (17.9%)
2: Riding against traffic signals at the intersection 311 (17.6%)
3: While crossing the road, not to get off and push the e-bike 136 (7.7%)
4: Reverse riding 108 (6.1%)
5: Other improper behaviors of e-bike riders 95 (5.4%)
6: Having no improper behaviors of e-bike riders 796 (45.3%)

Pre-crash improper behavior of opponent vehicle drivers 1: Driving on the non-motor vehicle lane 221(12.6)
2: Driving against traffic signal at the intersection 111(6.3)
3: Safety distance violation 35(2.0)
4: Speeding & Overloaded 48(2.7)
5: Approaching illegally & Changing lane illegally 124(7.0)
6: Failing to give way 220(12.5)
7: Reverse driving 74(4.2)
8: Other improper behaviors of the driver 540(30.7)
9: Having no improper behaviors of the driver 387(22.0)

1 Occupational riders include delivery-purpose e-bike and taxi-purpose e-bike riders.
2 High-speed road (refers to the design speed higher than 50 km/h).
3 Riding on the wrong lane includes two types: a) on the road with non-motor vehicle lanes, not to ride within the non-motor vehicle lane, b) on the road without non-

motor vehicle lanes, not to ride by the right side of the motor vehicle lane.
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Fig. 1. CHAID classification tree for injury severity of e-bike rider.
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testing data. The training dataset is used to build the model, while
the test dataset is used to test the ability of the model for its appli-
cability and generalization. Then, for each group of e-bike riders, a
binary logistic regression model is built to examine risk factors that
significantly affect the injury severity of e-bike riders. For the
model estimation, backward step-wise is used to exclude insignif-
icant explanatory variables at the significance level with p-value
>0.1, and the final model is re-calibrated with only significant vari-
ables. Both CHAID and binary logistic regression models are calcu-
lated by using the econometric and statistical software SPSS 21.0.

3.1. Classification tree analysis

Fig. 1 displays the classification tree for crash injury severity of
e-bike riders. The tree classification results in four splitters and five
terminal nodes. It shows that rider’s age, rider’s occupation, and
living region are important variables to classify the rider’s groups,
while rider’s gender is not significant for the classification.

The tree classification is first split by the variable of rider’s age.
It implies that rider’s age is the most important variable to differ-
entiate injury severity of the e-bike rider among riders-related
attributes. This split directs riders aged under 55 to the left forming
node 1, and directs riders aged 55 or above to the right forming
node 2. This indicates that older riders, aged 55 or above, have a
higher percentage of severe injury (24.9%) than riders aged under
55 (12.6%). This result is similar to previous findings that older
adults are more likely to suffer from severe injury in bicycle
crashes (Kim, Kim, Ulfarsson, & Porrello, 2007; Yan, Ma, Huang,
Abdel-Aty, & Wu, 2011), which may be associated with physical
fragility and decrease in risk-avoiding ability of old riders.

On the left side of the tree, node 1 continued to be split based on
the variable of the rider’s occupation, forming terminal node 3 and
4. For riders aged under 55, non-occupational riders have a higher
likelihood of severe injury (15.1%) than occupational riders (6.8%).
In this study, occupational riders include delivery-purpose e-bike
and taxi-purpose e-bike riders. The lower injury risk of occupa-
179
tional riders may be due to the fact that they are more familiar
with the driving environment and have relatively richer driving
skills (Chung, Song, & Yoon, 2014; Wu & Loo, 2016). Turning to
the right side of the tree, based on the variable of living region,
node 2 is split into child node 5 and terminal node 6. For riders
aged 55 and above, riders in urban regions have higher likelihoods
of severe injury (27.3%) than the ones in rural regions (22.6%). Fur-
ther down to the tree, node 5 is split by the variable of improper
behavior, forming terminal node 7 and 8. For rider’s aged above
55 and riding in urban areas, non-occupational riders have higher
risks of severe injury (31.3 %) than occupational riders (19.4%),
which is similar to riders aged under 55.

Based on the results of the tree classification, the e-bike riders
are segmented into five groups (i.e., five terminal nodes). Group
1: occupational riders aged under 55 (node3); group 2: non-
occupational riders aged under 55 (node 4); group 3: riders aged
above 55 in rural regions (node 6); group 4: occupational riders
aged above 55 in urban regions (node 7); group 5: non-
occupational riders aged above 55 in urban regions (node 8).
Among these five groups, group 5 is associated with the highest
likelihood of injury severity (31.3%), which is much higher than
the average percentage (16.8%).

3.2. Logistic regression analysis

Tree-based logistic regression model for separated rider’s
groups and a general logistic regression model for the whole data
are developed. Table 2 shows the goodness-of-fit measures for
tree-based models and the general model. The likelihood ratio test
comparing the tree-based models and the general model indicated
that there is more than 99.9% confidence that the tree-base models
are statistically superior in terms of goodness-of-fit.

Parameter estimates of both general and tree-based model are
shown in Table 3. To directly assess the impacts of explanatory
variables on injury severity probability of each e-bike rider group,
marginal effects are also computed, as shown in Table 4. In this



Table 2
Goodness-of-fit measures for tree-based and general models.

Model statistics General Group 1 Group 2 Group 3 Group 4 Group 5

Number of observers 1760 351 807 214 129 259
Number of parameters 13 6 5 5 6 6
Log likelihood at convergence 724.385 68.044 327.7115 101.255 50.886 146.829

Log-likelihood ratio test

v2 = �2[LL(general) � LL(tree-based)] �59.319
Degrees of freedom 15
P-value <0.001

Table 3
Parameter estimates of both tree-based and general models.

Variables General Group 1 Group 2 Group 3 Group 4 Group 5

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Constant �3.580 0.302 �4.070 0.450 �2.302 0.166 �2.031 0.486 �0.791 0.348 �0.982 0.240
Rider aged 35–44 0.472 0.267 – – – – – – – – – –
Rider aged 45–54 0.778 0.245 – – – – – – – – – –
Rider aged 55–64 1.282 0.244 – – – – – – – – – –
Rider aged 65–74 1.583 0.270 – – – – – – – – – –
Rider aged >=75 1.667 0.514 – – – – – – – – – –
Non-occupational 0.761 0.175 – – – – – – – – – –
Rider Living in urban 0.521 0.158 – – – – – – – – – –
22:00–06:59 0.834 0.196 1.225 0.549 1.042 0.285
19:00–21:59 0.384 0.188 0.877 0.326
Spring �0.319 0.127
Summer 0.454 0.215 0.617 0.253
Weekend �1.245 0.691
Daylight 0.796 0.496 �1.318 0.562
Dawn/Dust 1.435 0.656
High-speed road 0.747 0.161 2.189 0.530 0.654 0.240 0.814 0.386 1.432 0.803
Having no improper behaviors of e-bike rider �0.272 0.117 �0.820 0.385 �0.535 0.226 �0.649 0.305
While crossing the road, not to get off and push the e-

bike
1.072 0.449

Driver gender of opponent vehicle is female �0.641 0.306
Type of opponent vehicle is truck 0.649 0.199 0.544 0.181 0.976 0.320 1.630 0.477
Driving on the wrong lane 1.037 0.429
Reverse driving 2.368 1.027
Other improper behaviors of the driver 1.130 0.493 0.359 0.136

‘‘–”Rider attribute variables are included in the general model, while not included in the separated models since they have been considered in preliminary tree analysis.
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study, the marginal effects represent the change in the resulting
probability of severe injury due to one unit change (or change from
0 to 1 in the case of indicator variables) in an explanatory variable,
while holding all other variables constant.

Several meaningful discoveries can be found in Table 3. (1) The
results of the general model show that rider attribute variables of
‘‘old riders,” ‘‘non-occupational riders,” and ‘‘riders in urban areas”
have significantly higher likelihoods of severe injuries, which fur-
ther supported the preliminary result of CHAID tree. (2) While
comparing the significant risk factors reveals between general
model and separated models, some differences are discovered.
For example, the variables of ‘‘summer,” ‘‘weekend,” ‘‘daylight,”
‘‘dawn/dust” and several types of rider/driver behaviors are not
statistically significant in the general model, but they have signif-
icant effects on injury severity of specific rider groups. This indi-
cates that the tree-based separated model reveals new
information that cannot be found by the general model using the
entire data. (3) From the results of the tree-based model, we find
that the significant variable sets for injury severity are not consis-
tent for different rider groups. This confirms that it is very mean-
ingful to use the tree-based model instead of the general model.
The detailed interpretations for significant risk factors on injury
severity of different rider groups are offered in the following.

For time and lighting related variables, the variable of 22:00–
06:59 is positively related to severe injury of group 1 (occupational
riders aged under 55) and group 2 (non-occupational riders aged
under 55), with the marginal effects of 0.086 and 0.166. This indi-
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cates that, for crashes occurring at night, the probability of riders
suffering from severe injury increases 8.6% for group 1 and 16.6%
for group 2, compared to the crashes at other time periods. This
is to say that the time of 22:00–06:59 only affects the injury sever-
ity of young and middle riders, which may be due to older people
traveling less by e-bikes at night. The variable of 19:00–21:59 is
associated with a high likelihood of severe injury of group 5
(non-occupational riders aged above 55 in urban regions). The vari-
able of daylight has opposite direction effects on injury outcomes
of riders group 3 (riders aged above 55 in rural regions) and group
4 (occupational riders aged above 55 in urban regions), which
strongly supported the existence of heterogeneous effects in traffic
safety (Chang et al., 2019; Wang et al., 2017a; Wang, Huang, Xu,
Xie, & Wong, 2020). Crashes occurring at dawn or dust are more
likely to associate with severe injury for these occupational riders
aged under 55. In addition, crashes occurring in summer have
higher probabilities of severe injury for two rider groups (i.e.,
non-occupational riders aged under 55 and non-occupational rid-
ers aged above 55 in urban region).

With regard to the road condition, crashes occurring at high-
speed roads (the high-speed roads refer to the roads with design
speed higher than 50 km) are commonly associated with higher
likelihoods of severe injury except for rider group 5. Specially,
the global marginal effect of ‘‘high-speed road” is 0.109 for the
entire crashes-involved riders, and separated marginal effects of
this variable are from 0.092 to 0.241 for different rider groups. This
means that, for crashes occurring at high-speed roads, the proba-



Table 4
Marginal effects of risk factors on injury severity of different rider groups.

Risk factors General Group1 Group2 Group3 Group4 Group5

Rider aged 35–44 0.065 – – – – –
Rider aged 45–54 0.108 – – – – –
Rider aged 55–64 0.195 – – – – –
Rider aged 65–74 0.265 – – – – –
Rider aged >=75 0.299 – – – – –
Non-occupational 0.087 – – – – –
Rider Living in urban 0.063 – – – – –
22:00–06:59 0.126 0.086 0.166
19:00–21:59 0.052 0.183
Weekend �0.138
Daylight 0.107 �0.194
Dawn/Dust 0.116
Spring �0.039
Summer 0.059 0.123
High-speed road 0.109 0.206 0.092 0.141 0.241
Having no improper behaviors of e-bike rider �0.034 �0.120 �0.115 �0.121
While crossing the road, not to get off and push the e-bike 0.075
Driver gender of opponent vehicle is female �0.116
Type of opponent vehicle is truck 0.095 0.077 0.179 0.357
Driving on the non-motor vehicle lane 0.218
Reverse driving 0.251
Other improper behaviors of driver 0.065 0.046

‘‘–”Rider attribute variables are included in the general model, while not included in the separated models since they have been considered in the preliminary tree analysis.
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bility of riders suffering from severe injury increases on average
10.9% compared with that at the low-speed road, and the probabil-
ity of injury severe increases from 9.2% to 24.1% for different
groups. This result agrees with the founding of our previous study
(Hu et al., 2020b) that the fatality risk of e-bike riders sharply
increases when vehicle impact speed1 exceeds 50 km/h.

Concerning the pre-crash improper behaviors of e-bike riders,
the variable of ‘‘having no improper behaviors of e-bike riders” is
related to 3.4% lower probability of severe injury for the entire
crashes-involved riders; specifically, 12.0% lower probability for
group 3, 11.5% lower probability for group 4, and 12.1% lower prob-
ability for group 5. This is to say, improper behavior of e-bike riders
could significantly increase the probability of severe injury, espe-
cially for the older riders. In addition, for non-occupational riders
aged under 55, the improper behavior of ‘‘not to get off and push
the e-bike” is significantly associated with a higher probability of
severe injury. Regarding the pre-crash improper behaviors of the
opponent vehicle, several types of behaviors have significant
effects on severe injury for specific rider groups: driving on the
non-motor vehicle lane for non-occupational riders aged above
55 in urban regions, reverse driving for occupational riders aged
under 55, and other improper behaviors of driving (such as drunk
driving, fatigue driving) for riders aged under 55.

For crashes colliding with the truck, the likelihood of riders suf-
fering from severe injury increases 9.5% on average; specifically,
7.7% for the group 2, 17.9% for group 3, and 35.7% for group 5.
These results are similar to previous studies on crash injury of tra-
ditional bicycles and motorcycles (Chang et al., 2019; Prati et al.,
2017). In addition, for non-occupational riders aged above 55 in
urban regions, they are associated with a lower likelihood of severe
injury when the driver of the opponent vehicle is female.
4. Discussions

4.1. Policy implication

The popularity of e-bikes in China and their users’ vulnerability
to get fatal/severe injuries in crashes make it critical to identify fac-
tors influencing the injury severity of e-bike riders in crashes so as
1 Vehicle impact speed refers to the vehicle speed at the moment of the vehicle
contacting with the e-bike in the collision (Hu et al., 2020b).
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to provide guides for targeted e-bike crash countermeasures. For
this purpose, a classification tree-based logistic regression model
is implemented. Compared with general conventional model, the
proposed model generates more reliable results in the model
goodness-of-fit. More importantly, the estimated results from this
model help identify important contributing factors that would be
hidden if the whole dataset is used, which is very important for
safety improvements and policy development.

Specifically, from the perspective of injury severity, the classifi-
cation tree is first used to split the e-bike riders into five homoge-
neous groups based on multiple riders attributes including rider’s
age, gender, rider’s occupation, and living region. By the tree anal-
ysis we understand the question of ‘‘who are the high risk riders
associated with high likelihoods of severe injury.” The highest risk
group is non-occupational riders aged above 55 in urban regions,
and then are the group of riders aged above 55 in rural regions
and the group of occupational riders aged above 55 in urban
regions. This implies that older riders should be considered a top
priority for preventing fatal/severe e-bike crashes.

Separated logistic regression model by five homogeneous
groups is then used to examine the differences of the contributing
factors (such as rider behaviors, road type, weather) affecting crash
injury severity of different e-bike riders groups. By logistic regres-
sion analysis we solve the question of ‘‘how to reduce the crash
injury for different types of e-bike riders, especially for high risk
riders.” For example, the variable of ‘‘having no improper behaviors
of e-bike rider” only has significant effects on injury severe for old
rider groups. This is to say that the policy targeted at the preven-
tion of e-bike rider risky behaviors is effective for reducing older
riders suffering from fatal/severe injury in crashes. Main policy
implications for e-bike safety improvement are recommended as
follows.

The first implication involves the e-bike rider attributes and
improper behaviors of e-bike riders. From the results of the tree
classification, we find that riders aged 55 and above are associated
with a higher likelihood of severe injury. Furthermore, logistical
analysis results show that improper behaviors of e-bike riders
could significantly increase the probability of severe injury, espe-
cially for the old riders (group3, group4, and group5). These results
give us an important implication: if the rate of e-bike riders’ impro-
per behaviors could be reduced or controlled successfully, then the
rate of serious injuries and fatalities would be reduced
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accordingly--this is especially effective for the older riders. In addi-
tion, although occupational riders are associated with a relatively
lower high likelihood of severe injury compared to non-
occupational riders, the safety of occupational e-bike riders (i.e.,
delivery-e-bikes and taxi-e-bikes) still cannot be ignored because
the number of occupational riders involved in the crashes account
for a large proportion among the entire e-bikes crashes. Practical
experiences in some developed countries have demonstrated the
benefit of education and training systems to the alleviation of
power-two-wheeler crash risks (Baldi, Baer, & Cook, 2005;
Vlahogianni, Yannis, & Golias, 2012). Normalized education and
licensing systems especially for high risk e-bike rider groups are
recommend to increase awareness of unsafe behavior, encouraging
the rider to behave safely. In addition, the prevention of improper/
risky behaviors should be not only for e-bike riders but also for dri-
vers, such as the driver behaviors of driving on the non-motor
vehicle lane.

The second implication involves the important role of road and
traffic engineering in enhancing e-bike safety. E-bike crashes
occurring on high speed roads (refers to roads that of the design
speed higher than 50 m/h) are associated with higher likelihoods
of injury severity. In this study, we find that, compared to crashes
on low speed road, the probability of severe injury crashes on high
speed road has increased from 9.2% to 24.1% for different rider
groups. In reality, our previous study (Hu et al., 2020b) has exam-
ined the relationship between the impact speed and injury severity
of e-bike riders – the fatality risk of riders is approximately 2.9% at
the vehicle impact speed of 30 km/h, 23% at 50 km/h, 50% at
60 km/h, and 90% at 80 km/h. Results of these two studies strongly
imply that there is an urgent need to either regulate the use of e-
bikes on high speed roads or separate e-bikes (e.g., by a physical
barrier) from high-speed motor vehicles.

Lastly, without penalties and stricter enforcement for e-bikes
improper/risky behaviors, the goal to effectively curb e-bike
crashes is hard to reach (Bai, Liu, Chen, Zhang, & Wang, 2013). A
comprehensive e-bike safety treatment should combine perfect
laws and regulations for the use of e-bikes, sticker law enforce-
ment for the rider and driver’s risky behaviors, traffic engineering
countermeasures, and safety education campaigns.

4.2. Study limitation

The limitation of our study is related to the source of the data: a
police-based register of crashes. This database does not include
detailed road characteristics (e.g., median width, number of lanes),
detailed e-bike related facilities (e.g., size and mass of e-bike),
physical/psychological status of riders and pre-crash traffic flow
characteristics, though these factors are deemed important, their
effects on injury severity cannot be analyzed. Thus, an extension
of this paper is to incorporate police-reported data and other data
sources (such as questionnaire surveys and field observations) to
achieve a more comprehensive understanding of factors on injury
severity of e-bikes.
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