
Computing maximal generalized palindromes

Mitsuru Funakoshi1,2, Takuya Mieno3, Yuto Nakashima1, Shunsuke Inenaga1,4,
Hideo Bannai5, and Masayuki Takeda1

1Department of Informatics, Kyushu University, Japan
2Japan Society for the Promotion of Science

3Department of Computer and Network Engineering, University of
Electro-Communications, Japan

4PRESTO, Japan Science and Technology Agency, Japan
5M&D Data Science Center, Tokyo Medical and Dental University, Japan

Abstract

Palindromes are popular and important objects in textual data processing, bioinformatics,
and combinatorics on words. Let S = XaY be a string, where X and Y are of the same
length and a is either a single character or the empty string. Then, there exist two alternative
definitions for palindromes: S is said to be a palindrome if:

Reversal-based definition: S is equal to its reversal SR;

Symmetry-based definition: its left-arm X is equal to the reversal of its right-arm Y R.

It is clear that if the “equality” (≈) used in both definitions is exact character matching (=), then
the two definitions are the same. However, if we apply other string-equality criteria ≈, including
the complementary model for biological sequences, the parameterized model [Baker, JCSS 1996],
the order-preserving model [Kim et al., TCS 2014], the Cartesian-tree model [Park et al., TCS
2020], and the palindromic-structure model [I et al., TCS 2013], then are the reversal-based
palindromes and the symmetry-based palindromes the same? To the best of our knowledge, no
previous work has considered or answered this natural question. In this paper, we first provide
answers to this question, and then present efficient algorithms for computing all maximal gener-
alized palindromes that occur in a given string. After confirming that Gusfield’s offline suffix-tree
based algorithm for computing maximal symmetry-based palindromes can be readily extended
to the aforementioned matching models, we show how to extend Manacher’s online algorithm
for computing maximal reversal-based palindromes in linear time for all the aforementioned
matching models.

1 Introduction

Palindromes are popular and important objects in textual data processing, bioinformatics, and
combinatorics on words (see e.g. [25, 1, 16, 9, 10, 21, 26, 14, 6, 15, 24, 5, 13, 29, 8] and references
therein). Let us remind the readers of the two following common definitions for palindromes: Let
S = XaY be a string, where X and Y are of the same length and a is either a single character or
the empty string. Then, S is said to be a palindrome if:

Reverse-based definition: S is equal to its reversal SR;

Symmetry-based definition: its left-arm X is equal to the reversal of its right-arm Y R.

1

ar
X

iv
:2

21
0.

02
06

7v
3

 [
cs

.D
S]

 1
7

N
ov

 2
02

2

It is clear that if the “equality” (≈) used in both definitions is exact character matching (=),
then the two definitions are the same, meaning that a string S is a reverse palindrome iff S is a
symmetric palindrome. Observe this with some examples such as racecar and noon. Now we pose
the following question: If we apply other string-equality criteria ≈, including the complementary
model for biological sequences, the parameterized model [3], the order-preserving model [23], and
the Cartesian-tree model [28], then are the reverse palindromes and the symmetric palindromes
the same? This question is interesting because, while the symmetry-based palindrome definition
requires only X ≈ Y R, the reversal-based palindrome definition requires more strict matching under
≈, so that S ≈ SR ⇔ XaY ≈ (XaY)R ⇔ XaY ≈ Y RaXR. Thus, these two types of palindromes
can be quite different for some matching criterion ≈ (see also Figure 3 in the following section).
To the best of our knowledge, somewhat surprisingly, no previous work has considered or answered
this natural question. In this paper, we first provide quick answers to this question, and present
efficient algorithms for computing such generalized palindromes that occur in a given string.

One of the well-studied topics regarding palindromes ismaximal palindromes, which are substring
palindromes whose left-right extensions are not palindromes. It is interesting and important to find
all maximal palindromes in a given string T because any substring palindrome of T can be obtained
by removing an equal number of characters from the left and the right of some maximal palindrome.
Hence, by computing all maximal palindromes of a string, we obtain a compact representation of
all palindromes in the string.

Manacher [25] showed an elegant algorithm for finding all maximal palindromes in a given
string T . Manacher’s algorithm works in an online manner (processes the characters of T from
left to right), and runs in O(n) time and space for general (unordered) alphabets, where n is the
length of the input string T . Later, Gusfield [16] showed another famous algorithm for computing
all maximal palindromes. Gusfield’s algorithm uses the suffix tree [34] built on a concatenation of
T and its reversal TR that is enhanced with an LCA (lowest common ancestor) data structure [30].
Gusfield’s method is offline (processes all the characters of T together), and works in O(n) time
and space for linearly-sortable alphabets including integer alphabets of polynomial size in n. We
remark that Gusfield’s algorithm uses only the symmetry-based definition for computing maximal
palindromes. That is, computing the longest common prefix (LCP) of T [c..n] and (T [1..c− 1])R for
each integer position c in T gives us the maximal palindrome of even length centered at c − 0.5.
Maximal palindromes of odd lengths can be computed analogously. On the other hand, Manacher’s
algorithm (which will be briefly recalled in a subsequent section) uses both the reversal-based and
symmetry-based definitions for computing maximal palindromes.

In this paper, we propose a new framework for formalizing generalized palindromes, which
we call Substring Consistent Symmetric and Two-Transitive Relations (SCSTTRs) that include
the complementary-matching model and Substring Consistent Equivalence Relations (SCERs) [27].
We note that SCERs include the parameterized model [3], the order-preserving model [23], the
Cartesian-tree model [28], and the palindromic-structure model [19]. As far as we are aware, the
existing algorithms are designed only for computing standard maximal palindromes based on exact
character matching, and it is not clear how they can be adapted for the aforementioned general-
ized palindromes. We first confirm that Gusfield’s framework is easily extensible for generalized
palindromes: if one has a suffix-tree like data structure that is built on a suitable encoding for a
given matching criterion ≈ enhanced with the LCA data structure, then one can readily compute
all maximal symmetric generalized palindromes in O(n) time. Thus, the construction time for the
suffix-tree like data structure dominates the total time complexity (see Table 1). On the other
hand, extending Manacher’s algorithm for generalized palindromes is much more involved, and the
main contribution of this paper is to design Manacher-type algorithms which compute all maximal
reverse palindromes in O(n) time for all types of generalized palindromes considered in this paper

2

Table 1: Summary of the time complexities of algorithms for computing each type of palindromes,
where n denotes the length of the input string, σ is the (static) alphabet size, and π is the size
of the parameterized alphabet for parameterized matching. The time complexities are valid under
some assumptions for the alphabet, which are designated in the parentheses. The space complexity
of each of the algorithms is O(n).

Matching
Type Symmetric Palindromes Reverse Palindromes

Exact O(n) time [16] O(n) time [25]
(linearly sortable) (general unordered)

Complementary O(n) time O(n) time
(linearly sortable) (general unordered)

Parameterized O(n log(σ + π)) time O(n) time
(linearly sortable) (linearly sortable)

Order-Preserving O(n log log2 n/ log log log n) time O(n) time
(linearly sortable) (general unordered)

Cartesian-Tree O(n log n) time O(n) time
(general ordered) (linearly sortable)

Palindromic-Structure O(nmin{
√

log n, log σ/ log log σ}) time O(n) time
(general unordered) (general unordered)

(see Table 1).

2 Preliminaries

2.1 String Notations

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string T is denoted
by |T |. The empty string ε is the string of length 0, namely, |ε| = 0. For a string T = xyz, x,
y and z are called a prefix, substring, and suffix of T , respectively. For a string T and an integer
1 ≤ i ≤ |T |, T [i] denotes the i-th character of T , and for two integers 1 ≤ i ≤ j ≤ |T |, T [i..j]
denotes the substring of T that begins at position i and ends at position j. For convenience, let
T [i..j] = ε when i > j. The reversal of a string T is denoted by TR, i.e., TR = T [|T |] · · ·T [1].

For two strings X and Y , let lcp(X,Y) denote the length of the longest common prefix of X
and Y . Namely, lcp(X,Y) = max{` | X[1..`] = Y [1..`]}. A rightward longest common extension
(rightward LCE) query on a string T is to compute lcp(T [i..|T |], T [j..|T |]) for given two positions
1 ≤ i < j ≤ |T |. Similarly, a leftward LCE query is to compute lcp(T [1..i]R, T [1..j]R). Then,
an outward LCE (resp. inward LCE) query is, given two positions 1 ≤ i < j ≤ |T |, to compute
lcp(T [1..i]R, T [j..|T |]) (resp. lcp(T [i..|T |], T [1..j]R)).

2.2 Palindromes

A string T is called a palindrome if T = TR. We remark that the empty string ε is also considered
to be a palindrome. A non-empty substring palindrome T [i..j] is said to be a maximal palindrome
in T if T [i − 1] 6= T [j + 1], i = 1, or j = |T |. For any non-empty substring palindrome T [i..j] in
T , i+j

2 is called its center. It is clear that for each center c = 1, 1.5, . . . , n − 0.5, n, we can identify
the maximal palindrome T [i..j] whose center is c (namely, c = i+j

2). Thus, there are exactly 2n− 1

3

maximal palindromes in a string of length n (including empty strings which occur at non-integer
centers c when T [c−0.5] 6= T [c+0.5]). Manacher [25] showed an online algorithm that computes all
maximal palindromes in a string T of length n in O(n) time. An alternative offline approach is to use
outward LCE queries for 2n− 1 pairs of positions in T . Using the suffix tree [34] for string T$TR#
enhanced with a lowest common ancestor data structure [17, 30, 4], each outward LCE query can be
answered in O(1) time where $ and # are special characters that do not appear in T . Preprocessing
for this approach takes O(n) time and space [12, 16] when alphabet Σ is linearly-sortable.

2.3 Substring Consistent Symmetric and Two-Transitive Relation (SCSTTR)

A Substring Consistent Equivalence Relation (SCER) is an equivalence relation ≈SCER such that
X ≈SCER Y for two strings X,Y of equal length means that X[i..j] ≈SCER Y [i..j] holds for all
1 ≤ i ≤ j ≤ |X| = |Y |. Matsuoka et al. [27] defined the notion and considered the pattern matching
problems with SCER. Afterward, several problems over SCER have been considered (e.g., [18, 22,
20]).

In this paper, we treat a more general relation; Substring Consistent Symmetric and Two-
Transitive Relation (SCSTTR). An SCSTTR is a relation ≈SCSTTR that satisfies the following
conditions for strings W,X, Y, Z ∈ Σn:

1. Satisfies the symmetric law; namely, if X ≈SCSTTR Y , then Y ≈SCSTTR X also holds.

2. Satisfies the two-transitive law; namely, if W ≈SCSTTR X, X ≈SCSTTR Y , and Y ≈SCSTTR Z,
then W ≈SCSTTR Z also holds.

3. Satisfies the substring consistency; namely, if X ≈SCSTTR Y , then X[i..j] ≈SCSTTR Y [i..j]
holds for all 1 ≤ i ≤ j ≤ n.

We remark that any SCER is also an SCSTTR. Our aim for introducing SCSTTRs is to deal with the
complementary matching model including the Watson-Crick (WK) model [33] for Σ = {A,C,G,T}
that is not an SCER. For each of the SCSTTR matching models below, encodings with which the
matching can be reduced to exact matching are known.

Complementary Matching [10, 21]

Let f be a function on Σ that has the two following properties: (1) f(uv) = f(u)f(v) for all strings
u, v ∈ Σ∗, and (2) f2 equals the identity. Two strings X and Y are said to complementary match
if there is a function f satisfying X = f(Y). For example, if f(A) = T, f(C) = G, f(T) = A, and
f(G) = C on Σ = {A,T,G,C}, then X = AGCTAT and Y = TCGATA complementary match. For
stringsX and Y , we writeX ≈rc Y iffX = f(Y). Reversal-based palindromes under complementary
matching have been studied as θ-palindromes [10, 21] 1. In this paper, we consider both the
reverse and symmetric definitions and call them Theta rev-palindromes and Theta sym-palindromes,
respectively.

Parameterized Matching [2]

Let Σ and Π be disjoint sets of characters, respectively called a static alphabet and a parameterized
alphabet. Two strings X and Y are said to parameterized match if there is a renaming bijection
over the alphabet Π which transforms X into Y . For example, if Σ = {C} and Π = {a, b, d},

1In these references, θ-palindromes are defined by the function θ that is not morphic but is antimorphic. However,
we use the morphic function f for simplicity of discussion since they can be treated as the same in this paper.

4

X = aabaCbC and Y = ddadCaC parameterized match since there is a bijection f such that
f(a) = d and f(b) = a. We write X ≈para Y iff strings X and Y parameterized match.

For a string T , the previous encoding PET is a string of length |T | defined as follows:

PET [i] =

T [i] if T [i] ∈ Σ;

i−max1≤j<i{j : T [j] = T [i]} if T [i] ∈ Π and such j exists;
0 otherwise.

For any two strings X and Y , X ≈para Y iff PEX = PEY [2]. For example, again consider two
strings X = aabaCbC and Y = ddadCaC, which satisfy X ≈para Y , then PEX=aabaCbC = 0102C3C =
PEY=ddadCaC. For simplicity, we assume in the rest of this paper that the string consists only of
characters from Π. Only trivial modifications to our algorithms are required when considering
characters from Σ as well.

Order-preserving Matching [23]

For ordered alphabets, two strings X and Y are said to order-preserving match if the relative orders
of X correspond to those of Y . Namely, X[i] 4 X[j] ⇔ Y [i] 4 Y [j] for all 1 ≤ i, j ≤ |X| = |Y |.
For example, X = cecag and Y = hohbr order-preserving match with the standard lexicographical
order of characters. We write X ≈op Y iff strings X and Y order-preserving match.

Let αT [i] (resp. βT [i]) be the rightmost occurrence of the predecessor (resp. the successor) of
T [i] in T [1..i− 1]. Namely,

αT [i] =

{
max1≤j<i{j : T [j] is the largest element satisfying T [j] 4 T [i]} if such j exists;
0 otherwise,

and

βT [i] =

{
max1≤j<i{j : T [j] is the smallest element satisfying T [j] < T [i]} if such j exists;
0 otherwise.

Let CodeT be a pairwise sequence such that CodeT = (αT [1], βT [1]), . . . , (αT [|T |], βT [|T |]) holds.
For any two strings X and Y , X ≈op Y iff CodeX = CodeY holds [7]. For example, again
consider two string X = cecag and Y = hohbr, which satisfy X ≈op Y , then CodeX=cecag =
(0, 0)(1, 0)(1, 1)(0, 3)(2, 0) = CodeY=hohbr.

Cartesian-tree Matching [28]

The Cartesian tree CT(T) of a string T is the ordered binary tree recursively defined as follows [32]:

1. If T is the empty string, CT(T) is empty.

2. If T is not empty, let T [i] be the leftmost occurrence of the smallest character in T . Then,
the root of CT(T) is T [i], the left-side subtree of CT(T) is CT(T [1..i− 1]), and the right-side
subtree of CT(T) is CT(T [i+ 1..|T |]).

We say that two strings X and Y Cartesian-tree match and denote it by X ≈ct Y if CT(X) and
CT(Y) are isomorphic as unlabeled ordered trees. For example, X ≈ct Y holds for two strings
X = cabdcf and Y = eaacbc (See Fig. 1).

5

CT(cabdcf)

a

c b
c

d f

CT(eaacbc)

a
e a

b
c c

Figure 1: Illustration for Cartesian trees of X = cabdcf and Y = eaacbc. Since they are isomorphic
except their node labels, X ≈ct Y holds.

For a string T , the parent distance PDT is an integer sequence of length |T | that is defined as
follows:

PDT [i] =

{
i−max1≤j<i{j : T [j] 4 T [i]} if such j exists;
0 otherwise.

For any two strings X and Y , X ≈ct Y iff PDX = PDY [28]. For example, again consider two string
X = cabdcf and Y = eaacbc, which satisfy X ≈ct Y , then PDX=cabdcf = 001121 = PDY=eaacbc.

Palindrome (Palindromic-structure) Matching [19]

Two strings X and Y are said to palindromic-structure match if the length of the maximal palin-
drome at each center position in X is equal to that of Y . For example, X = aabacdca and
Y = ccacdadc palindrome match (See Fig. 2). We write X ≈pal Y iff strings X and Y palindromic-

X = a a b a c d c a Y = c c a c d a d c≈pal

Figure 2: Illustration for palindromic-structures of X = aabacdca and Y = ccacdadc, which satisfy
X ≈pal Y . Each arrow depicts a maximal palindrome of length at least two.

structure match.
Let LPalT be the integer sequence of length |T | such that LPalT [i] stores the length of the longest

suffix palindrome of the position i in T . For any two strings X and Y , X ≈pal Y iff LPalX is equal
to LPalY [19]. For example, again consider two string X = aabacdca and Y = ccacdadc, which
satisfy X ≈pal Y , then LPalT=aabacdca = 12131135 = LPalT=ccacdadc.

2.4 Our Problems

In this paper, we consider the following two definitions:

Definition 1 (SCSTTR symmetry-based palindromes). A string P is called an SCSTTR sym-
palindrome if (P [1..b|P |/2c])R ≈SCSTTR P [d|P |/2e..|P |] holds.

Definition 2 (SCSTTR reversal-based palindromes). A string P is called an SCSTTR rev-palindrome
if P ≈SCSTTR P

R holds.

As for palindromes under the exact matching, the above two definitions are the same. However,
as for generalized palindromes, these definitions are not equivalent. For example, ATTGAAT is
not a WK rev-palindrome but is a WK sym-palindrome. Also, CACB is not a parameterized rev-
palindrome but is a parameterized sym-palindrome.

6

In this paper, we consider problems for computing maximal SCSTTR (complementary, pa-
rameterized, order-preserving, Cartesian-tree, and palindromic-structure) palindromes for the two
definitions. Firstly, we notice that SCSTTR rev-palindromes have symmetricity:

Lemma 1. Let P be an SCSTTR rev-palindrome. If a substring P [i..j] of P is an SCSTTR
rev-palindrome, then the substring at the symmetrical position is also an SCSTTR rev-palindrome,
namely, P [|P | − j + 1..|P | − i+ 1] is an SCSTTR rev-palindrome.

Proof. Since P is an SCSTTR rev-palindrome, P [i..j] ≈SCSTTR P [|P | − j + 1..|P | − i + 1]R and
P [i..j]R ≈SCSTTR P [|P | − j+ 1..|P | − i+ 1] hold. Also, since P [i..j] is an SCSTTR rev-palindrome,
P [i..j] ≈SCSTTR P [i..j]R holds. Combining these three equations under SCSTTR, we obtain P [|P |−
j + 1..|P | − i+ 1] ≈SCSTTR P [|P | − j + 1..|P | − i+ 1]R from the symmetric law and two-transitive
law. Therefore, P [|P | − j + 1..|P | − i+ 1] is an SCSTTR rev-palindrome.

This lemma allows us to design a Manacher-like algorithm of computing maximal SCSTTR
rev-palindromes in Section 4.

Next, we notice that the Cartesian tree matching is not closed under reversal; namely, X ≈ct Y
does not imply XR ≈ct Y

R. For instance, aaaa ≈ct abcd but aaaa 6≈ct dcba. Hence, there are cases
where the Cartesian-tree sym-palindrome obtained by extending outward direction is not equal to
that obtained by extending inward direction for the same center position c. Therefore, we introduce
the two following variants for the Cartesian-tree sym-palindromes:

Definition 3 (outward Cartesian-tree sym-palindromes). A string P is an outward Cartesian-tree
sym-palindrome if and only if (P [1..b|P |/2c])R ≈ct P [d|P |/2e..|P |] holds.

Definition 4 (inward Cartesian-tree sym-palindromes). A string P is an inward Cartesian-tree
sym-palindrome if and only if P [1..b|P |/2c] ≈ct (P [d|P |/2e..|P |])R holds.

We give examples of SCSTTR sym-/rev-palindromes in Figure 3.

Complementary

Parameterized

Order-Preserving

Cartesian-Tree

Palindromic-Structure

Symmetric Palindromes Reverse Palindromes

A C C T G C A G G TA A T C G G A T T

a b c c b a d d a ba b c c b b d d b c

a c c b a a b c c aa c c b a b c d d b

d e c f a d b d c
b a d b c d b c b d

b b d a c d b c b d

a b b c b a d b a b b cb a a c a b b a b d b b c

(inward)

(outward)

Exact a b c b b d b b c b aa b c b b d b b c b a

Figure 3: This figure shows examples of each generalized palindrome. A bijection f such that
f(a) = c, f(b) = b, f(c) = d, f(d) = a gives the parameterized sym-palindrome. A bijection
f such that f(a) = b, f(b) = a, f(c) = d, f(d) = c gives the parameterized rev-palindrome.
In the palindromic-structure sym-palindrome, though palindromes bb, abba, and bab exist, these
palindromes are ignored in this symmetric condition.

7

3 Algorithms for Computing Maximal SCSTTR Symmetry-based
Palindromes

In this section, we consider algorithms for computing maximal SCSTTR sym-palindromes. The
main idea is the same as Gusfield’s algorithm; to use the outward LCE query on the matching
model in SCSTTR for each center position. Then, the complexity of the algorithm can be written
as O(nq + tSCSTTR) time and O(n + sSCSTTR) space, where q is the outward LCE query time,
tSCSTTR is the construction time of the data structure for the LCE query on the matching model,
and sSCSTTR is the space of the data structure. Then, we obtain the following results for several
matching models in SCSTTR.

Theorem 1. All maximal SCSTTR sym-palindromes can be computed in the following complexities
and matching models:

1. For linearly sortable alphabets, all maximal Theta sym-palindromes can be computed in O(n)
time with O(n) space.

2. For linearly sortable alphabets, all maximal parameterized sym-palindromes can be computed
in O(n log(σ + π)) time with O(n) space.

3. For linearly sortable alphabets, all maximal order-preserving sym-palindromes can be computed
in O(n log log2 n/ log log log n) time with O(n) space.

4. For ordered alphabets, all outward/inward maximal Cartesian-tree sym-palindromes can be
computed in O(n log n) time with O(n) space.

5. For general unordered alphabets, all maximal palindromic-structure sym-palindromes can be
computed in O(nmin{

√
log n, log σ/ log log σ}) time with O(n) space.

These results can be obtained by using SCSTTR suffix trees [12, 16, 3, 23, 28, 19]. All the
details and proofs omitted due to lack of space can be found in Appendix A.

4 Algorithms for Computing Maximal SCSTTR Reversal-based
Palindromes

In this section, we consider algorithms for computing maximal SCSTTR rev-palindromes. If we were
to use the SCSTTR suffix tree and outward LCE queries as in the previous section, how to choose
the starting positions of outward LCE queries is unclear. Therefore, a naïve approach would require
O(n) inward LCE queries for each center position, and the total complexity will be O(n2+ tSCSTTR)
time and O(n+sSCSTTR) space. By combining inward LCE queries and binary search, we can further
achieve O(n log n + tSCSTTR) time and O(n + sSCSTTR) space with this approach. In this section,
we show O(n) time algorithms without constructing SCSTTR suffix trees.

Outline of Computing SCSTTR Reversal-based Palindromes

At first, we show a framework for computing maximal SCSTTR rev-palindromes, which is a general-
ization of Manacher’s algorithm [25]. For the sake of simplicity, we denote SCSTTR rev-palindromes
by just palindromes in the description of the framework below. In the following, we describe how
to compute all odd-lengthed maximal palindromes. Even-lengthed maximal palindromes can be
obtained analogously.

8

𝑒
𝑇

𝑏 𝑐!

𝑃!

1.

2.

𝑐

𝑑 𝑑

2𝑐 − 𝑒

Figure 4: Illustration for two sub-cases in c ≤ e.

We consider finding the odd-lengthed maximal palindromes in ascending order of the center
position. Let MPal[c] denote the interval corresponding to the odd-lengthed maximal palindrome
centered at position c. The length of MPal[1] is always one. Assuming that all odd-lengthed
maximal palindromes whose center is at most c− 1 have been computed and let MPal[c′] = [b, e] be
the longest interval whose ending position e is largest among {MPal[1], . . . ,MPal[c − 1]}. Further
let P ′ = T [b..e]. Also, let d be the distance between c′ and c; namely, d = c− c′. See also Fig. 4 for
illustration.

If T [i − 1..j + 1] is a palindrome, we say palindrome T [i..j] can be extended. Also, we call
computing the length of MPal[(i+ j)/2] computing the extension of T [i..j].

Now, we consider how to compute MPal[c]. If c ≤ e, we compute MPal[c] as in the following two
cases according to the relationship between P ′ and MPal[c′ − d].

1. If the starting position of MPal[c′ − d] is larger than b, then |MPal[c]| = |MPal[c′ − d]| holds
(by Lemma 1). Thus we copy MPal[c′ − d] to MPal[c] with considering symmetry.

2. Otherwise, the ending position of MPal[c] is at least e. Then we compute the extension of
T [2c− e..e], and P ′ is updated to MPal[c] if T [2c− e..e] can be extended.

Otherwise (i.e., e < c holds), then c = e+1 holds. We compute MPal[c] by computing the extension
of T [e+ 1..e+ 1].

Note that, in the exact matching model, the behavior of this framework is identical to that of
Manacher’s algorithm. The framework includes two non-trivial operations; copying and extension-
computing. How many times both operations are called can be analyzed in the same manner as for
Manacher’s algorithm, i.e., O(n). Also, each copying operation can be done in constant time. Thus,
if we can perform each extension-computing in (amortized) constant time, the total time complexity
becomes O(n). The following sections focus only on how to compute an extension in (amortized)
constant time under each of the five matching models.

4.1 Maximal Theta Reversal-based Palindromes

In the complementary matching model, the correspondence of matching characters, although dif-
ferent, is predetermined, and naïve character comparisons can be done in constant time. Thus, the
following result can be obtained immediately.

Theorem 2. For general unordered alphabets, all maximal Theta rev-palindromes can be computed
in O(n) time with O(n) space.

9

k · · · i− 1 j + 1 · · ·
T [k] · · · c a a c a e b d b b d · · ·
k′ 1 p j − i+ 3

PET [i−1..j+1][k
′] 0 0 1 3 2 0 0 0 2 1 3

k̂ · · · n− j n− i+ 2 · · ·
TR[k̂] · · · d b b d b e a c a a c · · ·
k̂′ 1 q j − i+ 3

PET [i−1..j+1]R [k̂′] 0 0 1 3 2 0 0 0 2 1 3

Table 2: An example for the computation of whether the parameterized palindrome T [i..j] can be
extended.

4.2 Maximal Parameterized Reversal-based Palindromes

Now we consider how to determine whether the parameterized palindrome T [i..j] can be extended
by one character at each end. If T [i − 1..j + 1] ≈para T [i− 1..j + 1]R holds, then PET [i−1..j+1] =
PET [i−1..j+1]R . Since T [i..j] is a parameterized palindrome, PET [i..j] = PET [i..j]R . Now, it is not
difficult to see that the number of positions in which values of PET [i−1..j+1] can differ from PET [i..j]

when aligned at the center, is at most three; The first and last elements of PET [i−1..j+1] (which do
not exist in PET [i..j]), and the position of the first element of T [i..j] that equals T [i−1], if such exists.
From the symmetricity, the same can be said for values of PET [i−1..j+1]R from PET [i..j]R . Then, to
determine whether T [i− 1..j + 1] is a parameterized palindrome, we only have to consider (1) the
equality between the first elements of PET [i−1..j+1] and PET [i−1..j+1]R , (2) the equality between the
last elements of PET [i−1..j+1] and PET [i−1..j+1]R , and (3) the equality between the first positions p

in T [i..j] and q in T [i..j]R that respectively equals T [i− 1] and T [j + 1]. In other words, given that
T [i..j] is a parameterized palindrome, T [i − 1..j + 1] is a parameterized palindrome if and only if
all three equalities hold. See also Table 2.

The equality of (1) always holds, since PET [i−1..j+1][1] and PET [i−1..j+1]R [1] are always 0 by
definition of PE. Next, we show that the equality of (2) implies equality of (3). Since the last
elements of PET [i−1..j+1] and PET [i−1..j+1]R are equal, this implies that the last position in T [i..j]

and T [i..j]R that respectively equals T [j + 1] and T [i − 1] are the same. By reversing the string,
these correspond to the first position in T [i..j]R and T [i..j] that respectively equals T [j + 1] and
T [i− 1] therefore implying (3).

Thus, we need only check the equality of (2). Given PET , PET [i..j][k] for any 1 ≤ k ≤ j − i+ 1
can be computed in constant time, i.e., PET [i..j][k] = PET [i + k − 1] if PET [i + k − 1] < k and 0
otherwise. Hence, the computation time of the extension of T [i..j] by one character at each end is
O(1). Also, since PET can be precomputed in O(n) time for linearly sortable alphabets, we obtain
the following result:

Theorem 3. For linearly sortable alphabets, all maximal parameterized rev-palindromes can be
computed in O(n) time with O(n) space.

4.3 Maximal Order-preserving Reversal-based Palindromes

From the definition, an order-preserving rev-palindrome P satisfies that P [dce−d] 4 P [bcc+d] and
P [bcc+ d] 4 P [dce − d] for integer d with 1 ≤ d ≤ dce − 1 where c = 1+|P |

2 is the center of P . This
means that any order-preserving rev-palindrome must be a palindrome under the exact matching.

10

k · · · i− 1 j + 1 · · ·
T [k] b e c a e b d a e f c

k′ 1 j − i+ 1

PDT [i..j][k
′] 0 0 0 1 2 1 4 1 1

k′′ 1 j − i+ 3

PDT [i−1..j+1][k
′′] 0 1 2 0 1 2 1 4 1 1 3

Table 3: An example for the difference between PDT [i..j] and PDT [i−1..j+1].

Therefore, maximal order-preserving rev-palindromes in T can be computed in O(n) time by using
Manacher’s algorithm.

Corollary 1. For general unordered alphabets, all maximal order-preserving rev-palindromes can be
computed in O(n) time with O(n) space.

4.4 Maximal Cartesian-tree Reversal-based Palindromes

Here, we consider how to compute the extension of a maximal Cartesian-tree rev-palindrome T [i..j].
We consider the difference between PDT [i..j] and PDT [i−1..j+1]. There are three types of positions of
PDT [i−1..j+1] in which values differ from PDT [i..j]; the first and last positions (which don’t exist in
PDT [i..j]), and each position k such that PDT [i..j][k] = 0 and T [i − 1] 4 T [k] with i ≤ k ≤ j (i.e.,
PDT [i−1..j+1][k + 1] 6= 0). Let m[i..j] be the leftmost occurrence position of the smallest value in
T [i..j]. Then, k′ such that PDT [i..j][k

′] = 0 is always to the left or equal to m[i..j]. However, since
the number of such positions is not always constant, the time required for computing the extension
from T [i..j] to T [i − 1..j + 1] can be ω(1). See also Table 3. We will consider the total number of
updates of such positions through the entire algorithm.

Let c be the center of T [i..j] and T [b..e] be the maximal Cartesian-tree rev-palindrome centered
at c. Also, let Zc be the number of 0’s in PDT [i..j], Ec be the length of the extension of T [i..j] (i.e.,
Ec = i−b), and Uc be the number of updates of positions of 0 from PDT [i..j] to PDT [b..e]. Let T [i′..j′]
be the next palindrome of center c′ which we have to compute the extension of, after computing the
extension of T [i..j]. Namely, T [i′..j′] is the longest proper suffix palindrome of T [b..e] if |T [b..e]| > 1.
Otherwise, T [i′..j′] = T [e+ 1..e+ 1] holds.

As the first step to considering
∑
Uc, we consider the simpler case such that each character is

distinct from the other in the string. We call this case permutation-Cartesian-tree matching.
In this case, c = m[i..j] holds since T [m[i..j]] is the only smallest value in T [i..j] and m[i..j] is

the root of CT(T [i..j]) and CT(T [i..j]R). Also, m[i..j] = m[b..e] holds. Now we consider the starting
position of the next palindrome T [i′..j′].

Lemma 2. Let T [i′..j′] be the next palindrome. Then, i′ > m[i..j] holds.

Proof. The next palindrome T [i′..j′] is either T [e+1..e+1] or the longest proper suffix palindrome of
T [b..e]. Since the former case is obvious, we consider only the latter in the following. For the sake of
contradiction, we assume that i′ ≤ m[i..j]. Then T [m[i′..j′]] < T [m[i..j]] holds. Since m[i′..j′] ∈ [b..e],
this leads to a contradiction with m[i..j] = m[b..e].

From Lemma 2, 0s in PDT [i..j] and 0s in PDT [i′..j′] all correspond to different positions in T .
Hence,

∑
Zc ≤ n holds. Also, Uc ≤ Zc + Ec and

∑
Ec ≤ n holds. Therefore, we obtain

∑
Uc ≤∑

Zc +
∑

Ec
≤ 2n. Now we have shown the total number of updates

∑
Uc is at most O(n).

Similar to the maximal parameterized palindromes, PDT [i..j][k] can be accessed in constant time

11

𝑈!!

𝑒
𝑇

𝑏 𝑖

𝑚 "!..$!

𝑗

𝑖′

0	00

𝑗′

𝑐

𝑐%

Figure 5: Illustration for Cartesian-tree palindromes.

by precomputing PDT . Also, since PDT can be precomputed in O(n) time for linearly sortable
alphabets, we obtain the following result:

Theorem 4. For linearly sortable alphabets, all maximal permutation-Cartesian-tree rev-palindromes
can be computed in O(n) time with O(n) space.

Now we consider
∑
Uc in the general case. As for the relationship between Zc and Zc′ , we show

the following lemma:

Lemma 3. As for the the number of 0’s in PDT [i′..j′], Zc′ ≤ Zc + Ec − Uc holds.

Proof. The next palindrome T [i′..j′] is either T [e+ 1..e+ 1] or the longest proper suffix palindrome
of T [b..e]. Since the former case is obvious, we consider only the latter in the following. The number
of 0’s in PDT [i′..j′]R is Zc′ . Also, the number of 0’s in PDT [b..e] is equal to Zc +Ec−Uc. For the sake
of contradiction, we assume that Zc′ > Zc+Ec−Uc. Then, the number of 0’s in PDT [b..e]R is at least
Zc′ , and this leads to a contradiction with T [b..e] being a maximal Cartesian-tree palindrome.

See also Figure 5. From Lemma 3, Uc ≤ Zc − Zc′ + Ec holds. Therefore, the total number of
updates

∑
Uc ≤

∑
{Zc − Zc′}+

∑
Ec ≤ n. Hence, we obtain the following result:

Theorem 5. For linearly sortable alphabets, all maximal Cartesian-tree rev-palindromes can be
computed in O(n) time with O(n) space.

4.5 Maximal Palindromic-structure Reversal-based Palindromes

Now we consider how to determine whether the palindromic-structure palindrome T [i..j] can be
extended by one character at each end. The changes from the set of maximal palindromes in T [i..j]
to that of T [i− 1..j + 1] are prefix palindromes and suffix palindromes of T [i− 1..j + 1]. Therefore,
if the set of prefix palindromes is equal to the set of suffix palindromes, then T [i − 1..j + 1] is a
palindromic-structure palindrome. To efficiently compute whether this condition is satisfied, we
rewrite the condition as follows:

1. Among maximal palindromes in T [1..n], the set of maximal palindromes starting at i whose
length is at most j − i is equal to the set of maximal palindromes ending at j whose length is
at most j − i.

2. The presence or absence of “a prefix palindrome of length two beginning at position i−1” and
“a suffix palindrome of length two ending at position j + 1” correspond.

12

𝑗𝑖
𝑇

Figure 6: Illustration for palindromic structures. Solid arrows are maximal palindromes starting at
i or ending at j, and dotted arrows are prefix or suffix palindromes. The set of suffix palindromes
of T [i − 1..j + 1] is a union of the set of the extensions of suffix palindromes of T [i..j] and the set
of suffix palindromes of lengths one and two. Note that the prefix/suffix palindrome of length one
always exists.

Since a suffix palindrome of j + 1 is either a suffix palindrome of j + 1 whose length is at most
two or an extension of a suffix palindrome of j which is not a maximal palindrome ending at j,
the above rewrites hold. See also Figure 6. Condition 2 can be computed easily; hence, we show
how to compute condition 1 below. First, we precompute all maximal palindromes in T [1..n] by
using Manacher’s algorithm. Then, we construct an ascending sequence of lengths of maximal
palindromes with the same ending (starting) position, concatenated with a delimiter character $i,
where i is the ending (starting) position. For example, the sequence as for the ending position for a
string abaaa is 1$1$213$32$4123$5. By using these sequences for starting/ending position and LCE
data structure, condition 1 can be computed in constant time. The length of the sequence is O(n)
since the number of maximal palindromes is 2n− 1. Then we obtain the following theorem:

Theorem 6. For general unordered alphabets, all maximal palindromic-structure rev-palindromes
can be computed in O(n) time with O(n) space.

Note that the concept of the palindromic structure can be generalized from maximal palin-
dromes to maximal SCSTTR palindromes. From the above results, maximal SCSTTR palindromic-
structure rev-palindromes can be computed in O(n) time and space.

5 Conclusion and Future Work

In this paper, we dealt with the problems of computing all maximal palindromes in a string under
several variants of string matching models. We first showed two distinct definitions of generalized
palindromes: symmetric and reverse. For maximal sym-palindromes, we proposed suffix-tree-based
algorithms that work in their construction time and O(n) space. Also, for maximal rev-palindromes,
we showed that Manacher’s algorithm can be generalized to the matching models we consider, and
presented O(n) time and space algorithms.

Our future work includes the following: (1) Can we efficiently compute maximal palindromes
under other string matching models? For example, can we extend our algorithm to a structural
matching model [31], which is a generalization of a parameterized matching? (2) It is known
that any string of length n can contain at most n + 1 distinct palindromes [11], and all distinct
palindromes can be computed in O(n) time [15]. It is interesting to study distinct palindromes
under SCSTTRs. Rubinchik and Shur [29] claimed that their eertree data structure for computing

13

distinct palindromes can be extended to computing distinct WK-palindromes. We are unaware
whether the computed palindromes are symmetric-based or reversal-based. (3) While there can
be Ω(n) suffix palindromes in a string of length n, their lengths can be compactly represented
with O(log n) arithmetic progressions [1, 26]. Can suffix sym-/rev-palindromes under SCSTTRs be
represented compactly in a similar way?

Acknowledgments

The authors thank Diptarama Hendrian for pointing out an error in an earlier version of this paper.

References

[1] Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in a
string. Theor. Comput. Sci., 141(1&2):163–173, 1995. doi:10.1016/0304-3975(94)00083-U.

[2] Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, 25th Annual ACM Symposium
on Theory of Computing, ACM 1993, pages 71–80. ACM, 1993. doi:10.1145/167088.167115.

[3] Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. J. Comput.
Syst. Sci., 52(1):28–42, 1996. doi:10.1006/jcss.1996.0003.

[4] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In 4th Latin
American Theoretical Informatics Symposium, LATIN 2000, volume 1776 of Lecture Notes in
Computer Science, pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

[5] Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palindrome
recognition in the streaming model. In 31st International Symposium on Theoretical Aspects
of Computer Science, STACS 2014, volume 25 of LIPIcs, pages 149–161. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2014.

[6] Michelangelo Bucci, Alessandro De Luca, Amy Glen, and Luca Q. Zamboni. A new char-
acteristic property of rich words. Theor. Comput. Sci., 410(30-32):2860–2863, 2009. doi:
10.1016/j.tcs.2008.11.001.

[7] Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-preserving
indexing. Theor. Comput. Sci., 638:122–135, 2016. doi:10.1016/j.tcs.2015.06.050.

[8] Maxime Crochemore, Thierry Lecroq, and Wojciech Rytter. 125 Problems in Text Algorithms.
Cambridge University Press, 2021. doi:10.1017/9781108835831.

[9] Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific Press, 2002.
doi:10.1142/4838.

[10] Aldo de Luca and Alessandro De Luca. Pseudopalindrome closure operators in free monoids.
Theor. Comput. Sci., 362(1-3):282–300, 2006. doi:10.1016/j.tcs.2006.07.009.

[11] Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian words and some con-
structions of de Luca and Rauzy. Theor. Comput. Sci., 255(1-2):539–553, 2001. doi:
10.1016/S0304-3975(99)00320-5.

14

https://doi.org/10.1016/0304-3975(94)00083-U
https://doi.org/10.1145/167088.167115
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.tcs.2008.11.001
https://doi.org/10.1016/j.tcs.2008.11.001
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1017/9781108835831
https://doi.org/10.1142/4838
https://doi.org/10.1016/j.tcs.2006.07.009
https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.1016/S0304-3975(99)00320-5

[12] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

[13] Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight trade-
offs for real-time approximation of longest palindromes in streams. Algorithmica, 81(9):3630–
3654, 2019. doi:10.1007/s00453-019-00591-8.

[14] Amy Glen, Jacques Justin, Steve Widmer, and Luca Q. Zamboni. Palindromic richness. Eur.
J. Comb., 30(2):510–531, 2009. doi:10.1016/j.ejc.2008.04.006.

[15] Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a word
in linear time. Inf. Process. Lett., 110(20):908–912, 2010. doi:10.1016/j.ipl.2010.07.018.

[16] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

[17] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

[18] Diptarama Hendrian. Generalized dictionary matching under substring consistent equiva-
lence relations. In M. Sohel Rahman, Kunihiko Sadakane, and Wing-Kin Sung, editors,
14th International Conference and Workshops on Algorithms and Computation, WALCOM
2020, volume 12049 of Lecture Notes in Computer Science, pages 120–132. Springer, 2020.
doi:10.1007/978-3-030-39881-1_11.

[19] Tomohiro I, Shunsuke Inenaga, and Masayuki Takeda. Palindrome pattern matching. Theor.
Comput. Sci., 483:162–170, 2013. doi:10.1016/j.tcs.2012.01.047.

[20] Davaajav Jargalsaikhan, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Parallel
algorithm for pattern matching problems under substring consistent equivalence relations. In
33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, volume 223 of LIPIcs,
pages 28:1–28:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CPM.2022.28.

[21] Lila Kari and Kalpana Mahalingam. Watson-crick conjugate and commutative words. In
Max H. Garzon and Hao Yan, editors, 13th International Meeting on DNA Computing, DNA
2007, volume 4848 of Lecture Notes in Computer Science, pages 273–283. Springer, 2007. doi:
10.1007/978-3-540-77962-9_29.

[22] Natsumi Kikuchi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Computing
covers under substring consistent equivalence relations. In 27th International Symposium on
String Processing and Information Retrieval, SPIRE 2020, volume 12303 of Lecture Notes in
Computer Science, pages 131–146. Springer, 2020. doi:10.1007/978-3-030-59212-7_10.

[23] Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo Park,
Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput. Sci.,
525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

[24] Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Finding distinct subpalindromes
online. In Proceedings of the Prague Stringology Conference 2013, PSC 2013, pages 63–69. De-
partment of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague, 2013. URL: http://www.stringology.org/event/2013/p06.html.

15

https://doi.org/10.1145/355541.355547
https://doi.org/10.1007/s00453-019-00591-8
https://doi.org/10.1016/j.ejc.2008.04.006
https://doi.org/10.1016/j.ipl.2010.07.018
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1137/0213024
https://doi.org/10.1007/978-3-030-39881-1_11
https://doi.org/10.1016/j.tcs.2012.01.047
https://doi.org/10.4230/LIPIcs.CPM.2022.28
https://doi.org/10.4230/LIPIcs.CPM.2022.28
https://doi.org/10.1007/978-3-540-77962-9_29
https://doi.org/10.1007/978-3-540-77962-9_29
https://doi.org/10.1007/978-3-030-59212-7_10
https://doi.org/10.1016/j.tcs.2013.10.006
http://www.stringology.org/event/2013/p06.html

[25] Glenn K. Manacher. A new linear-time "on-line" algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975. doi:10.1145/321892.321896.

[26] Wataru Matsubara, Shunsuke Inenaga, Akira Ishino, Ayumi Shinohara, Tomoyuki Nakamura,
and Kazuo Hashimoto. Efficient algorithms to compute compressed longest common substrings
and compressed palindromes. Theor. Comput. Sci., 410(8-10):900–913, 2009. doi:10.1016/j.
tcs.2008.12.016.

[27] Yoshiaki Matsuoka, Takahiro Aoki, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Generalized pattern matching and periodicity under substring consistent equivalence relations.
Theor. Comput. Sci., 656:225–233, 2016. doi:10.1016/j.tcs.2016.02.017.

[28] Sung Gwan Park, Magsarjav Bataa, Amihood Amir, Gad M. Landau, and Kunsoo Park. Find-
ing patterns and periods in Cartesian tree matching. Theor. Comput. Sci., 845:181–197, 2020.
doi:10.1016/j.tcs.2020.09.014.

[29] Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for processing
palindromes in strings. Eur. J. Comb., 68:249–265, 2018. doi:10.1016/j.ejc.2017.07.021.

[30] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput., 17(6):1253–1262, 1988. doi:10.1137/0217079.

[31] Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Algo-
rithmica, 39(1):1–19, 2004. doi:10.1007/s00453-003-1067-9.

[32] Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.
doi:10.1145/358841.358852.

[33] James D. Watson and Francis H. Crick. Molecular structure of nucleic acids: A structure for
deoxyribose nucleic acid. Nature, 171:737–738, 1953. doi:10.1038/171737a0.

[34] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, SWAT 1973, pages 1–11. IEEE Computer Society, 1973. doi:10.1109/
SWAT.1973.13.

A Appendix

In this section, we show the details of SCSTTR suffix trees and how to compute the SCSTTR LCE
query. First, we show some properties that each SCSTTR suffix tree has.

1. Each leaf node corresponds one-to-one to the encoding of each suffix.

2. The string depth of the LCA of two leaves corresponds to the value of LCP of the encodings
of the suffixes.

Since these properties hold, we can compute the LCP value of encodings of two suffixes by computing
the LCA.

In the following, we show the details of each SCSTTR suffix tree.

16

https://doi.org/10.1145/321892.321896
https://doi.org/10.1016/j.tcs.2008.12.016
https://doi.org/10.1016/j.tcs.2008.12.016
https://doi.org/10.1016/j.tcs.2016.02.017
https://doi.org/10.1016/j.tcs.2020.09.014
https://doi.org/10.1016/j.ejc.2017.07.021
https://doi.org/10.1137/0217079
https://doi.org/10.1007/s00453-003-1067-9
https://doi.org/10.1145/358841.358852
https://doi.org/10.1038/171737a0
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

A.1 Maximal Theta sym-palindromes

An outward complementary LCE for the center position c in T can be computed by comparing
T [bc+ 1c..n] and f(T [1..dc− 1e]R). By constructing the suffix tree of the string T$f(TR)# with
delimiter characters $ and #, the above operation can be done in constant time.

Lemma 4. The complementary suffix tree can be constructed in O(n) time and space for linearly
sortable alphabets. Also, an outward complementary LCE query can be answered in O(1) time by
using this data structure.

From Lemma 4, we obtain the following theorem.

Theorem 7. For linearly sortable alphabets, all maximal Theta sym-palindromes can be computed
in O(n) time with O(n) space.

A.2 Maximal parameterized sym-palindromes

The definition of a parameterized suffix tree is as follows:

Definition 5 ([3]). The parameterized suffix tree of a string T [1..n] is a compacted trie that stores
the set {PET [i..n] | 1 ≤ i ≤ n}.

Therefore, by constructing the parameterized suffix tree of T$TR# and computing the LCP
value of PET [bc+1c..n] and PET [1..dc−1e]R , we can compute the length of the maximal parameterized
palindrome for each center position c.

Lemma 5 ([3]). The parameterized suffix tree can be constructed in O(n log(σ+π)) time and O(n)
space for linearly sortable alphabets. Also, an outward parameterized LCE query can be answered in
O(1) time by using this data structure.

From Lemma 5, we obtain the following theorem.

Theorem 8. For linearly sortable alphabets, all maximal parameterized sym-palindromes can be
computed in O(n log σ) time with O(n) space.

A.3 Maximal order-preserving sym-palindromes

An order-preserving suffix tree is defined as follows:

Definition 6 ([7]). The complete order-preserving suffix tree of a string T [1..n] is a compacted
trie that stores CodeT [i..n] for all 1 ≤ i ≤ n. Also, the incomplete order-preserving suffix tree is a
compacted trie such that some of the edge labels of the complete order-preserving suffix tree are
missing.

By using the (incomplete) order-preserving suffix tree, maximal order-preserving sym-palindromes
can be computed the same as with maximal parameterized palindrome.

Lemma 6 ([7]). The (incomplete) order-preserving suffix tree can be constructed in
O(n log log2 n/ log log log n) time and O(n) space for linearly sortable alphabets. Also, an outward
order-preserving LCE query can be answered in O(1) time by using this data structure.

From Lemma 6, we obtain the following theorem.

Theorem 9. For linearly sortable alphabets, all maximal order-preserving sym-palindromes can be
computed in O(n log log2 n/ log log log n) time with O(n) space.

17

A.4 Maximal Cartesian-tree sym-palindromes

As for a Cartesian suffix tree, the definition and the construction time are as follows:

Definition 7 ([28]). The Cartesian suffix tree of a string T [1..n] is a compacted trie constructed
with PDT [i..n] · $ for every 1 ≤ i ≤ |T |, where $ /∈ Σ and $ ≺ c hold for any character c ∈ Σ.

Lemma 7 ([28]). The Cartesian suffix tree of a string of length n can be constructed in O(n log n)
time with O(n) space for ordered alphabets. Also, an outward/inward Cartesian-tree LCE query can
be answered in O(1) time by using this data structure of T$TR#.

From Lemma 7, we obtain the following theorem.

Theorem 10. For ordered alphabets, all outward maximal Cartesian-tree sym-palindromes can be
computed in O(n log n) time with O(n) space.

As for the case of inward maximal Cartesian-tree sym-palindromes, it is unclear where is the
starting position of inward LCE queries. By combining the LCE queries and the binary search, we
obtain the following theorem:

Theorem 11. For ordered alphabets, all inward maximal Cartesian-tree sym-palindromes can be
computed in O(n log n) time with O(n) space.

A.5 Maximal palindromic-structure sym-palindromes

The definition of a palindromic suffix tree is as follows:

Definition 8. The palindromic suffix tree of a string T [1..n] is a compacted trie that represents
LPalT [i..n] of suffix T [i..n] for all 1 ≤ i ≤ n.

Also, the following result is known:

Lemma 8 ([19]). The palindromic suffix tree of a string of length n can be constructed in
O(nmin{

√
log n, log σ/ log log σ}) time with O(n) space for general unordered alphabets, where σ is

the number of distinct characters in the string. Also, an outward palindromic-structure LCE query
can be answered in O(1) time by using this data structure of T$TR#.

From Lemma 8, we obtain the following theorem.

Theorem 12. For general unordered alphabets, all maximal palindromic-structure sym-palindromes
can be computed in O(nmin{

√
log n, log σ/ log log σ}) time with O(n) space.

18

	1 Introduction
	2 Preliminaries
	2.1 String Notations
	2.2 Palindromes
	2.3 Substring Consistent Symmetric and Two-Transitive Relation (SCSTTR)
	2.4 Our Problems

	3 Algorithms for Computing Maximal SCSTTR Symmetry-based Palindromes
	4 Algorithms for Computing Maximal SCSTTR Reversal-based Palindromes
	4.1 Maximal Theta Reversal-based Palindromes
	4.2 Maximal Parameterized Reversal-based Palindromes
	4.3 Maximal Order-preserving Reversal-based Palindromes
	4.4 Maximal Cartesian-tree Reversal-based Palindromes
	4.5 Maximal Palindromic-structure Reversal-based Palindromes

	5 Conclusion and Future Work
	A Appendix
	A.1 Maximal Theta sym-palindromes
	A.2 Maximal parameterized sym-palindromes
	A.3 Maximal order-preserving sym-palindromes
	A.4 Maximal Cartesian-tree sym-palindromes
	A.5 Maximal palindromic-structure sym-palindromes

