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The longest common subsequence (LCS) length of two strings is used as one of the most 
fundamental metrics measuring the similarity between the strings. To find out the local 
structures common to the strings under this similarity metric, we need a fast calculation 
of the LCS length of any pair of substrings of the two strings. For supporting such queries, 
it makes sense to preprocess the two strings in a quadratic time, because it takes about 
the same amount of time to compute the LCS length of the entire strings from scratch. We 
propose a quadratic-time constructible data structure that supports sublinear-time queries 
of the LCS length for any pair of substrings. The query time is O (

√
l log1+ε l), where ε is a 

positive constant arbitrarily small and l is the sum of the substring lengths.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Measuring the similarity between two strings (i.e., sequences of symbols) has many important applications, such as data 
compression, pattern recognition, data mining, and biological sequence comparison. The longest common subsequence (LCS) 
length is one of the most fundamental similarity metrics in widespread use. The LCS length of two strings is defined as 
the greatest possible length of any subsequence common to the strings, where a subsequence of a string is the string after 
deleting zero or more symbols at any position (not necessarily contiguous). Due to the simplicity of its definition and the 
wide range of applications, not only the original LCS length problem but also a number of related problems have been 
enthusiastically studied. Such related problems include, for example, the parameterized LCS problems [2,3,8,11–13,16,17], 
the conditional LCS problems (such as the constrained LCS problem [6,7,24] and the restricted LCS problem [6,10]), and 
the reductions of the rational-weighted variants of other metrics (including the edit distance [22] and the dynamic time 
warping distance [21]) to the LCS length.

Focusing on the original problem, it is well known that the LCS length of any pair of strings both of length O (n) can 
be computed in O (n2) time using the dynamic programming algorithm [25] (and the Four-Russians technique reduces this 
running time by a logarithmic factor [15]). It was also revealed that, unless the strong exponential time hypothesis (SETH) 
does not hold, for any positive constant ε, no O (n2−ε)-time algorithm can compute the LCS length [1,4]. This implies that 
there exists only a slight gap between the asymptotic lower and upper bounds of the time complexity under the SETH 
assumption.

Suppose that we want to seek for the local structures common to the two strings, by checking the LCS length of each of 
the pairs of substrings (i.e., contiguous subsequences) of the strings possibly having high similarity. Here, the next pair of 
substrings whose LCS length is to be computed may be given depending on the LCS lengths previously determined, or even 
given arbitrarily by the adversary, in an online environment. Thus, we need a fast calculation of the LCS length for any pair 
of substrings of the strings. A natural idea to deal with this situation is to prepare a quickly constructible data structure to 
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Fig. 1. (a) Grid graph G A,B for A = acdcbbadadba and B = bacacbdc, where the path indicated by the thick polygonal line represents an LCS cad of substrings 
A′ = dcbbada of A and B ′ = cacbd of B; (b) a concrete example of grid graph G with m = 12 and n = 8, where the path indicated by the thick polygonal 
line represents a shortest path between vertices (2, 2) and (9, 7).

support fast such queries. We call such a data structure a substring-substring LCS length data structure. Since it takes an 
almost quadratic time to compute the LCS length of a pair of substrings from scratch as mentioned earlier, it may make 
sense to preprocess the two strings in quadratic time to construct the substring-substring LCS length data structure. The 
aim of this article is to propose such a data structure for any pair of strings, which is hence quadratic-time constructible 
and supports subquadratic-time queries of the LCS length for any pair of substrings of the strings.

Considering the trade-off between the size of the substring-substring LCS length data structure and its query time, there 
seems to be a consensus regarding the sum of the exponents of the data structure size and the query time as follows. For 
any pair of O (n)-length strings A and B , the strings themselves immediately compose a naive data structure of size O (n)

supporting almost O (l2)-time queries for any pair of O (l)-length substrings, by computing the LCS length of them from 
scratch. On the other hand, the semi-local LCS length framework of Tiskin [22] allows us to construct a data structure of size 
O (n3) that supports O (log n)-time queries. In this framework, a set of O (n) two-dimensional points for any pair of O (n)-
length strings is used to represent the LCS length of either any pair of a substring of one string and the entire string the 
other or any pair of a prefix of one string and a suffix of the other as the number of points located in a rectangular region. 
Implementing this set as the two-dimensional range counting tree [5] immediately yields a data structure of size O (n)

supporting O (log n)-time semi-local LCS length queries. Hence, the collection of this semi-local LCS length data structure 
for A and B ′ over all substrings B ′ of B works as a substring-substring LCS length data structure supporting O (log n)-time 
queries. Since the number of substrings of B is O (n2), the size of this collection is O (n3). The last example is the data 
structure of size O (n2) that supports O (l)-time queries of not only the LCS length but also an LCS itself for any pair of 
O (l)-length substrings [20]. Ignoring any poly-logarithmic factor, the sum of the exponents of the size and the query time 
for any of the three data structures with different sizes and query times is three. The challenge in this article is to break this 
consensus by achieving a sublinear query time on a quadratic-time constructible (and hence quadratic-size) data structure.

1.1. Our contribution

In this article, we propose for any positive constant ε and any pair of an m-length string A and an n-length string B , an 
O (mn)-time constructible data structure that supports O (

√
l log1+ε l)-time queries of the LCS length of A′ and B ′ for any 

pair of an m′-length substring A′ of A and an n′-length substring B ′ of B with m′ + n′ = l.
The problem of computing the LCS length for any pair of substrings A′ and B ′ can be reduced to the problem of 

computing the shortest path length of a grid graph G A,B introduced later, where the shortest path length between a pair of 
vertices is the least possible number of edges that can compose a path between the vertices. The proposed data structure 
is designed to support queries of the shortest path length on G A,B between any pair of vertices. The grid graph G A,B

consists of m rows and n columns of grid units, where the ith row corresponds to the ith symbol of A, and the jth column 
corresponds to the jth symbol of B (see Fig. 1(a)). Each grid unit has a diagonal edge, if and only if the corresponding 
symbols in A and B are identical. Due to this definition, the LCS length of A′ and B ′ is equal to the number of diagonal 
edges in any shortest path between the vertices corresponding to the left and right ends of A′ and B ′ . Therefore, the LCS 
length of A′ and B ′ can be obtained as the sum of the lengths of A′ and B ′ minus the shortest path length on G A,B between 
these vertices.

Our approach to designing the proposed data structure achieves both the preprocessing and query times without using 
conditions regarding the number and position of diagonal edges in the grid graph. Hence, the technique we develop applies 
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to any grid graph G consisting of m rows and n columns of grid units, each potentially having a diagonal edge (see Fig. 1(b)), 
whether or not G = G A,B for some pair of strings A and B . We propose in this article, for any such grid graph G and any 
positive constant ε , an O (mn)-time constructible data structure that supports O (

√
l log1+ε l)-time queries of the shortest 

path length for any pair of vertices (i, j) and (i′, j′) with 0 ≤ i < i′ ≤ m and 0 ≤ j < j′ ≤ n, where l = (i′ − i) + ( j′ − j). Note 
that if we set G to G A,B , then this data structure works as a substring-substring LCS length data structure we aim to.

The rest of this article is organized as follows. Section 2 defines notations and terminology used in this article and intro-
duces the semi-local LCS length technique of Tiskin [22], based on which the proposed data structure is designed. Section 3
presents an O (mn)-time constructible data structure supporting O (l)-time queries of the shortest path length between any 
pair of vertices in G , and Section 4 modifies this so as to support O (

√
l log1+ε l)-time queries with no asymptotic increase 

of the preprocessing time. Section 5 concludes this article.

2. Preliminaries

Let m and n be arbitrary positive integers. Let G be an undirected grid graph consisting of all pairs (i, j) of integers 
with 0 ≤ i ≤ m and 0 ≤ j ≤ n representing vertices, vertical edges between (i − 1, j) and (i, j) for all pairs of such vertices, 
horizontal edges between (i, j − 1) and (i, j) for all pairs of such vertices, and diagonal edges between (i − 1, j − 1) and (i, j)
for arbitrary pairs of such vertices. A grid unit of G is a subgraph of G induced by four vertices (i − 1, j − 1), (i − 1, j), 
(i, j − 1), and (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that G has mn grid units.

For any vertex w in G , let iw (resp. jw ) denote the vertical coordinate (resp. the horizontal coordinate) of w , so that w =
(iw , jw). In addition, let dw denote the diagonal coordinate jw − iw of w , and let aw denote the even integer 2�(iw + jw)/2�, 
which approximately represents the anti-diagonal coordinate iw + jw of w . For any vertices w and w ′ in G , let w ↘ w ′
(resp. w ↗ w ′) mean that both iw < iw ′ and jw < jw ′ (resp. iw ≥ iw ′ and jw ≤ jw ′ ) hold. Note that if w ↘ w ′ , then none 
of w ↗ w ′ , w ′ ↗ w , and w ′ ↘ w holds, and also that if w ↗ w ′ and w 
= w ′ , then none of w ↘ w ′ , w ′ ↘ w and w ′ ↗ w
holds.

For any vertices w and w ′ in G , we define the length of a path between w and w ′ as the number of edges in the path. 
The shortest path length between w and w ′ is the least possible number of edges that compose a path between w and 
w ′ . A shortest path between w and w ′ is a path between w and w ′ whose length is equal to the shortest path length 
between w and w ′ . If w ↗ w ′ , then the shortest path length between w and w ′ is exactly equal to (iw − iw ′ ) + ( jw ′ − jw), 
because any shortest path passes through no diagonal edge. In contrast, if w ↘ w ′ , then this length varies depending on 
the location of diagonal edges in G , although it is between max(iw ′ − iw , jw ′ − jw) and (iw ′ − iw) + ( jw ′ − jw), and is hence 
�(aw ′ − aw). For any pair of vertices w and w ′ in G with w ↘ w ′ , let l(w, w ′) denote the shortest path length between w
and w ′ .

The aim of this article is to propose an O (mn)-time constructible data structure that supports O (
√

av − au log1+ε(av −
au))-time queries of l(u, v) for any pair of vertices u and v in G with u ↘ v , where ε is an arbitrary positive constant. We 
design such a data structure based on (a straightforward generalization [19] of) the semi-local LCS length technique due to 
Tiskin [22]. To introduce this technique, we use the following notations and terminology.

For any vertices w and w ′ in G with w ↗ w ′ , we call any shortest path between w and w ′ , hence consisting of 
iw − iw ′ vertical edges and jw ′ − jw horizontal edges in any order, a diagonally-incremental (d-inc) path, because the diagonal 
coordinate of each vertex in the path from w to w ′ increases incrementally. We sometimes treat any non-diagonal (i.e., 
vertical or horizontal) edge as a d-inc path of length one, and also treat any vertex as a d-inc path of length zero. For any 
d-inc path R between w and w ′ with w ↗ w ′ , we call w (resp. w ′) the diagonally lower (d-lower) (resp. diagonally upper
(d-upper)) end vertex of R , and denote it by ∗ R (resp. R∗). If R consists of a single vertex, then both ∗ R and R∗ represent 
the only vertex composing R . For any d-inc path R and any grid unit g , we use R ↘ g (resp. g ↘ R) to mean that there 
exist a vertex w in R and a vertex w ′ in g such that w ↘ w ′ (resp. w ′ ↘ w). Similarly, for any d-inc paths R and R ′ , let 
R ↘ R ′ mean that there exist a vertex w in R and a vertex w ′ in R ′ such that w ↘ w ′ . On the other hand, we use R ↗ R ′
to mean that R∗ ↗ ∗R ′ . Furthermore, we say that non-diagonal edges e1, e2, . . . , e� on any d-inc path are in the diagonally 
ascending (resp. descending) order, if e1 ↗ e2 ↗ · · · ↗ e� (resp. e� ↗ · · · ↗ e2 ↗ e1).

Any pair of d-inc paths both of length more than one that share only their d-lower and d-upper end vertices naturally 
defines a subgraph of G , which we call a d-inc subgraph, as follows. Let P and Q be any d-inc paths composing such a 
pair, where we assume without loss of generality that P ↘ Q because either P ↘ Q or Q ↘ P holds due to the condition 
between P and Q . The d-inc subgraph specified by this pair of d-inc paths, which we denote by G P ,Q , consists of the 
union of all grid units g such that P ↘ g ↘ Q (see Fig. 2(a)). We call P (resp. Q ) the anti-diagonally lower (a-lower) (resp. 
anti-diagonally upper (a-upper)) boundary path of G P ,Q . The boundary path length of a d-inc subgraph is the common length 
of the a-lower and a-upper boundary paths of the d-inc subgraph. We say that a d-inc path R passes across a d-inc subgraph 
G P ,Q , if R partitions G P ,Q into two d-inc subgraphs in the sense that the union of the two d-inc subgraphs composes G P ,Q
while the intersection of the two d-inc subgraphs composes R (again see Fig. 2(a)).

2.1. Semi-local LCS length technique of Tiskin [22]

A straightforward generalization [19] of the semi-local LCS length technique of Tiskin [22] provides an approach to 
managing recurrence relations of values l(u, v) for all pairs of vertices u and v in the boundary paths of a d-inc subgraph 
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Fig. 2. (a) A d-inc subgraph G P ,Q of the same G as in Fig. 1(b) with ∗ P = ∗ Q = (11, 0) and P∗ = Q ∗ = (0, 8), together with a d-inc path R passing across 
G P ,Q , where P , Q , and R are indicated by the solid, dashed, and doubled polygonal lines, respectively; (b) the d-inc bijection βP ,Q for G P ,Q , where each 
dotted curve connects an edge p in P with the edge βP ,Q (p) in Q ; (c) the d-inc subgraphs G P ′,Q ′ and G P ′′,Q ′′ such that the intersection of Q ′ and P ′′ is 
R into which R partitions G P ,Q , with the d-inc bijections βP ′,Q ′ and βP ′′,Q ′′ drawn in the same manner as (b).

of G . For technical reasons, for any vertices w and w ′ in G , let l(w, w ′) = jw ′ − jw , if w ↗ w ′ , and let l(w, w ′) = iw ′ − iw , 
if w ′ ↗ w .

The following lemma claims that for any d-inc subgraph G P ,Q , a bijection mapping any edge in P to an edge in Q
represents such recurrence relations (see also Fig. 2(b)).

Lemma 1. For any d-inc subgraph G P ,Q , there exists a bijection β from the set of all edges in P to the set of all edges in Q such that, 
for any edge p in P and any edge q in Q ,

l(∗ p,q∗) − l(p∗,q∗) = l(∗ p, ∗q) − l(p∗, ∗q) +
{

1 if q = β(p);
0 otherwise.

Furthermore, this β satisfies that p ↘ β(p) for any edge p in P .

Proof. For any edge p in P and any edge q in Q , let δp,q denote the integer such that

l(∗ p,q∗) − l(p∗,q∗) = l(∗ p, ∗q) − l(p∗, ∗q) + δ(p,q). (1)

It follows from definition of l(w, w ′) with w ↗ w ′ or w ′ ↗ w that if either q ↗ p or p ↗ q, then δp,q = 0.
Let p be an arbitrary edge in P and let R be the d-inc path consisting of all edges q in Q such that p ↘ q (i.e., neither 

q ↗ p nor p ↘ q). Since ∗R ↗ p ↗ R∗ , it follows from definition of l(w, w ′) with w ↗ w ′ or w ′ ↗ w that

l(∗ p, R∗) − l(p∗, R∗) = l(∗ p, ∗R) − l(p∗, ∗R) + 1 (2)

holds regardless of whether p is vertical or horizontal. On the other hand, by summing the left and right sides of Equal-
ity (1), respectively, over all edges q in R and removing terms that can cancel each other out, we obtain

l(∗ p, R∗) − l(p∗, R∗) = l(∗ p, ∗R) − l(p∗, ∗R) + ∑
qδp,q. (3)

This can be verified because l(∗ p, v) − l(p∗, v) for any vertex v of R other than the end vertices ∗R and R∗ appears in both 
sides and hence is canceled out. Equalities (2) and (3) imply that 

∑
q δp,q = 1. Thus, if integers δp,q for all edges q in R are 

non-negative, then there exists an edge qp in R such that δp,qp = 1 and δp,q = 0 for any edge q in Q other than qp .
For any edge q in R , any shortest path between ∗ p and q∗ and any shortest path between p∗ and ∗q cross at some 

vertex w . Since l(∗p, w) + l(w, q∗) = l(∗ p, q∗), l(p∗, w) + l(w, ∗q) = l(p∗, ∗q), l(∗ p, ∗q) ≤ l(∗ p, w) + l(w, ∗q), and l(p∗, q∗) ≤
l(p∗, w) + l(w, q∗) hold, we have that l(∗ p, ∗q) + l(p∗, q∗) ≤ l(∗ p, q∗) + l(p∗, ∗q), and hence l(∗ p, q∗) − l(p∗, q∗) ≥ l(∗ p, q∗) −
l(p∗, q∗). This implies that δp,q is non-negative.

From the above, for any edge p in P , there exists an edge qp in Q such that p ↘ qp , δp,qp = 1, and δp,q = 0 for any edge 
q in Q other than qp . By a symmetric argument, we can also show that for any edge q in Q , there exists an edge pq in P
such that pq ↘ q, δpq,q = 1, and δp,q = 0 for any edge p in P other than pq . It is easy to verify that, for any pair of an edge 
p in P and an edge q in Q , q = qp if and only if p = pq . Therefore, the bijection that maps any edge p in P to edge qp in 
Q satisfies the condition of β in the lemma. �
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For any d-inc subgraph G P ,Q , let βP ,Q denote the bijection β in Lemma 1. Since P and Q share no edges, for conve-
nience, we also use βP ,Q to denote the inverse bijection of βP ,Q , so that βP ,Q (p) = q if and only if βP ,Q (q) = p. We call 
βP ,Q the d-inc bijection for G P ,Q . Lemma 1 reveals that, as long as the d-inc bijection for G P ,Q is available, direct access to 
G P ,Q is no longer necessary for determining l(u, v) for any vertex u in P and any vertex v in Q . That is, as claimed in the 
following corollary, we can determine l(u, v) by counting edges p in P such that both p and edge βP ,Q (p) satisfy certain 
conditions with respect to u and v , respectively.

Corollary 1. For any d-inc subgraph G P ,Q , any vertex u in P , and any vertex v in Q , l(u, v) is equal to iv − iu plus the number of 
edges p in P such that u ↗ p and βP ,Q (p) ↗ v.

Proof. Let l̃ be the number of edges p in P such that u ↗ p and βP ,Q (p) ↗ v . By summing the left and right sides of 
the equality in Lemma 1, respectively, over all pairs of an edge p in P with u ↗ p and an edge q in Q with q ↗ v and 
removing terms that can cancel each other out, we obtain

l(u, v) − l(P∗, v) = l(u, ∗ Q ) − l(P∗, ∗ Q ) + l̃.

Furthermore, it follows from v ↗ P∗ , ∗ Q ↗ u, and ∗ Q ↗ P∗ that l(P∗, v) = iv − i P∗ , l(u, ∗ Q ) = i∗ Q − iu , and l(P∗, ∗ Q ) =
i∗ Q − i P∗ , respectively. �

The following lemma provides how to recursively construct the d-inc bijection for any d-inc subgraph of G .

Lemma 2. Let G P ,Q be an arbitrary d-inc subgraph of G and let R be an arbitrary d-inc path passing across G P ,Q . Let G P ′,Q ′ and 
G P ′′,Q ′′ be the d-inc subgraphs of G into which R partitions G P ,Q , where Q ′ and P ′′ share R as their intersection (see Fig. 2(c)). Let 
any edge p in P be called trivial, if either p is an edge in P ′′ or βP ′,Q ′ (p) is an edge in Q , and called involved, otherwise. For any trivial 
edge p in P , if p is an edge in P ′′ , then βP ,Q (p) = βP ′′,Q ′′ (p); otherwise, βP ,Q (p) = βP ′,Q ′ (p). If edges βP ′,Q ′ (r) and βP ′′,Q ′′(r) for 
all edges r in R are available, then edges βP ,Q (p) for all involved edges p in P can be determined in O (� log�) time and O (�) space, 
where � is the length of R.

Proof. Since βP ,Q (p) for any trivial edge p in P is obvious, we focus only on how to determine edges βP ,Q (p) for all 
involved edges p in P in O (� log �) time and O (�) space using edges βP ′,Q ′ (r) and βP ′′,Q ′′ (r) for all edges r in R .

Let D ′ (resp. D ′′) be the matrix consisting of elements D ′[u, w] (resp. D ′′[w, v]) for all pairs of a vertex u in P ′ (resp. 
w in R) and a vertex w in R (resp. v in Q ′′), where D ′[u, w] (resp. D ′′[w, v]) is the number of edges r in R such that 
u ↗ βP ′,Q ′ (r) and r ↗ w (resp. w ↗ r and βP ′′,Q ′′ (r) ↗ v). Let D be the min-sum product of matrices D ′ and D ′′ , which 
consists of elements D[u, v] for all pairs of a vertex u in P ′ and a vertex v in Q ′′ , where D[u, v] is the minimum of 
D ′[u, w] + D ′′[w, v] over all vertices w in R . It suffices to show that D[u, v] is equal to the number of involved edges p in 
P such that u ↗ p and βP ,Q (p) ↗ v . This is because it follows from [23,18] that, given edges βP ′,Q ′ (r) and edges βP ′′,Q ′′(r)
for all edges r in R as a representation of matrices D ′ and D ′′ as input, their min-sum product D (represented in the same 
manner as D ′ and D ′′) can be obtained in O (� log �) time and O (�) space.

Let u be an arbitrary vertex in P ′ and let v be an arbitrary vertex in Q ′′ . Since any shortest path between u and v shares 
at least one vertex with R , l(u, v) is equal to the minimum of l(u, w) + l(w, v) over all vertices w in R . For any vertex w
in R , it follows from Corollary 1 that

l(u, w) + l(w, v) = (iv − iu) + D ′[u, w] + D ′′[w, v] + c(u, v),

where c(u, v) is the sum of the number of edges p in P ′′ such that u ↗ p and βP ′′,Q ′′ (p) ↗ v and the number of edges q
in Q ′ such that u ↗ βP ′,Q ′ (q) and q ↗ v . Therefore, we have that D[u, v] + c(u, v) = l(u, v) − (iv − iu), which is equal to 
the number of edges p in P with u ↗ p and βP ,Q (p) ↗ v due to Corollary 1. On the other hand, c(u, v) is equal to the 
number of trivial edges p in P such that u ↗ p and βP ,Q (p) ↗ v . Thus, D[u, v] represents the number of involved edges p
in P such that u ↗ p and βP ,Q (p) ↗ v . �

The following corollary of Lemma 2 is useful to deal with the d-inc bijection without explicitly determining it.

Corollary 2. Let G P ,Q and G P ′,Q ′ be arbitrary d-inc subgraphs of G. For any edge p shared by P and P ′ and any vertex v shared by 
Q and Q ′ , βP ,Q (p) ↗ v if and only if βP ′,Q ′ (p) ↗ v. Similarly, for any vertex u shared by P and P ′ and any edge q shared by Q and 
Q ′ , u ↗ βP ,Q (q) if and only if u ↗ βP ′,Q ′ (q).

Proof. By symmetry, we show only the first half of the corollary. Let p be an arbitrary edge shared by P and P ′ and let 
v be an arbitrary vertex shared by Q and Q ′ . If p ↗ v , then both βP ,Q (p) ↗ v and βP ′,Q ′ (p) ↗ v hold due to Lemma 1. 
Similarly, if v ↗ p, then both v ↗ βP ,Q (p) and v ↗ βP ′,Q ′ (p) hold.

Suppose that p ↘ v , and let G P0,Q 0 be the d-inc subgraph consisting of all grid units g of G such that p ↘ g ↘ v . 
Consider an arbitrary sequence of distinct grid units g1, g2, . . . , g� of G that are not ones in G P0,P0 such that, for any index 
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k with 1 ≤ k ≤ �, the union of G P0,Q 0 and g1, g2, . . . , gk composes a d-inc subgraph, which we denote by G Pk ,Q k , p is an 
edge in Pk , and v is a vertex in Q k . There exists such a sequence with G P�,Q �

= G P ,Q , and analogously with respect to 
G P ′,Q ′ . Since G Pk,Q k is partitioned into d-inc subgraphs G Pk−1,Q k−1 and gk , it follows from Lemma 2 that βPk−1,Q k−1(p) ↗ v
if and only if βPk,Q k (p) ↗ v . This implies by induction that βP0,Q 0(p) ↗ v if and only if βP�,Q �

(p) ↗ v , which further 
implies that βP ,Q (p) ↗ v if and only if βP ′,Q ′ (p) ↗ v . �
3. Basic data structure supporting linear-time queries

We start with designing a basic data structure that is O (mn)-time constructible (hence is of O (mn) size) and supports 
O (av −au)-time queries of l(u, v) for any pair of vertices u and v in G with u ↘ v , where we recall that av −au = �(l(u, v)). 
This data structure will be modified in Section 4 to support faster queries. In what follows, we assume without loss of 
generality that m ≥ n.

To define the basic data structure, we introduce the d-inc bijections for the following d-inc subgraphs of G each in the 
shape of an anti-diagonal strip.

Definition 1. For any even integer a′′ with 0 < a′′ < m + n, let Ra′′ denote the d-inc path passing across G such that aw = a′′
for any vertex w in the path. Let Ra(0,0)

(resp. Ra(m,n)
) denote the d-inc path consisting only of a single vertex (0, 0) (resp. 

(m, n)). For any even integers a and a′ with 0 ≤ a < a′ ≤ m + n, the anti-diagonal strip (a-strip) between a and a′ of width 
a′ − a, which we denote Ga..a′ , is defined as the d-inc subgraph of G consisting of all grid units g such that Ra ↘ g ↘ Ra′ . 
Let Pa..a′ and Q a..a′ denote the a-lower and a-upper boundary paths of Ga..a′ , respectively, and let βa..a′ denote the d-inc 
bijection for Ga..a′ . As an implementation of βa..a′ , we adopt the array of size O (n) consisting of edges βa..a′ (p) for all edges 
p in Pa..a′ with (0, 0) ↘ p or (0, 0) ↗ p and edges βa..a′ (q) for all edges q in Q a..a′ with q ↗ (m, n) or q ↘ (m, n).

The reason for defining Ga..a′ only for even integers a and a′ is that if a and a′ are too close together, such as a′ = a + 1, 
then Ga..a′ cannot be defined as a d-inc subgraph. Moreover, this restriction on a and a′ does not affect our data structure 
design.

The basic data structure, which we denote by B, consists of the d-inc bijections for all a-strips between a and a′ such 
that the width a′ − a is a power of two and both a and a′ are multiples of this power. We call any such a-strip basic. Since 
there are O (m/2k) basic a-strips of width 2k for each positive integer k, and the d-inc bijection for each basic a-strip is an 
array of O (n) edges, B can be stored in O (mn) space. Later we will show that B is O (mn)-time constructible.

Suppose that B is available. To calculate l(u, v), we use the d-inc bijections for all basic a-strips Ga..a′ that are maximal 
in the sense that Ga..a′ is the only basic a-strip Gb..b′ that satisfies both au ≤ b ≤ a and a′ ≤ b′ ≤ av . We call any such a-strip 
(u, v)-related. Due to this definition, the width of any (u, v)-related a-strip is at most 2�log2(av−au)� . Furthermore, any basic 
a-strip Ga..a′ of width 2k such that au + 2k ≤ a and a′ ≤ av − 2k is not (u, v)-related because either Ga−2k ..a′ or Ga..a′+2k is a 
basic a-strip. Hence, for any integer k with 1 ≤ k ≤ �log2(av − au)�, there exist at most two (u, v)-related a-strips of width 
2k . The reason for considering (u, v)-related a-strips is that Gau ..av is partitioned into these O (log(av − au)) (u, v)-related 
a-strips (see Fig. 3(a)).

A naive algorithm determines l(u, v) in O (n log n log(av − au)) time as follows. Using the d-inc bijections for all (u, v)-
related a-strips, which are available in B, the algorithm constructs the d-inc bijection for Gau ..av in O ((log(av − au))n log n)

time based on Lemma 2. After doing this, it counts the number of edges p in Pau ..av such that u ↗ p and βau ..av (p) ↗ v in 
O (n) time to apply Corollary 1.

To improve execution time of the above naive algorithm to O (av − au), our idea is to consider a subgraph G�
a..a′ of each 

a-strip Ga..a′ with au ≤ a and a′ ≤ av , which is defined by focusing only on grid units between u and v as follows. For any 
pair of even integers a and a′ with au ≤ a < a′ ≤ av , let G�

a..a′ denote the d-inc subgraph consisting of the union of all grid 
units g in Ga..a′ such that u ↘ g ↘ v (see Fig. 3(b)). The boundary path length of G�

a..a′ for any (u, v)-related Ga..a′ is hence 
only O (a′ − a). Utilizing this property, we apply Corollary 1 somehow to determine l(u, v).

Since no confusion arises, we use superscript � in notation G�
a..a′ instead of specifying (u, v) for simplicity. Adopting this 

style, we also introduce the following notations. Let β�
a..a′ denote the d-inc bijection for G�

a..a′ , and let P�
a..a′ and Q �

a..a′ denote 
the a-lower and a-upper boundary paths of G�

a..a′ , respectively. For any even integer a′′ with au < a′′ < av , let R�
a′′ denote 

the d-inc path passing across G�
au ..av

such that aw = a′′ for any vertex w in the path (i.e., the path consisting of all edges r
in Ra′′ with u ↘ r ↘ v). Let R�

au
and R�

av
denote the d-inc paths u and v of length zero, respectively. Let u�

a′′ and v�
a′′ denote 

the d-upper and d-lower end vertices of R�
a′′ , respectively. Hence, for any a-strip Ga..a′ with au ≤ a < a′ ≤ av , P�

a..a′ and Pa..a′
(resp. Q �

a..a′ and Q a..a′ ) share all edges in R�
a (resp. R�

a′ ). Furthermore, for any edge p in any of P�
a..a′ or Pa..a′ , u ↗ p if and 

only if u�
a ↗ p. Similarly, for any edge q in any of Q �

a..a′ or Q a..a′ , q ↗ v if and only if q ↗ v�
a′ .

For any even integer a with au ≤ a < av , let �a denote the set of all edges p in R�
a with β�

a..av
(p) ↗ v , and let πa denote 

the number of all edges p in P�
a..av

such that u ↗ p and β�
a..av

(p) ↗ v . Since l(u, v) can be calculated as iv − iu +πau due to 
Corollary 1, if �a′ and πa′ can be updated to �a and πa in O (a′ − a) time for any (u, v)-related a-strip Ga..a′ , then l(u, v)

can be determined in O (av − au) time. Data structure B allows us to take this approach as shown below.
For any (u, v)-related a-strip Ga..a′ , let �′

a (resp. �′′
a ) denote the set of all edges p in R�

a such that β�
a..av

(p) ↗ v�
a′ (resp. 

v�′ ↗ β�
a..a (p) ↗ v), so that �a is partitioned into �′

a and �′′
a . Similarly, let π ′

a (resp. π ′′
a ) denote the number of all edges 
a v
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Fig. 3. (a) The (u, v)-related a-strips, composing Gau ..av , for u = (39, 19) and v = (51, 40), where m = 55, n = 48, and the dotted box indicates G�

au ..av
; (b) 

G�

64..80 for the same u and v as (a).

p in P�
a..av

with u�
a ↗ p such that β�

a..av
(p) ↗ v�

a′ (resp. v�
a′ ↗ β�

a..av
(p) ↗ v), so that πa is decomposed into the sum of π ′

a
and π ′′

a . We determine all of �′
a , �′′

a , π ′
a , and π ′′

a from �a′ and πa′ previously determined for each (u, v)-related a-strip 
Ga..a′ in the descending order of a.

The following facts claim that �′
a and π ′

a can be determined only from the d-inc bijection for Ga..a′ .

Fact 1. For any pair of even integers a and a′ with au ≤ a < a′ ≤ av , �′
a consists of all edges p in R�

a with βa..a′(p) ↗ v�
a′ .

Proof. Any edge in R�
a is shared by P�

a..av
and Pa..a′ and v�

a′ is shared by Q �
a..av

and Q a..a′ (see Fig. 4 (a)). Thus, the fact 
follows from Corollary 2. �
Fact 2. For any pair of even integers a and a′ with au ≤ a < a′ ≤ av , π ′

a is equal to the number of edges p in Pa..a′ such that u�
a ↗ p

and βa..a′ (p) ↗ v�
a′ .

Proof. Let P− (resp. P /) be the d-inc path consisting of all edges p in P�
a..av

(resp. Pa..a′ ) with u ↗ p ↘ v�
a′ , and let 

Q − (resp. Q /) be the d-inc path consisting of all edges q in Q �
a..av

(resp. Q a..a′ ) with u ↘ q ↗ v�
a′ (see Fig. 4 (b)). Since 

p ↘ β�
a..av

(p) (resp. p ↘ βa..a′ (p)) for any edge p in P�
a..av

(resp. Pa..a′ ) due to Lemma 1, it suffices to show that the number 
of edges p in P− such that β�

a..av
(p) is an edge in Q − is equal to the number of edge p in P / such that βa..a′ (p) is an edge 

in Q / . From Corollary 2, both the above numbers of edges are equal to the number of edges p in P− such that βP ,Q (p) is 
an edge in Q / , where G P ,Q is an arbitrary d-inc subgraph of G such that any edge in P− is an edge in P and any edge in 
Q / is an edge in Q . �

Unlike in the case of determining �′
a and π ′

a , we use �a′ as well as the d-inc bijection for Ga..a′ to determine �′′
a and 

π ′′
a . This is the reason why we determine not only πa but also �a . From Corollary 2 and Lemma 1, for any edge p in P�

a..a′ , 
if v�

a′ ↗ β�
a..av

(p) ↗ v , then β�
a..a′ (p) is an edge in R�

a′ . Furthermore, πa′ is equal to the number of edges p in P�
a..av

with 
β�

a..av
(p) ↗ v that is not an edge in P�

a..a′ . Hence, to determine �′′
a and π ′′

a , we concentrate on edges p in P�
a..a′ such that 

β� ′ (p) is an edge in R�′ .
a..a a
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Fig. 4. (a) Path R�

a , edges q in Q �

a′ with q ↗ v�

a′ , and edges q in Q a..a′ with q ↗ v�

a′ ; (b) paths P− , P / , Q − , and Q / , both for the same G , u, and v as 
Fig. 3, where Ga..a′ = G64..80.

For any pair of vertices y and z in G , let l̃(y, z) denote l(y, z) − (iz − i y). It follows from Corollary 1 that, for any edge p
in P�

a..a′ ,

l̃(∗ p, v) = l̃(p∗, v) +
{

1 if β�
a..av

(p) ↗ v;
0 otherwise.

We determine �′′
a and π ′′

a based on this observation, using the following array somehow. For any vertex w in P�
a..a′ , let Lw

denote the array of Lw [x] = l̃(w, x) + l̃(x, v) over all vertices x in R�
a′ , so that l̃(w, v) is represented as the minimum element 

of Lw . It follows from Corollary 1 that, for any edge p in P�
a..a′ and any vertex x in R�

a′ ,

l̃(∗ p, x) = l̃(p∗, x) +
{

1 if β�
a..a′(p) ↗ x;

0 otherwise.

Therefore, Lp∗ can be updated to L∗ p by increasing Lp∗ [x] by one for each vertex x such that β�
a..a′ (p) ↗ x.

A standard technique [14,18,19] allows us to maintain Lw by focusing only on edges r in R�
a′ such that Lw [x] > Lw [r∗] for 

all vertices x with x ↗ r. Let L̂w denote the list of all such edges r in the diagonally ascending order. Since the difference 
Lw [∗r] − Lw [r∗] for any edge r in R�

a′ is one of −1, 0, or 1, if r is the hth edge in L̂w , then Lw [r∗] = Lw [v�
a′ ] −h. This implies 

that l̃(w, v) is equal to Lw [v�
a′ ] minus the number of edges in L̂w . Furthermore, for any edge p in P�

a..a′ , L̂ p∗ can be updated 
to L̂∗ p only by deleting the first edge r such that β�

a..a′ (p) ↗ r, if β�
a..a′ (p) is an edge in R�

a′ and such r exists, or remaining 
unchanged, otherwise. Therefore, for any edge p in P�

a..a′ such that β�
a..a′ (p) is an edge in R�

a′ , L̂ p∗ has an edge r such that 
β�

a..a′ (p) ↗ r if and only if l̃(∗ p, v) = l̃(p∗, v) + 1, which holds if and only if β�
a..av

(p) ↗ v as mentioned earlier.

To implement L̂w so as to allow us to efficiently update L̂ p∗ to L̂∗ p using β�
a..a′ (p), we can utilize the algorithm for 

the static tree set union problem [9]. For any vertex w in P�
a..a′ , if we know which edges compose L̂w , then this algorithm 

initializes data structure L̂ to L̂w in time linear in the number of edges in R�
a′ . Furthermore, for each edge q in any sequence 

of distinct edges in R�
a′ , this algorithm deletes the first edge r with q ↗ r from L̂, if any, or does nothing, otherwise, in 

amortized O (1) time.
Adopting the above implementation L̂ , we initially construct L̂w for the d-upper end vertex w of P�

a..a′ , update it to L̂u�

a

to determine π ′′
a , which is equal to the sum of πa′ and the number of elements deleted from L̂ during this update, and use 

L̂u�

a
to obtain �′′

a based on the following facts.

Fact 3. For any pair of even integers a and a′ with au ≤ a < a′ ≤ av , L̂w for the d-upper end vertex w of P�
a..a′ consists of all edges in 

�a′ .

Proof. For any vertex x in R�
a′ , l̃(w, x) = 0 due to x ↗ w , and l̃(x, v) is equal to the number of edges r in R�

a′ with x ↗ r and 
β�

a′..av
(r) ↗ v due to Corollary 1. Thus, the fact holds because �a′ consists of all edges r in R�

a′ such that β�
a′..av

(r) ↗ v . �
Fact 4. For any pair of even integers a and a′ with au ≤ a < a′ ≤ av , L̂u�

a
can be obtained from L̂w for the d-upper end vertex w of 

P� ′ by deleting the first element r with q ↗ r, if any, for each edge q in R�′ with u�
a ↗ βa..a′ (q) in an arbitrary order.
a..a a
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Fig. 5. (a) The union of G�

a..a′ , G�

a′ ..av
, and edges p in Pa..a′ such that u�

a ↗ p ↘ w for the same G , u, and v as Fig. 3, where Ga..a′ = G64..80; (b) the same 
as (a) with Ga..a′ = G60..64.

Proof. Since u�
a is shared by Pa..a′ and P�

a..a′ and any edge in R�
a′ is shared by Q a..a′ and Q �

a..a′ , it follows from Corollary 2
that, for any edge q in R�

a′ , u�
a ↗ βa..a′ (q) if and only if u�

a ↗ β�
a..a′ (q) (see Fig. 5). Hence, it suffices to show the fact with 

βa..a′ (q) replaced by β�
a..a′ (q).

Let P̂ be the set of all edges p in P�
a..a′ with u�

a ↗ p such that β�
a..a′ (p) is an edge in R�

a′ , and let Q̂ be the set of 
edges β�

a..a′ (p) for all edges p in P̂ . From this definition, L̂u�

a
can be obtained from L̂w by deleting the first edge r such 

that β�
a..a′ (p) ↗ r, if any, for each edge p in P̂ in the diagonally descending order. Let Q̂ consist of edges q1, q2, . . . , q� . For 

any permutation 
 on indices 1, 2, . . . , �, let L̂
 denote the list obtained from L̂w by deleting the first edge r with q ↗ r, 
if any, for each edge q in Q̂ in the order of q
(1)], q
(2), . . . , q
(�) . Hence, L̂
 = L̂u�

a
, if 
 is the permutation such that 

β�
a..a′ (q
(�)) ↗ β�

a..a′ (q
(�−1)) ↗ · · · ↗ β�
a..a′ (q
(1)). It is easy to verify that L̂
 = L̂
 ′

for any permutation 
 and any index 
h with 2 ≤ h ≤ �, where 
 ′ is the permutation obtained from 
 by exchanging 
(h − 1) and 
(h). Thus, we can prove 
by induction that, independent of 
 , L̂u�

a
= L̂
 holds. �

Fact 5. For any pair of even integers a and a′ with au ≤ a < a′ ≤ av , �′′
a can be obtained from L̂u�

a
by updating L̂ p∗ to L̂∗ p for each 

edge p in R�
a in the diagonally descending order and collecting all edges p such that βa..a′(p) is an edge in R�

a′ and L̂ p∗ has an edge r
with βa..a′(p) ↗ r.

Proof. The fact holds because for any edge p in R�
a , any of β�

a..a′ (p) or βa..a′(p) is an edge in R�
a′ if and only if β�

a..a′ (p) =
βa..a′ (p). �

From the above facts, we have the following lemma.

Lemma 3. Data structure B supports O (av − au)-time queries of l(u, v) for any pair of vertices u and v in G with u ↘ v using 
Algorithm Basic(u, v) presented in Fig. 6.

Proof. It suffices to show that Algorithm Basic(u, v) outputs l(u, v) in O (av − au) time. After an appropriate initialization 
of �av and πav by lines 1 and 2 of the algorithm, for each (u, v)-related a-strip Ga..a′ in the descending order of a, lines 4 
through 18 determine �a and πa in O (a′ − a) time using �a′ , πa′ , and the d-inc bijection for Ga..a′ as follows. Recall that 
the boundary path length of G�

a..a′ is O (a′ − a) and the d-inc bijection for Ga..a′ is available in B. Lines 4 and 5 initialize 
�a to the empty set and πa to πa′ . Lines 6 and 7 add all edges in �′

a to �a in O (a′ − a) time based on Fact 1. Lines 8 
and 9 increase πa by π ′

a based on Fact 2. This is done in O (a′ − a) time because any edge p in Pa..a′ with u�
a ↗ p and 

βa..a′ (p) ↗ v�
a′ satisfies that p ↗ v�

a′ due to Lemma 1, and the number of such edges p is O (a′ − a). Line 10 initializes L̂

to L̂w for the d-upper end vertex w of P�
a..a′ in O (a′ − a) time based on Fact 3, where L̂ is implemented by the algorithm 

for the static tree set union problem [9]. Lines 11 through 14 increase πa by π ′′
a in O (a′ − a) time based on Fact 4. Line 

15 through 18 add all edges in �′′
a to �a in O (a′ − a) time based on Fact 5. Thus, lines 4 though 18 determine �a and πa
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1: Let �av be the empty set;
2: let πav = 0;
3: for each (u, v)-related a-strip Ga..a′ in the descending order of a,
4: let �a be the empty set;
5: let πa = πa′ ;
6: for each edge p in R�

a with βa..a′ (p) ↗ v�

a′ ,
7: add p to �a;
8: for each edge p in Pa..a′ with u�

a ↗ p and βa..a′ (p) ↗ v�

a′ ,
9: increase πa by one;

10: let L̂ be the list of all edges r in �a′ in the diagonally ascending order;
11: for each edge q in R�

a′ (in an arbitrary order),

12: if u�

a ↗ βa..a′ (q) and L̂ has an edge r with q ↗ r , then
13: delete the first such r from L̂;
14: increase πa by one;
15: for each edge p in R�

a in the diagonally descending order,
16: if βa..a′ (p) is an edge in R�

a′ and L̂ has an edge r with βa..a′ (p) ↗ r , then

17: delete the first such r from L̂;
18: add p to �a;
19: output iv − iu + πau .

Fig. 6. Algorithm Basic(u, v).

Fig. 7. (a) Basic a-strip G80..88 of width 8 and (b) basic a-strips G80..84 and G84..88 of width 4, into which G80..88 is partitioned, for the same G as Fig. 3, 
where dotted lines partition the a-strips into basic triangles of their width.

correctly in O (a′ − a) time. Since the sum of a′ − a over all (u, v)-related a-strips Ga..a′ is O (av − au), Algorithm Basic(u, v)

outputs l(u, v) in O (av − au) time. �
As mentioned before, our basic data structure is O (mn)-time constructible.

Lemma 4. Data structure B can be constructed in O (mn) time.

Proof. To efficiently construct the d-inc bijections for all basic a-strips, we utilize the fact that any basic a-strip can be 
decomposed into d-inc subgraphs each in the shape of a half-square triangle as follows. Let Ga..a′ be an arbitrary basic 
a-strip of width 2k . For any vertex w in Pa..a′ with w ↘ Q a..a′ such that iw (resp. jw ) is a non-zero multiple of 2k , consider 
the d-inc path R passing across Ga..a′ such that ∗R = w (resp. R∗ = w) and any edge in R is horizontal (resp. vertical). All 
of O (n/2k) such d-inc paths R partition Ga..a′ into O (n/2k) d-inc subgraphs, which we call basic triangles between a and a′
of width 2k (see Fig. 7). Let the d-inc bijection for any basic triangle G P ,Q of width 2k be implemented as the array of size 
O (2k) consisting of edges βP ,Q (p) for all edges p in P and edges βP ,Q (q) for all edges q in Q .

To construct B, we use the d-inc bijections for all basic triangles. For any basic triangle of width 2, we can construct the 
d-inc bijection in O (1) time from scratch. On the other hand, any basic triangle of width 2k with k ≥ 2 can be partitioned 
into at most four basic triangles of width 2k−1. Hence, if the d-inc bijections for all of such basic triangles of width 2k−1

are available, then the d-inc bijection for the basic triangle of width 2k can be obtained in O (2kk) time due to Lemma 2. 
There exist O ((m/2k)(n/2k)) basic triangles of width 2k for each positive integer k. Thus, by constructing the d-inc bijection 
for each basic triangle in ascending order of its width, the d-inc bijections for all basic triangles can be obtained in O (mn)

time, because 
∑∞

k=1(2kk)(m/2k)(n/2k) = O (mn).
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Fig. 8. The same Gau ..av as Fig. 3 with ũ = (38,26) and ṽ = (54,35).

Recall that any basic a-strip of width 2k can be partitioned into O (n/2k) basic triangles of width 2k . Using the d-
inc bijections for all such basic triangles, the d-inc bijection for the basic a-strip can be obtained in O (kn) time due to 
Lemma 2. Since there are O (m/2k) basic a-strips of width 2k for each positive integer k, the d-inc bijections for all basic 
a-strips can be obtained in O (mn) time, because 

∑∞
k=1(kn)(m/2k) = O (mn). �

4. Proposed data structure, supporting fast queries

Let ε be an arbitrary positive constant. This section modifies the basic data structure B presented in Section 3, without 
increasing its asymptotic construction time, so as to support O (

√
av − au log1+ε(av − au))-time queries of l(u, v) for any 

pair (u, v) of vertices in G with u ↘ v , where we recall again that av − au = �(l(u, v)).
In what follows, for any positive integer k, let 2〈k/2〉 denote the greatest power of two that is less than or equal to 

2k/2k1+ε . Furthermore, for any even integers a and a′ with 0 ≤ a < a′ ≤ m + n, let k(a, a′) denote the greatest integer k
such that there exists a basic a-strip Gb..b′ of width 2k with a ≤ b and b′ ≤ a′ . Note that 2k(au ,av ) = �(av − au) and hence 
2〈k(au ,av )/2〉 = �(

√
av − au log1+ε(av − au)).

Our approach to improving the query time is to skip a dominant part of the process executed by Algorithm Basic(u, v). 
This is done by using an approximation l(ũ, ̃v) of l(u, v), together with the d-inc bijection for Gãu ..ãv

such that ũ and ṽ are 
respectively vertices in the a-lower and a-upper boundary paths of Gãu ..ãv

, where (ũ, ̃v) is a certain pair of vertices in G
such that both l(u, ̃u) and l(ṽ, v) are O (2〈k(au ,av )/2〉). We will hence design later the proposed data structure so as to contain 
l(ũ, ̃v), if ũ ↘ ṽ , as well as the d-inc bijection for Gãu ..ãv

, for any pair of vertices u and v in G with u ↘ v .
As ãu (resp. ãv ), we adopt the least (resp. greatest) multiple of 2〈k(au ,av )/2〉 such that au ≤ ãu (resp. ãv ≤ av ), so that 

Gãu ..ãv
is the union of all (u, v)-related a-strips Ga..a′ of width greater than or equal to 2〈k(au ,av )/2〉 (see Fig. 8). Suppose that 

line 3 of Algorithm Basic(u, v) chooses Gãu ..ãv
as Ga..a′ , instead of any (u, v)-related a-strip of width greater than or equal 

to 2〈k(au ,av )/2〉 . Since both the lengths of R�̃
au

and R�̃
av

are O (2〈k(au ,av )/2〉), in execution of lines 4 through 18 of Algorithm 
Basic(u, v) for Gãu ..ãv

as Ga..a′ , lines 8 and 9 are executed in O (ãv − ãu) time while all the other lines are executed in 
O (2〈k(au ,av )/2〉) time. Thus, if execution time of lines 8 and 9 for Gãu ..ãv

is improved to O (2〈k(au ,av )/2〉) somehow using 
l(ũ, ̃v), Algorithm Basic(u, v) runs in O (2〈k(au ,av )/2〉) time.
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1: Do the same as lines 1 and 2 of Algorithm Basic(u, v);
2: for each Ga..a′ of Gãu ..ãv

and all (u, v)-related a-strips of width less than 2〈k(au ,av )/2〉 in the descending order of a,
3: do the same as lines 4 through 7 of Algorithm Basic(u, v);
4: if a = ãu and ũ ↘ ṽ , then
5: increase πa by l(ũ, ̃v) − (i ṽ − iũ);
6: for each edge p in Pa..a′ with u�

a ↗ p ↗ ũ and βa..a′ (p) ↗ v�

a′ ,
7: increase πa by one;
8: for each edge q in Q a..a′ with ṽ ↗ q ↗ v�

a′ and ũ ↗ βa′ ..a(q),
9: increase πa by one,

10: otherwise,
11: do the same as lines 8 and 9 of Algorithm Basic(u, v);
12: do the same as lines 10 through 18 of Algorithm Basic(u, v);
13: output iv − iu + πau .

Fig. 9. Algorithm Fast(u, v), where ãu (resp. ãv ) is the least (resp. greatest) multiple of 2〈k(au ,av )/2〉 such that au ≤ ãu (resp. ãv ≤ av ), and ũ (resp. ṽ) is the 
vertex in Pãu ..ãv

(resp. Q ãu ..ãv
) such that dũ (resp. dṽ ) is the least (resp. greatest) multiple of 2〈k(au ,av )/2〉 that is greater (resp. less) than or equal to du

(resp. dv ), if any, or the d-upper (resp. d-lower) end vertex of Pãu ..ãv
(resp. Q ãu ..ãv

), otherwise.

To achieve the above improvement, we adopt as ũ (resp. ṽ) the vertex in Pãu ..ãv
(resp. Q ãu ..ãv

) such that dũ (resp. dṽ ) 
is the least (resp. greatest) multiple of 2〈k(au ,av )/2〉 that is greater (resp. less) than or equal to du (resp. dv ), if any, or the 
d-upper (resp. d-lower) end vertex of Pãu ..ãv

(resp. Q ãu ..ãv
), otherwise. Hence, the number of edges p (resp. q) in Pãu ..ãv

(resp. Q ãu ..ãv
) such that u ↗ p ↗ ũ (resp. ṽ ↗ q ↗ v) is O (2〈k(au ,av )/2〉). Recall that lines 8 and 9 of Algorithm Basic(u, v)

determine π ′
ãu

as explained in the proof of Lemma 3, and also recall that π ′
ãu

is equal to the number of edges p in Pãu ..ãv

such that u�̃
au

↗ p and βãu ..ãv
(p) ↗ v�̃

av
as claimed in Fact 2. If ṽ ↗ ũ, then the number of edges p in Pãu ..ãv

with u�̃
au

↗ p

and βãu ..ãv
(p) ↗ v�̃

av
is O (2〈k(au ,av )/2〉), implying that lines 8 and 9 with no modification execute in O (2〈k(au ,av )/2〉) time 

using the d-inc bijection for Gãu ..ãv
. Otherwise, we can decompose π ′

ãu
as follows.

Fact 6. The sum of l(ũ, ̃v) − (i ṽ − iũ), the number of edges p in Pãu ..ãv
such that u�̃

au
↗ p ↗ ũ and βãu ..ãv

(p) ↗ v�̃
av

, and the number 
of edges q in Q ãu ..ãv

such that ṽ ↗ q ↗ v�̃
av

and ũ ↗ βãu ..ãv
(q) is equal to π ′

ãu
.

Proof. Among the three items claimed to compose π ′
ãu

, the first item is equal to the number of edges p in Pãu ..ãv
such that 

ũ ↗ p and βãu ..ãv
(p) ↗ ṽ due to Corollary 1. The third item is equal to the number of edges p in Pãu ..ãv

such that ũ ↗ p
and ṽ ↗ βãu ..ãv

(p) ↗ v�̃
av

. Thus, the fact follows from Corollary 1 and definition of π ′
ãu

. �
Due to this decomposition, we can determine π ′

ãu
also in O (2〈k(au ,av )/2〉) time using the d-inc bijection for Gãu ..ãv

. Ac-

cording to the above, we can modify Algorithm Basic(u, v) so as to execute in O (2〈k(au ,av )/2〉) time as Algorithm Fast(u, v)

presented in Fig. 9.
The data structure we propose consists of two components, set S containing the d-inc bijections for Gãu ..ãv

and all 
(u, v)-related a-strips of width less than 2〈k(au ,av )/2〉 and set L containing l(ũ, ̃v) for all pairs (u, v) of vertices in G with 
u ↘ v . We define these components as follows.

Definition 2. For any positive integer k and any multiples a and a′ of 2〈k/2〉 with 0 ≤ a < a′ ≤ m + n such that k(a, a′) = k, 
let the a-strip between a and a′ be called regular. Let S denote the set of the d-inc bijections for all regular a-strips.

Definition 3. Let the length collection for any regular strip Ga..a′ be the array of lengths l(w, x) for all pairs of a vertex w
in P and a vertex x in Q with w ↘ x such that both dw and dx are multiples of 2〈k(a,a′)/2〉 , where P (resp. Q ) is the path 
consisting of all edges p (resp. q) in Pa..a′ (resp. Q a..a′ ) such that p ↗ (0, 0) (resp. (m, n) ↗ q) does not hold. Let L denote 
the set of the length collections for all regular a-strips.

From Definitions 2 and 3, we immediately obtain the following lemma because 2〈k(au ,av )/2〉 = �(
√

av − au log1+ε(av −
au)).

Lemma 5. Data structure (S, L) supports O (
√

av − au log1+ε(av − au))-time queries of l(u, v) for any pair of vertices u and v in G
with u ↘ v using Algorithm Fast(u, v).

Data structure (S, L) is O (mn)-time constructible as follows.

Lemma 6. Set S can be constructed in O (mn) time.

Proof. Suppose that the d-inc bijections for all basic triangles introduced in the proof of Lemma 4 are available because 
they can be prepared in O (mn) time. We obtain the d-inc bijection for each regular a-strip in ascending order of its width. 
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Let k be an arbitrary positive integer and let b and b′ be arbitrary multiples of 2k with 0 ≤ b < b′ ≤ m + n such that 
k(b, b′) = k. Hence, Gb..b′ is either a basic a-strip of width 2k or a non-basic a-strip of width 2k+1 consisting of the union 
of two basic a-strips of width 2k . There are O ((2k/2〈k/2〉)2) regular a-strips Ga..a′ such that b − 2k < a ≤ b, b′ ≤ a′ < b′ + 2k , 
and both a and a′ are multiples of 2〈k/2〉 . If a = b and a′ = b′ , then Ga..a′ is decomposed into the union of O (n/2k) basic 
triangles of width 2k , implying that the d-inc bijection for Ga..a′ can be obtained in O (kn) time. Otherwise, Ga..a′ can be 
decomposed into the union of O (n/2〈k/2〉) basic triangles of width 2〈k/2〉 and any of Ga+2〈k/2〉..a′ with a < b or Ga..a′−2〈k/2〉
with b′ < a′ , implying that the d-inc bijection for Ga..a′ can be obtained in O ((log2 2〈k/2〉)n) time. Hence, the d-inc bijections 
for all such regular a-strips Ga..a′ for each pair of b and b′ can be obtained in O ((k + (2k/2〈k/2〉)2 log2 2〈k/2〉)n) time. Since 
2〈k/2〉 = �(2k/2k1+ε) and hence log2 2〈k/2〉 = �(k), this execution time is O (2kn/k1+2ε). There exist O (m/2k) pairs of b and 
b′ for each k. Therefore, the lemma follows from the fact that the sum of 1/k1+2ε over all positive integers k is O (1). �
Lemma 7. If S is available, then L can be constructed in O (mn) time.

Proof. Let Ga..a′ be an arbitrary regular a-strip. Since the number of regular a-strips is O (m) as shown in the proof of 
Lemma 6, it suffices to show below how to obtain the length collection for Ga..a′ in O (n) time.

Let P and Q be the paths in Definition 3. Let W (resp. X) be the set of all vertices w (resp. x) in P (resp. Q ) such that 
dw (resp. dx) is a multiple of 2〈k(a,a′)/2〉 . Let Y be the set of all pairs (w, x) of w in W and x in X such that w ↘ x, so that 
the length collection for Ga..a′ consists of lengths l(w, x) for all pairs (w, x) in Y . For any vertex w (resp. x) in W (resp. X), 
let w ′ (resp. x′) denote the vertex in W (resp. X) such that dw ′ = dw + 2〈k/2〉 (resp. dx′ = dx − 2〈k/2〉), if any, or the d-upper 
(resp. d-lower) end vertex of Pa..a′ (resp. Q a..a′ ), otherwise. For any pair (w, x) in Y , let #(w, x) (resp. #w(x)) denote the 
number of edges p in Pa..a′ such that w ↗ p ↗ w ′ (resp. w ↗ p) and x′ ↗ βa..a′ (p) ↗ x.

We obtain the length collection for each Ga..a′ in O (n) time by executing the following four steps. The first step initializes 
#(w, z) to zero for all pairs (w, x) in Y . The second step determines values #(w, x) for all pairs (w, x) in Y in O (n) time 
by increasing #(w, x) such that w ↗ p ↗ w ′ and x′ ↗ βa..a′ (p) ↗ x by one for each edge p in P . The third step calculates 
values #w(x) for all pairs (w, x) in Y based on the recurrence

#w(x) = #(w, x) + #w ′(x),

where #w ′ (x) = 0 for any pair (w, x) with x ↗ w ′ due to Lemma 1. The fourth step obtains values l(w, x) for all pairs (w, x)
in Y based on the recurrence

l(w, x) = l(w, x′) − (ix′ − ix) + #w(x),

where l(w, x′) = ix′ − iw for any pair (w, x) with x′ ↗ w . The first, third, and fourth steps can be executed in time linear in 
the number of pairs (w, x) in Y , which is O (n/ log2+2ε(av − au)) because there are O (n/2〈k(a,a′)/2〉) vertices w in W , each 
having O ((a′ − a)/2〈k(a,a′)/2〉) vertices x in X such that w ↘ x. �

Consequently, from Lemmas 5, 6, and 7, the following theorem holds.

Theorem 1. Data structure (S, L) is O (mn)-time constructible (hence of size O (mn)) and supports O (
√

av − au log1+ε(av − au))-
time queries of l(u, v) for any pair of vertices u and v in G with u ↘ v using Algorithm Fast(u, v).

As a particular case of Theorem 1, we finally obtain the following corollary.

Corollary 3. For any positive constant ε and any pair of strings A and B, there exists an O (mn)-time constructible data structure that 
is of size O (mn) and supports O (

√
m′ + n′ log1+ε(m′ + n′))-time queries of the LCS lengths of any pair of a substring A′ of A and a 

substring B ′ of B, where m, n, m′, and n′ are respectively the lengths of A, B, A′, and B ′ .

5. Conclusion

This article proposed, for any positive constant ε and any pair of strings, a data structure of size O (mn) that can be 
constructed in O (mn) time and supports O (

√
m′ + n′ log1+ε(m′ + n′))-time queries of the LCS lengths of any pair of a 

substring of one string and a substring of the other, where m and n are the lengths of the strings for which the data 
structure is constructed and m′ and n′ are the lengths of the substrings whose LCS length is queried. To the best of the 
author’s knowledge, this data structure is the first to achieve o(m′ + n′)-time queries only with O (mn)-time preprocessing.

There are still many unsolved problems with substring-substring LCS length data structures to be tackled. Such problems 
include, for example, whether a data structure of size O ((mn)1−ε) can support O (m′ + n′)-time queries for some positive 
constant ε and whether an O (mn)-time constructible data structure can support O (min(m′, n′))-time queries. Whether an 
O (mn)-time constructible data structure can support O ((m′ + n′)1/2−ε)-time queries for some positive constant ε is also an 
interesting question.
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