
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{C}\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2024 \mathrm{T}\mathrm{h}\mathrm{e} \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{s}. \mathrm{P}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s}

\mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{s} 4.0 \mathrm{l}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}\mathrm{V}\mathrm{o}\mathrm{l}. 53, \mathrm{N}\mathrm{o}. 5, \mathrm{p}\mathrm{p}. 1524--1577

INTERNAL PATTERN MATCHING QUERIES
IN A TEXT AND APPLICATIONS\ast

TOMASZ KOCIUMAKA\dagger , JAKUB RADOSZEWSKI\ddagger , WOJCIECH RYTTER\S , AND

TOMASZ WALE\'N\S

Abstract. We consider several types of internal queries, that is, questions about fragments of
a given text T specified in constant space by their locations in T . Our main result is an optimal
data structure for internal pattern matching (IPM) queries, which, given two fragments x and y,
ask for a representation of all fragments contained in y and matching x exactly. This problem can
be viewed as an internal version of the fundamental exact pattern matching problem: We are look-
ing for exact occurrences of one substring of T within another substring of T . Our data structure
answers IPM queries in time proportional to the quotient | y| /| x| of the fragments' lengths, which
is required due to the worst-case information content of the output. If T is a text of length n over
an integer alphabet of size \sigma , then our data structure occupies \scrO (n/ log\sigma n) machine words (that is,
\scrO (n log\sigma) bits) and admits an \scrO (n/ log\sigma n)-time construction algorithm. We also show how to use
IPM queries for answering internal queries corresponding to other classic string processing problems.
Among others, we derive optimal data structures reporting the periods of a fragment and testing
the cyclic equivalence of two fragments. Since the publication of the conference version of this pa-
per [Kociumaka et al., Internal pattern matching queries in a text and applications, SODA 2015],
IPM queries have found numerous further applications, following the path paved by the classic long-
est common extension (LCE) queries of Landau and Vishkin [J. Comput. System Sci., 37 (1988),
pp. 63--78]. In particular, IPM queries have been implemented in grammar-compressed and dy-
namic settings and, along with LCE queries, constitute elementary operations of the \ttP \ttI \ttL \ttL \ttA \ttR model,
developed by Charalampopoulos, Kociumaka, and Wellnitz [Faster approximate pattern matching:
A unified approach, FOCS 2020] to design approximate pattern matching algorithms that work in
multiple settings. All our algorithms are deterministic, whereas the data structure in the conference
version of the paper only admits a randomized construction in \scrO (n) expected time. To achieve this,
we provide a novel construction of string synchronizing sets of Kempa and Kociumaka [String syn-
chronizing sets: Sublinear-time BWT construction and optimal LCE data structure, STOC 2019].
Our method, based on a new restricted version of the recompression technique of Je\.z [J. ACM, 63
(2016), pp. 4:1--4:51], yields a hierarchy of \scrO (logn) string synchronizing sets covering the whole
spectrum of the fragments' lengths.

Key words. pattern matching, internal queries, synchronizing sets, data structures, local
consistency

MSC codes. 68W32, 68P05, 68W05, 68Q25

DOI. 10.1137/23M1567618

1. Introduction. In this paper, we consider internal queries, which ask to solve
instances of a certain string-processing problem with input strings given as fragments
of a fixed string T represented by their endpoints. The task is to preprocess T , called
the text, into a data structure that efficiently answers certain types of internal queries.
In retrospect, the origins of internal queries in texts can be traced back to the work

\ast Received by the editors May 2, 2023; accepted for publication (in revised form) July 3, 2024;
published electronically October 14, 2024. A preliminary version of this work was presented at the
26th Annual ACM-SIAM Symposium on Discrete Algorithms [76] and included in the Ph.D. thesis
of the first author [71].

https://doi.org/10.1137/23M1567618
Funding: The work of the second author was supported by the Polish National Science Center

(grant 2022/46/E/ST6/004).
\dagger Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbr\"ucken, Germany

(tomasz.kociumaka@mpi-inf.mpg.de).
\ddagger University of Warsaw and Samsung R\&D Warsaw, Warsaw, Poland (jrad@mimuw.edu.pl).
\S University of Warsaw, Warsaw, Poland (rytter@mimuw.edu.pl, walen@mimuw.edu.pl).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

1524

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1137/23M1567618
mailto:tomasz.kociumaka@mpi-inf.mpg.de
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1525

of Landau and Vishkin [82] introducing Longest Common Extension Queries
(LCE Queries). We develop data structures with efficient (in most cases optimal)
deterministic construction and query algorithms for internal versions of several natural
problems in string processing.

We always denote the input text by T and its length by n. We also make a
standard assumption (cf. [43]) that the characters of T are (or can be identified with)
integers [0 . . \sigma),1 where \sigma = n\scrO (1); that is, T is over a polynomially bounded in-
teger alphabet. Our results are designed for the standard word RAM model with
machine words of \omega \geq logn bits.2 In this model, the text T can be represented using
\scrO (n/ log\sigma n) machine words, that is, \scrO (n log\sigma) bits, in a so-called packed represen-
tation; see [18]. We consider data structures that use \scrO (n/ log\sigma n) space and can
be constructed in \scrO (n/ log\sigma n) time. For example, Kempa and Kociumaka [71, 65]
showed that such space complexity and preprocessing time are sufficient for constant-
time LCE Queries.

We consider the fundamental exact pattern matching problem [91, 55, 111, 3, 20,
69, 63] in the following internal version, which asks for the exact occurrences of one
fragment within another fragment; see Figure 1. By | w| , we denote the length of a
string or fragment w.

Internal Pattern Matching (IPM) Queries
Given fragments x and y of the text T satisfying | y| < 2| x| , report the fragments
matching x and contained in y (represented as an arithmetic progression of their
starting positions).

We impose the restriction | y| < 2| x| so that the output can be represented in
constant space: In this case, the starting positions of the occurrences of x in y form
an arithmetic progression; see [21, 96]. If | y| \geq 2| x| , then one can ask \scrO (| y| /| x|)
IPM Queries (to find the occurrences of x within fragments of length 2| x| - 1
contained in y, with overlaps of at least | x| - 1 characters between the subsequent
fragments) and output \scrO (| y| /| x|) arithmetic progressions. As shown in Appendix B,

x y

b
0

a
1

a
2

b
3

a
4

a
5

a
6

b
7

a
8

a
9

a
10

b
11

a
12

b
13

a
14

b
15

a
16

b
17

a
18

b
19

a
20

b
21

a
22

b
23

a
24

b
25

a
26

b
27

a
28

b
29

a
30

b
31

a
32

b
33

a
34

b
35

a
36

b
37

a
38

b
39

a
40

b
41

a
42

a
43

a
44

b
45

a
46

a
47

x\prime y\prime

Fig. 1. Two IPM Queries on a text T . The fragment x = T [10 . .21) has five occurrences in
the fragment y= T [23 . .44); their starting positions form an arithmetic progression 24,26,28,30,32
that can be represented uniquely by three integers (24,26,32). Fragment x\prime = T [40 . .47) has two
occurrences in the fragment y\prime = T [2 . .15); their starting positions, 2 and 6, also form an arithmetic
progression.

1For i, j \in \BbbZ , we denote [i . . j] = \{ k \in \BbbZ : i \leq k \leq j\} , [i . . j) = \{ k \in \BbbZ : i \leq k < j\} , and
(i . . j] = \{ k \in \BbbZ : i < k\leq j\} .

2Throughout this paper, log denotes the base-2 logarithm (any other base is explicitly provided
in the subscript).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1526 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

this representation is optimal from the information-theoretic perspective, and thus
the \scrO (| y| /| x|)-factor overhead is necessary.

Remark 1.1. For | y| < 2| x| , answering IPM queries is equivalent to computing the
leftmost occurrence of x in y. Such a subroutine also allows finding the second occur-
rence from the left (if y is trimmed appropriately to avoid the leftmost occurrence)
as well as the rightmost occurrence (if the text is reversed).

We design an optimal data structure for IPM Queries.

Theorem 1.2 (main result). For every text T \in [0 . . \sigma)n, there exists a data
structure of size \scrO (n/ log\sigma n) that answers IPM Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

Linear-time solutions of the exact pattern matching problem [91, 69, 20] are among
the foundational results of string algorithms. Although this alone can motivate the
study of IPM Queries, the significance of our result is primarily due to a growing
collection of applications. In this work, we show that several further internal queries
can be answered efficiently using Theorem 1.2; these are described in detail in sec-
tion 1.1. Other applications of IPM Queries, developed after the conference version
of this paper [76], are listed in section 1.2.

Outline of the solution. A key technical contribution behind Theorem 1.2 is a
novel construction of string synchronizing sets of Kempa and Kociumaka [65]. Intu-
itively, a string synchronizing set corresponds to a set of relatively few fragments of
a specified length selected in a locally consistent way. Kempa and Kociumaka [65]
showed a linear-time algorithm constructing a single synchronizing set of asymptot-
ically optimum size for fragments with specified lengths. We generalize this result
to obtain, still in linear time and space, a synchronizing sets hierarchy consisting
of \scrO (logn) string synchronizing sets covering the whole spectrum of the fragments'
lengths. As opposed to [65], our construction does not use sliding-window minima
(known as minimizers [101]), but we rely on locally consistent parsing, a concept dat-
ing back to the mid-1990s [103, 104, 105, 88]. Specifically, we adapt the recompression
technique of Je\.z [59, 60], which results in a simple and efficient parsing scheme.

The synchronizing sets hierarchy is obtained using a modified version of recom-
pression and properties of maximal repetitions (called runs) in the text. This hierarchy
and the structure of highly periodic runs are essentially independent basic components
of our main data structure. Queries with highly periodic patterns are answered using
runs, whereas other queries rely on the synchronizing sets hierarchy.

Structure of the paper. The main technical contributions of the paper are listed
in section 1.4. Properties of periodicities and runs are discussed in section 2. Sec-
tion 3 gives a warm-up for more complicated sections 4 and 5, containing technical
details of synchronizing hierarchies and recompression. In the subsequent sections,
the synchronizing sets hierarchy together with runs is used as the main data struc-
ture for IPM Queries (with \scrO (n)-time preprocessing in sections 6 and 7 and with
\scrO (n/ log\sigma n)-time preprocessing in section 8). The last section (section 9) covers the
applications listed in section 1.1.

1.1. Applications of IPM queries.
Period queries. One of the central notions of combinatorics on words is that of a

period of a string. An integer p \in [1 . . | w|] is a period of a string w if w[i] = w[i+ p]
holds for all i \in [0 . . | w| - p). Already, Morris and Pratt [91] and Knuth, Morris, and

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1527

Pratt [69] provided a linear-time procedure listing all periods of a given string (as a
side result of their linear-time pattern matching algorithm).

The sorted sequence of periods of a length-m string can be cut into \scrO (logm)
arithmetic progressions [69]. A complete characterization of the possible families of
periods [53] further shows that the size of such a representation (\Theta (log2m) bits) is
asymptotically tight.3 Hence, we adopt it in the internal version of the problem of
finding all periods of a string, formally specified below.

Period Queries
Given a fragment x of T , report all periods of x (represented by disjoint arithmetic
progressions).

We have introduced Period Queries in [75], presenting two solutions. The first
data structure takes \scrO (n logn) space and answers Period Queries in the optimal
\scrO (log | x|) time after \scrO (n logn)-time randomized construction. The other one is based
on orthogonal range searching; its size is \scrO (n + S\itr \its \itu \itc \itc (n)), and the query time is
\scrO (Q\itr \its \itu \itc \itc (n) \cdot log | x|), where S\itr \its \itu \itc \itc (n) and Q\itr \its \itu \itc \itc (n) are analogous quantities for data
structures answering range successor queries; see section 9.4 for a definition. The
state-of-the-art trade-offs are S\itr \its \itu \itc \itc (n) = \scrO (n) and Q\itr \its \itu \itc \itc (n) = \scrO (log\varepsilon n) for every
constant \varepsilon > 0 [93], S\itr \its \itu \itc \itc (n) = \scrO (n log logn) and Q\itr \its \itu \itc \itc (n) = \scrO (log logn) [113], as
well as S\itr \its \itu \itc \itc (n) =\scrO (n1+\varepsilon) and Q\itr \its \itu \itc \itc (n) =\scrO (1) for every constant \varepsilon > 0 [37]. The
first two of these data structures can be constructed in time C\itr \its \itu \itc \itc (n) =\scrO (n

\surd
logn)

[17, 48], whereas the third one can be constructed in time C\itr \its \itu \itc \itc (n) =\scrO (n1+\varepsilon) [37].
In this paper, we develop an asymptotically optimal data structure answering

Period Queries.

Theorem 1.3. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Period Queries in \scrO (log | x|) time. The data structure
can be constructed in \scrO (n/ log\sigma n) time given the packed representation of T .

Our query algorithm is based on the intrinsic relation between periods and borders
(i.e., substrings occurring both as prefixes and as suffixes) of a string. In fact, to
answer each Period Query, it combines the results of the following Prefix-Suffix
Queries used with x= y to determine the borders of x.

Prefix-Suffix Queries
Given fragments x and y of T and a positive integer d, report all suffixes of y of
length in [d . .2d) that also occur as prefixes of x (represented as an arithmetic
progression of their lengths).

In other words, we prove the following auxiliary result.

Theorem 1.4. For every text T \in [0 . . \sigma)n, there exists a data structure of
size \scrO (n/ log\sigma n) that answers Prefix-Suffix Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

3Recently, (1
2
\pm o(1)) log2m bits were proved to be sufficient and, in the worst case, necessary to

encode the set of all periods of a length-m string [99, 100].

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1528 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

In many scenarios, very long periods (p=m - o(m) for a string of length m) are
irrelevant. The remaining periods correspond to borders of length \Theta (m) and thus can
be retrieved with just a constant number of Prefix-Suffix Queries. The case of
p \leq 1

2m is especially important since fragments x with periods not exceeding 1
2 | x| ,

called periodic fragments, can be uniquely extended tomaximal repetitions, also known
as runs (see section 2). We denote the unique run extending a periodic fragment x by
run(x). If x is not periodic, we leave run(x) undefined, which we denote as run(x) =\bot .

Periodic Extension Queries
Given a fragment x of T , compute the run run(x) that extends x.

Theorem 1.4 along with the optimal data structure for LCE Queries [65] imply the
following result.

Theorem 1.5. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Periodic Extension Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

Bannai et al. [16] presented an alternative implementation of Periodic Exten-
sion Queries with \scrO (n)-time construction and \scrO (1)-time queries. The underlying
special case of Period Queries also generalizes Primitivity Queries (asking if a
fragment x is primitive, i.e., whether it does not match uk for any string u and integer
k \geq 2), earlier considered by Crochemore et al. [36], who developed a data structure
of size \scrO (n+ S\itr \its \itu \itc \itc (n)) with an \scrO (Q\itr \its \itu \itc \itc (n))-time query algorithm.

Cyclic equivalence queries. Consider a rotation operation that moves the last
character of a given string u to the front. Formally, if | u| = m, then rot(u) =
u[m - 1]u[0] \cdot \cdot \cdot u[m - 2]. In general, for j \in \BbbZ , we define the rotj function as the
jth function power of rot. Two strings u and v are called cyclically equivalent if
u = rotj(v) holds for some integer j. A classic linear-time algorithm for checking
cyclic equivalence of strings u and v performs pattern matching for u in v2 [87]; there
is also a simple linear-time constant-space algorithm [39]. We define the following
queries.

Cyclic Equivalence Queries
Given two fragments x and y of T , return \{ j \in \BbbZ : rotj(x) = y\} (represented as an
arithmetic progression).

Theorem 1.6. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Cyclic Equivalence Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

Let us mention that [70] gave an alternative data structure answering Cyclic
Equivalence Queries in constant time after \scrO (n)-time preprocessing; this solution
also supports constant-time queries asking for the lexicographically minimal cyclic
rotation of a given fragment.

Bounded LCP queries. Keller et al. [64] used the following queries in the solution
to their Generalized LZ Substring Compression Queries problem.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1529

Bounded Longest Common Prefix (LCP) Queries
Given two fragments x and y of T , find the longest prefix p of x that occurs in y.

Our result for IPM Queries can be combined with the techniques of [64] in a
more efficient implementation of Bounded LCP Queries. Compared to the original
version, the resulting data structure, specified below, has a log log | p| factor instead
of a log | p| factor in the query time.

Theorem 1.7. For every text T of length n over an alphabet [0 . . n\scrO (1)), there ex-
ists a data structure of size \scrO (n+S\itr \its \itu \itc \itc (n)) that answers Bounded LCP Queries in
\scrO (Q\itr \its \itu \itc \itc (n) log log | p|) time. The data structure can be constructed in \scrO (n+C\itr \its \itu \itc \itc (n))
time.

In section 9, we formally define Generalized LZ Substring Compression
Queries and discuss how Theorem 1.7 lets us improve and extend the results of [64].

Earlier versions of our results. Weaker versions of Theorems 1.2--1.6 (with \scrO (n)
space and construction time) and Theorem 1.7 were published in the conference ver-
sion of the paper [76] and the Ph.D. thesis of the first author [71]. Moreover, the con-
struction algorithms provided in [76] were Las Vegas randomized, with linear bounds
on the expected construction time only.

1.2. Further applications of IPM queries. Since the publication of the con-
ference version of this work [76], the list of internal queries, predominantly imple-
mented using IPM Queries, has grown to include shortest unique substrings [2],
longest common substring [10], suffix rank and selection [14, 70], BWT substring com-
pression [14], shortest absent string [15], dictionary matching [25], string covers [38],
masked prefix sums [41], circular pattern matching [57], and longest palindrome [89].

Furthermore, IPM Queries have been used in efficient algorithms for many prob-
lems, such as approximate pattern matching [30, 31], approximate circular pattern
matching [27, 28], RNA folding [40], and computing string covers [98]. Addition-
ally, IPM Queries have found further indirect applications that are based on the
internal queries from section 1.1: Periodic Extension Queries have been applied
for approximate period recovery [6, 9], dynamic repetition detection [8], identifying
two-dimensional maximal repetitions [12], enumeration of distinct substrings [29],
and pattern matching with variables [80, 45], whereas Prefix-Suffix Queries have
been applied for detecting gapped repeats and subrepetitions [77, 50], in the dynamic
longest common substring problem [10], and for computing the longest unbordered
substring [72].

The fundamental role of IPM Queries as a building block for the design of string
algorithms motivated their efficient implementation in the compressed and dynamic
settings [30, 66, 67]. In particular, the \ttP \ttI \ttL \ttL \ttA \ttR model, introduced in [30] with the
aim of unifying approximate pattern matching algorithms across different settings,
includes IPM Queries as one of the primitives. It also includes LCE Queries [82],
defined as LCE(i, i\prime) = lcp(w[i . . | w|),w[i\prime . . | w|)), where lcp(v,w) denotes the longest
common prefix of two strings v,w, and LCE Queries on reversed strings, as well as
the following basic primitives:

\bullet \ttE \ttx \ttt \ttr \tta \ttc \ttt (w, \ell , r): Given a string w and integers 0 \leq \ell \leq r \leq | w| , retrieve the
string w[\ell . . r).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1530 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

\bullet \ttA \ttc \ttc \tte \tts \tts (w, i): Given a string w and a position i\in [0 . . | w|), retrieve the char-
acter w[i].

\bullet \ttL \tte \ttn \ttg \ttt \tth (w): Retrieve the length | w| of the string w.
The argument strings of \ttP \ttI \ttL \ttL \ttA \ttR primitives are represented as fragments of one or
more strings in a given text collection \scrX .

Using an earlier version of Theorem 1.2, providing \scrO (n)-time deterministic con-
struction [71], it has been observed [30, Theorem 7.2] that, after \scrO (n)-time prepro-
cessing of a collection \scrX of strings of total length n, each \ttP \ttI \ttL \ttL \ttA \ttR operation can be
performed in \scrO (1) time. We improve on this result using Theorem 1.2 to implement
IPM Queries and the following implementation of LCE Queries.

Proposition 1.8 ([65]). For every text T of length n over alphabet [0 . . \sigma),
there exists a data structure of size \scrO (n/ log\sigma n) that answers LCE Queries in \scrO (1)
time. The data structure can be constructed in \scrO (n/ log\sigma n) time given the packed
representation of T .

We apply elementary bitwise operations for \ttA \ttc \ttc \tte \tts \tts queries (the \ttE \ttx \ttt \ttr \tta \ttc \ttt and
\ttL \tte \ttn \ttg \ttt \tth queries are straightforward since w =X[\ell . . r) is represented by a pointer to
X \in \scrX and the two endpoints \ell and r). This gives the following result.

Theorem 1.9. A collection \scrX of strings of total length n over alphabet [0 . . \sigma) can
be preprocessed in \scrO (| \scrX | + n/ log\sigma n) time so that each \ttP \ttI \ttL \ttL \ttA \ttR operation on strings
from \scrX can be performed in \scrO (1) time.

Since the approximate pattern matching algorithms of [30, 31, 28, 32] are imple-
mented in the \ttP \ttI \ttL \ttL \ttA \ttR model, Theorem 1.9 immediately improves their running times
for strings over small alphabets. In particular, given a pattern p \in [0 . . \sigma)m, a text
t \in [0 . . \sigma)n, and a threshold k, the occurrences of p in t with at most k mismatches
(substitutions) can be reported in time \scrO (n/ log\sigma n + (n/m) \cdot min(k

\surd
m logm,k2)),

whereas the occurrences with at most k edits (insertions, deletions, and substitu-
tions) can be reported in time \scrO (n/ log\sigma n + (n/m) \cdot k3.5

\surd
logm logk). In both

cases, the improvement is that the \scrO (n) term, dominating the complexity of previous
state-of-the-art solutions [24, 31] for small values of k, is replaced by \scrO (n/ log\sigma n).
A similar phenomenon applies to circular pattern matching with at most k mis-
matches [28], where we achieve \scrO (n/ log\sigma n + (n/m) \cdot k3 log logk) time for the re-
porting version of the problem and \scrO (n/ log\sigma n + (n/m) \cdot k2 logk/ log logk) for the
decision version, and to circular pattern matching with at most k edits [32], where we
achieve \scrO (n/ log\sigma n+ (n/m) \cdot k6) time for the reporting version of the problem and
\scrO (n/ log\sigma n+ (n/m) \cdot k5 log3 k) for the decision version.

We also note that the query algorithms behind Theorems 1.3--1.6 access the text
only through \ttP \ttI \ttL \ttL \ttA \ttR operations. Thus, we obtain the following result.

Corollary 1.10. Let x, y \in \scrX be strings of length at most n. In the \ttP \ttI \ttL \ttL \ttA \ttR

model, one can compute the following:
1. (Prefix-Suffix Query) for a given positive integer d, all suffixes of y of

length in [d . .2d) that also occur as prefixes of x (represented as an arithmetic
progression of their lengths) in \scrO (1) time;

2. (Period Query) all periods of x (represented by disjoint arithmetic progres-
sions) in \scrO (logn) time;

3. (2-Period Query) the smallest period of x provided that x is periodic in
\scrO (1) time;

4. (Cyclic Equivalence Query) the set \{ j \in \BbbZ : rotj(x) = y\} (represented as
an arithmetic progression) in \scrO (1) time.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1531

With known implementations of the \ttP \ttI \ttL \ttL \ttA \ttR model, we automatically obtain ef-
ficient implementations of the queries of Corollary 1.10 in the dynamic, fully com-
pressed, and quantum settings; see Appendix C.

1.3. Related queries. Internal queries are not the only problems in the litera-
ture involving fragments of a static text. Other variants include interval LCP queries
[34, 64], range LCP queries [94, 7, 13, 1], substring hashing queries [44, 49, 52],
fragmented pattern matching queries [11, 52], and cross-document pattern matching
queries [79], to mention a few. In particular, interval LCP queries can be used to
solve the decision version of IPM Queries. Keller et al. [64] showed how to answer
the decision version of IPM Queries in \scrO (Q\itr \its \itu \itc \itc (n)) time using a data structure of
size \scrO (n + S\itr \its \itu \itc \itc (n)) that can be constructed in \scrO (n+C\itr \its \itu \itc \itc (n)) time. The afore-
mentioned query time is valid for arbitrary lengths | x| and | y| , so the efficiency of this
data structure is incomparable to our Theorem 1.2.

The setting of internal queries does not include problems like text indexing, where
the text is available in advance but the pattern is explicitly provided at query time.
This restricts the expressibility of internal queries but, at the same time, allows for
greatly superior query times, which do not need to account for reading any strings.
Another difference is in the typical usage scenario: Data structures for indexing prob-
lems are primarily designed to be interactively queried by a user. In other words, they
are meant to be constructed relatively rarely, but they need to be stored for prolonged
periods of time. As a result, space usage (including the multiplicative constants) is
heavily optimized, whereas the efficiency of construction procedures is of secondary
importance. On the other hand, internal queries often arise during bulk processing
of textual data. The relevant data structures are then built within the preprocessing
phase of the enclosing algorithms, so the running times of the construction procedures
are counted toward the overall processing time. In this setting, efficient construction
is as significant as fast queries.

1.4. Technical contributions. Below, we briefly introduce the most important
technical contributions of our work. We start with a high-level overview of our IPM
Queries data structure for large alphabets, that is, \sigma = n\Theta (1). In this setting, the
space and construction time bounds of Theorem 1.2 simplify to \scrO (n).

String matching using (deterministic) samples. The idea of (deterministic) sam-
pling is a classic technique originally developed for parallel string matching algorithms
[109] and later applied in other contexts, such as quantum string matching [54]. Al-
gorithms using this approach to find the occurrences of a pattern x in a text y follow
a three-phase scheme. In the preprocessing phase, a subset of characters of x, called
the sample, is determined. Then, in the filtering phase, the algorithm selects all frag-
ments y[i . . i+ | x|) of y that match the sample. Finally, in the verification phase, the
algorithm checks whether each candidate y[i . . i+ | x|) matches the whole pattern x.
The efficiency of this scheme hinges on two properties of the chosen samples: (1)
They must be simple enough to support efficient filtering, and (2) they must carry
enough information to leave few candidates for the verification phase. For example,
Vishkin [109] chooses a sample of size \scrO (log | x|) so that the starting positions of the
candidates surviving the filtering phase form \scrO (| y| /| x|) arithmetic progressions whose
difference is the smallest period of x.

Our data structure answering IPM Queries, described in section 6, uses con-
tiguous samples; that is, the sample of a pattern x can be interpreted as a fragment
of T contained in x. Moreover, we minimize the total number of samples across all
the fragments of T rather than the size of each sample, and we aim to choose the

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1532 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

samples consistently so that any fragment matching a sample is a sample itself. These
constraints are infeasible for highly periodic (HP) patterns, whose length is much
larger than the smallest period (we set 1

3 | x| as the cutoff point for the period of x),
and such patterns are handled in section 7 using different techniques outlined later
on. As for non--highly periodic (NHP) patterns, we choose \scrO (n) samples in total so
that the smallest period of the sample of x is \Omega (| x|). The small number of samples
allows storing them explicitly, whereas the large period guarantees that the sample of
x has \scrO (1) occurrences within any fragment y of length | y| < 2| x| (due to Fact 2.3).
Thus, at query time, our data structure uses the precomputed set of samples (stored
in appropriate deterministic dictionaries [102, 95]) to identify the sample of x and its
occurrences in y. Then we use LCE Queries to test which occurrences of the sample
extend to occurrences of x.

String synchronizing sets hierarchy. The challenge of implementing the strategy
outlined above is to consistently pick \scrO (n) samples among \Theta (n2) fragments of T . The
natural first step is to restrict the selection to \Theta (n logn) fragments whose lengths form
a geometric progression, but any further reduction in the number of samples requires
nontrivial symmetry breaking.

In the conference version of this paper [76], we employed a strategy reminiscent
of the minimizers technique popular in bioinformatics [101, 112, 42, 83] and known
under different names in many other applications [106, 107, 23, 97]. In that approach,
candidate fragments are consistently assigned uniformly random weights, and the
sample of x is defined as the minimum-weight fragment of a certain length (such as
2\lfloor log | x| \rfloor - 1) contained in x. With minor adaptations (necessary to avoid highly peri-
odic samples), this scheme yields \scrO (n/2k) length-2k samples in expectation for every
k \in [0 . . \lfloor logn\rfloor]. Subsequently, our sample selection algorithm was adapted for an-
swering LCE Queries [19, 71] and for the Burrows--Wheeler transform construction
[65]. The latter paper contributed a clean notion of a string synchronizing set, which
has since been applied in many further contexts (see, e.g., [66, 26, 67, 61]).

Intuitively, for a length-n string T and a parameter \tau \in [1 . .
\bigl\lfloor
n
2

\bigr\rfloor
], a \tau -synchronizing

set Sync is a subset of positions in T such that the decision to include a position in
Sync depends only on characters at the subsequent 2\tau positions (consistency) and,
among every \tau consecutive position, at least one is included in Sync unless the \tau posi-
tions are located in a highly periodic fragment of T (density); see Definition 3.1 for a
formal definition. Kempa and Kociumaka [65] obtained the following result building
on our original sample-selection algorithm [76] and its derandomized version presented
in [71].

Proposition 1.11 (see [65, Proposition 8.10 and Theorem 8.11]). For every text
T \in [0 . . \sigma)n with \sigma = n\scrO (1) and \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
], there exists a \tau -synchronizing set of

size \scrO (n/\tau) that can be constructed in \scrO (n) time. Moreover, if \tau \leq 1
5 log\sigma n and T

is given in a packed representation, then the construction time can be improved to
\scrO (n/\tau).

It is not hard to argue (see Lemma 6.4) that one can pick as samples all the
length-1 fragments as well as, for some fixed 2k - 1-synchronizing sets across all k \in
[1 . . \lfloor logn\rfloor], all the 2k - 1-synchronizing fragments.4 Unfortunately, it takes \scrO (n logn)
time to construct these synchronizing sets using the algorithm of Proposition 1.11.
Consequently, the deterministic version of Theorem 1.2 published in [71] follows a

4The \tau -synchronizing fragments are length-2\tau fragments starting at all positions contained in a
fixed \tau -synchronizing set.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1533

sophisticated approach relying on just two string synchronizing sets, constructed in
\scrO (n) time each. In this paper, we apply a more natural strategy and show that the
entire hierarchy of 2k - 1-synchronizing sets can be constructed in deterministic \scrO (n)
time, as captured in the definition and theorem below.

Definition 1.12. A synchronizing sets hierarchy of a text T of length n is a data
structure that, given any \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
], constructs a \tau -synchronizing set Sync of T .

Theorem 1.13 (construction of synchronizing sets hierarchy). Given a text T of
length n over an alphabet [0 . . n\scrO (1)), one can construct in \scrO (n) time a synchronizing
sets hierarchy that, for any \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
], in \scrO (n\tau) time returns a \tau -synchronizing set

Sync of T such that | Sync| < 70 n
\tau and every \tau -synchronizing fragment induced by Sync

has smallest period larger than \tau
3 .

In the proof of Theorem 1.13, which is presented in section 5, we use the restricted
recompression technique discussed below.

Restricted recompression. Locally consistent parsing algorithms [109, 88, 60] con-
struct a hierarchical factorization of T , where level-0 phrases are single characters of
T , the only level-q phrase (for some q =\scrO (logn)) is the entire text T , and, for each
k \in [1 . . q], the level-k phrases are concatenations of level-(k - 1) phrases. In this
context, local consistency means that whether two subsequent level-(k - 1) phrases
are merged into the same level-k phrase is a local decision that depends only on a few
neighboring level-(k - 1) phrases. Unfortunately, the lengths of level-(k - 1) phrases
can vary significantly between regions of the text, and thus it is impossible to en-
sure that the symmetry-breaking decisions are made based on fixed-size contexts, as
required by the consistency property of string synchronizing sets.

Thus, we alter the original recompression algorithm and introduce a small but
consequential restriction: Phrases deemed too long for their level are never merged
with their neighbors. Although this trick does not eliminate very long phrases, it lets
us quantify local consistency in terms of fixed-size contexts.

Our restricted recompression scheme has already been used in [74, 68] to prove
that every text admits an efficiently constructible run-length straight-line program of
a particular size. Restricted variants of other locally consistent parsing schemes have
been used in [19, 73, 67] to derive efficient small-space, compressed, and dynamic text
indexes.

In section 3, we provide further intuition and explain how to define synchro-
nizing sets in terms of phrase boundaries at appropriate levels of the hierarchical
decomposition of T constructed via restricted recompression. Section 4 provides the
implementation details of the restricted recompression technique.

IPM Queries in highly periodic patterns. As mentioned above, our deterministic
sampling strategy applies only to non--highly periodic (NHP) patterns. In section 7,
we develop a complementary data structure that is responsible for handling highly
periodic (HP) patterns.

For this, we rely on the fact that the structure of all highly periodic fragments can
be encoded by maximal repetitions (also known as runs) [86, 78, 16]. In particular, we
build on the notion of compatibility [36]: Two strings are compatible whenever their
string periods are cyclically equivalent. If x is periodic, every matching fragment
x\prime can be extended to a run compatible with x. Moreover, due to the assumption
| y| < 2| x| , if x\prime is contained within y, then the run must contain the middle position
of y. Consequently, we develop a simple new data structure that in \scrO (1) time lists all
runs with a certain minimum length (such as | x|) and maximum period (such as 1

3 | x|)

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1534 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

that contain a given position of T . We then use the techniques of [36] to eliminate
runs incompatible with x and find the occurrences of x within each compatible run.

IPM Queries in texts over small alphabets. The aforementioned techniques allow
answering IPM Queries using \scrO (n) space and \scrO (n) construction time. In the case of
small alphabets, that is, \sigma = no(1), both complexities can be improved to \scrO (n/ log\sigma n).
For this, in section 8, we reduce IPM Queries in T \in [0 . . \sigma)n to IPM Queries in a
text T \prime of length \scrO (n/ log\sigma n) over an alphabet of size n\Theta (1). We use a \tau -synchronizing
set Sync, constructed using Proposition 1.11 for appropriate \tau =\Theta (log\sigma n), to partition
T into blocks, and we encode these blocks as characters of T \prime . By the density property
of Sync, each block has length at most \tau or smallest period at most 1

3\tau . Moreover, the
consistency property implies that the block boundaries within x match the block
boundaries within any occurrence of x. Consequently, we retrieve the fragments
\Phi (x) and \Phi (y) of T \prime , encoding the blocks contained within x and y, respectively;
identify the occurrences of \Phi (x) in \Phi (y); and apply LCE Queries (Proposition 1.8)
through Lemma 1.14 below to check which of them correspond to occurrences of x in y.
A major challenge in implementing this strategy is that \Phi (y) can be much longer than
\Phi (x) despite | y| < 2| x| . In particular, \Phi (x) can be empty if | x| =\scrO (\tau) (in that case,
we precompute the answers) or if per(x)\leq 1

3\tau (in that case, we reuse the techniques
for HP patterns). In the remaining cases, we show that it suffices to trim \Phi (y) to a
carefully defined fragment of length \scrO (| \Phi (x)|).

Applications of IPM Queries. Section 9 demonstrates the usage of IPM
Queries for answering Prefix-Suffix Queries, Cyclic Equivalence Queries,
and Bounded LCP Queries; it also covers applications of all these queries. The
common feature of our solutions is that we make a constant number of IPM Queries
to list candidates (suffixes for Prefix-Suffix Queries, rotations for Cyclic Equiv-
alence Queries, and previous occurrences for Bounded LCP Queries) and then
verify each of them using LCE Queries. In the nonperiodic case, verifying \scrO (1)
candidates does not constitute any significant challenge. Otherwise, we exploit the
structure of the output of IPM Queries [21, 96]: The sequence p = (pi)

k - 1
i=0 of re-

ported starting positions forms a periodic progression, meaning that T [p0 . . p1) = \cdot \cdot \cdot =
T [pk - 2 . . pk - 1), and thus, for any position q, the answers to queries LCE(pi, q) can
be obtained in bulk using just \scrO (1) LCE queries. Formally, our main auxiliary result
reads as follows.

Lemma 1.14. Consider a text T equipped with a data structure answering LCE
Queries in \scrO (1) time. Given a fragment v of T and a collection of fragments ui =
T [pi . . r) represented with a periodic progression p= (pi)

k - 1
i=0 and a position r\geq pk - 1,

the following queries can be answered in \scrO (1) time:
(a) Report indices i\in [0 . . k) such that ui matches a prefix of v, represented as a

subinterval of [0 . . k).
(b) Report indices i \in [0 . . k) maximizing lcp(ui, v), represented as a subinterval

of [0 . . k).

2. Strings and periodicity. We consider strings over an alphabet \Sigma , i.e., finite
sequences of characters from the set \Sigma . The set of all strings over \Sigma is denoted by
\Sigma \ast , and \Sigma + is the set of nonempty strings over \Sigma . For an alphabet \Sigma and an integer
m\in \BbbZ \geq 0, by \Sigma m, we denote the set of length-m strings over \Sigma . Occasionally, we also
work with the family \Sigma \infty of infinite strings indexed by nonnegative integers.

2.1. Basic notations on strings. For a string w, by | w| , we denote its length
and by w[0], . . . ,w[| w| - 1] its subsequent characters. The concatenation of two strings

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1535

u, v is denoted u \cdot v or uv. We identify strings of length 1 with the underlying
characters, which lets us write w=w[0] \cdot \cdot \cdot w[| w| - 1]. By \varepsilon , we denote the empty string.
By alph(w), we denote the set \{ w[0], . . . ,w[| w| - 1]\} . The string wR =w[| w| - 1] \cdot \cdot \cdot w[0]
is called the reverse of w. A string u is called a substring of w if u=w[i] \cdot \cdot \cdot w[j - 1] for
some i, j \in [0 . . | w|] with i\leq j. In this case, we say that u occurs in w at position i, and
we denote by w[i . . j) = w[i . . j - 1] the occurrence of u at position i. By Occ(u,w),
we denote the set of starting positions of all occurrences of u in w.

We call w[i . . j) a fragment of w; formally, a fragment can be interpreted as a tuple
consisting of (a pointer to) the string w and the two endpoints i, j \in [0 . . | w|] with i\leq j.
If a fragment w[i . . j) is an occurrence of a string u, then we write u \sim = w[i . . j) and
say that w[i . . j) matches u. Similarly, if w[i . . j) and w[i\prime . . j\prime) are occurrences of the
same string, we denote this by w[i . . j) \sim = w[i\prime . . j\prime), and we say that these fragments
match. On the other hand, the equality of fragments w[i . . j) = w[i\prime . . j\prime) is reserved
for occasions when w[i . . j) is the same fragment as w[i\prime . . j\prime) (i.e., i= i\prime and j = j\prime).

We assume that a fragment x=w[i . . j) of a string w inherits some notions from
the underlying substring: the length | x| = j - i, the characters x[i\prime] = w[i + i\prime] for
i\prime \in [0 . . | x|), and the subfragments x[i\prime . . j\prime) =w[i+ i\prime . . i+ j\prime) for i\prime , j\prime \in [0 . . | x|) with
i\prime \leq j\prime . A fragment w[i . . j) also has a natural interpretation as a range [i . . j) of
positions in w. This lets us consider disjoint or intersecting (overlapping) fragments
and define the containment relation (\subseteq) on fragments of w. Moreover, for i, j, k \in
[0 . . | w|] with i \leq j \leq k, the fragments w[i . . j) and w[j . . k) are called consecutive,
and w[i . . k) = w[i . . j) \cdot w[j . . k) is assumed to be their concatenation. If fragments
w[i . . j) and w[i\prime . . j\prime) intersect, we denote their intersection w[max(i, i\prime) . .min(j, j\prime))
by w[i . . j)\cap w[i\prime . . j\prime).

A fragment x of w of length | x| < | w| is called a proper fragment of w. A fragment
w[i . . j) is a prefix of w if i = 0 and a suffix of w if j = | w| . We extend the notions
of a prefix and a suffix to the underlying substrings. For a string w and an integer
k \in \BbbZ \geq 0, we denote the concatenation of k copies of w by wk.

We denote by \prec the natural order on \Sigma and extend this order in the standard
way to the lexicographic order on \Sigma \ast .

The notion of concatenation uv extends to u \in \Sigma \ast and v \in \Sigma \infty , resulting in
uv \in \Sigma \infty . Also, the notion of the longest common prefix of two strings naturally
extends to \Sigma \ast \cup \Sigma \infty . For a string w \in \Sigma +, we also introduce the infinite power
w\infty \in \Sigma \infty , i.e., the concatenation of infinitely many copies of w.

2.2. Periodic structures in strings. An integer p \in [1 . . | w|] is a period of a
string w \in \Sigma + if w[i] = w[i + p] holds for all i \in [0 . . | w| - p). We call w periodic if
its smallest period satisfies per(w)\leq 1

2 | w| . A border of a string w is a substring of w
which occurs both as a prefix and as a suffix of w. Note that p is a period of w if and
only if w has a border of length | w| - p. Periods of a string w satisfy the following
periodicity lemma.

Lemma 2.1 (periodicity lemma [85, 46]). Let w be a string with periods p and q.
If p+ q - gcd(p, q)\leq | w| , then gcd(p, q) is also a period of w.

For an integer k\geq 2, the string wk is called a power of w (with root w). A string
u \in \Sigma + is primitive if it is not a power, i.e., u \not =wk for every integer k \geq 2 and every
root w. For a string u, the shortest string w that satisfies u=wk for some k \in \BbbZ + is
called the primitive root of u. Primitive strings enjoy a synchronizing property, which
is a consequence of Lemma 2.1.

Lemma 2.2 (see [35, Lemma 1.11]). A nonempty string u is primitive if and only
if it occurs exactly twice in u2 (as a prefix and as a suffix).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1536 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

By Lemma 2.2, a string w \in \Sigma n is primitive if and only if it has exactly n distinct
rotations.

Next, we formally state the property that the output of IPM Queries is compact.

Fact 2.3 ([21, 96]). Let x, y be strings satisfying | y| < 2| x| . The set of starting
positions of the occurrences of x in y forms a single arithmetic progression.

Maximal repetitions (runs). A run (maximal repetition) [86, 78] in a string w is
a periodic fragment \gamma = w[i . . j] that can be extended neither to the left nor to the
right without increasing the smallest period p=per(\gamma), that is, w[i - 1] \not =w[i+ p - 1]
and w[j + 1] \not = w[j - p+ 1], provided that the respective positions exist. We assume
that runs are stored together with their periods so that per(\gamma) can be retrieved in
constant time. We denote the set of all runs in a string w by RUNS(w).

Example 2.4. For a string w= \ttb \tta \tta \ttb \tta \ttb \tta \tta \ttb \tta \ttb \ttb , we have

RUNS(w) = \{ w[1 . .3),w[6 . .8),w[10 . .12),w[2 . .7),w[7 . .11),w[4 . .10),w[0 . .11)\} ;

see Figure 2. We have three runs with period 1: w[1 . .3) \sim = \tta \tta , w[6 . .8) \sim = \tta \tta , and
w[10 . .12) \sim = \ttb \ttb ; two runs with period 2: w[2 . .7) \sim = \tta \ttb \tta \ttb \tta and w[7 . .11) \sim = \tta \ttb \tta \ttb ;
one run with period 3: w[4 . .10) \sim = \tta \ttb \tta \tta \ttb \tta ; and one run with period 5: w[0 . .11) \sim =
\ttb \tta \tta \ttb \tta \ttb \tta \tta \ttb \tta \ttb .

Our results rely on the following asymptotic bounds related to runs.

Proposition 2.5 ([78, 16]). Given a text T of length n, the set RUNS(T) of all
runs in T (together with their periods) can be computed in \scrO (n) time. In particular,
| RUNS(T)| =\scrO (n).

We say that a run \gamma extends a fragment x if x \subseteq \gamma and per(x) = per(\gamma); see
Figure 3. Every periodic fragment can be extended to a run with the same period.
Moreover, the following easy consequence of Lemma 2.1 implies that this extension is
unique. For the fixed text T , we denote the unique run extending a periodic fragment
x by run(x).

Fact 2.6 (see [78, Lemma 1(ii)]). Let \gamma \not = \gamma \prime be runs in a string w. If p=per(\gamma)
and p\prime =per(\gamma \prime), then | \gamma \cap \gamma \prime | < p+ p\prime - gcd(p, p\prime).

b

0

a

1

a

2

b

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

b

11

Fig. 2. Runs in w= \ttb \tta \tta \ttb \tta \ttb \tta \tta \ttb \tta \ttb \ttb .

u

\gamma

p

Fig. 3. A run \gamma extending a fragment u, that is, \gamma = run(u), satisfies per(u) = per(\gamma) = p \leq
1
2
| u| \leq 1

2
| \gamma | .

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1537

Proof. For a proof by contradiction, suppose that | \gamma \cap \gamma \prime | \geq p+p\prime - gcd(p, p\prime). By
Lemma 2.1, this means that gcd(p, p\prime) is a period of the intersection \gamma \cap \gamma \prime , which we
denote w[\ell . . r]. Since \gamma \not = \gamma \prime , exactly one of these runs must contain position \ell - 1 or
r + 1. Due to symmetry, we may assume without loss of generality that \gamma contains
position \ell - 1. Observe that positions \ell +p - 1 and \ell +p\prime - 1 are located within \gamma \cap \gamma \prime ,
so w[\ell + p - 1] =w[\ell + p\prime - 1] because gcd(p, p\prime) divides | p - p\prime | .

On the other hand, w[\ell - 1] = w[\ell + p - 1] (because \gamma contains position \ell - 1)
and w[\ell - 1] \not = w[\ell + p\prime - 1] (by maximality of \gamma \prime). Thus, w[\ell - 1] = w[\ell + p - 1] =
w[\ell + p\prime - 1] \not =w[\ell - 1], which is a contradiction that concludes the proof.

Fragments x satisfying run(x) = \gamma admit the following elegant characterization.

Observation 2.7. Consider a text T and a run \gamma \in RUNS(T). A fragment x of T
satisfies run(x) = \gamma if and only if x is contained in \gamma and | x| \geq 2per(\gamma).

A string x is called highly periodic if per(x) \leq 1
3 | x| ; otherwise, it is called non--

highly periodic. Highly periodic and non--highly periodic strings are further denoted
as HP strings and NHP strings, respectively.

3. Overview of synchronizing sets hierarchy. Recall that a \tau -synchronizing
set consists of the starting positions of selected length-2\tau fragments. It is formally
defined as follows.

Definition 3.1 (synchronizing set [65]). Let T be a string of length n, and let
\tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
]. A set Sync\subseteq [0 . . n - 2\tau] is a \tau -synchronizing set of T if it satisfies the

following conditions:

Consistency: For all i, j \in [0 . . n - 2\tau], if i \in Sync and T [i . . i+ 2\tau)\sim = T [j . . j + 2\tau),
then j \in Sync.

Density: For all i\in [0 . . n - 3\tau +1], we have [i . . i+ \tau)\cap Sync= \emptyset \Leftarrow \Rightarrow per(T [i . . i+
3\tau - 1))\leq 1

3\tau .

We say that the elements of a fixed \tau -synchronizing set Sync are \tau -synchronizing posi-
tions and that the fragments T [s . . s+2\tau) for s\in Sync are \tau -synchronizing fragments
induced by Sync; the set of \tau -synchronizing fragments is denoted SyncFr.

Example 3.2. Let TMt be the Thue--Morse word [108] of length 2t and TMt be its
bitwise negation. For i \in [0 . .2t), the character TMt[i] is the pop-count of i modulo
2 (the parity of ones in the binary representation of i). For k \in [0 . . t), the following
construction yields a 2k-synchronizing set of TMt:

Sync=
\bigl(
Occ(TMk,TMt)\cup Occ(TMk,TMt)

\bigr)
\cap
\bigl[
0 . .2t - 2k+1

\bigr]
.

We illustrate the case of t = 5 and k = 2, where TM2 = 0110. Then Sync =
\{ 0,4,6,8,12,16,20,22,24\} with the 22-synchronizing positions underlined:

TM5 = 01101001100101101001011001101001.

We say that a fragment is p-periodic if its smallest period is at most p; otherwise,
the fragment is p-nonperiodic. Let us note that if [i . . i + \tau) \cap Sync = \emptyset holds for a
\tau -synchronizing set Sync, then the density condition stipulates that T [i . . i+ 3\tau - 1)
is 1

3\tau -periodic.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1538 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

Our construction of a synchronizing sets hierarchy crucially relies on an auxiliary
family (Bk)

q
k=0 of sets of positions defined below. We denote \mu = 8

7 and, for k \in \BbbZ \geq 0,
define

\lambda k = \mu \lfloor k/2\rfloor and \alpha k =

\Biggl\{
1 if k= 0,

\alpha k - 1 + \lfloor \lambda k - 1\rfloor otherwise.

The numbers \lambda k form the sequence \mu 0, \mu 0, \mu 1, \mu 1, \mu 2, \mu 2, \mu 3, \mu 3, The elements
of the sequence \alpha k are bounded by the elements of the sequence \lambda k as follows (see
Appendix A for a simple calculation).

Observation 3.3. For every k \in \BbbZ \geq 0, we have \alpha k+1 \leq 16\lambda k.

In section 4, we prove the following result; the underlying intuition is provided
below.

Proposition 3.4. Given a length-n text T over an alphabet [0 . . n\scrO (1)), one can
construct in \scrO (n) time a chain of sets \emptyset = Bq \subsetneq Bq - 1 \subseteq Bq - 2 \subseteq \cdot \cdot \cdot \subseteq B0 = [1 . . n)
such that each Bk satisfies the following:

(a) | Bk| \leq 4\lambda - 1
k n.

(b) For every i, j \in [\alpha k . . n - \alpha k], if i\in Bk and T [i - \alpha k . . i+\alpha k)\sim = T [j - \alpha k . . j+
\alpha k), then j \in Bk.

(c) If i, j are consecutive positions in Bk\cup \{ 0, n\} , then T [i . . j) has length at most
7
4\lambda k or a primitive root of length at most \lambda k.

Restricted recompression. As indicated in section 1.4, we use a modification of the
recompression technique [60] to construct a sequence (F0,F1, . . . ,Fq) of factorizations
of T , where F0 consists of single characters of T , phrases of Fk are concatenations
of phrases of Fk - 1 for k \in [1 . . q], and Fq contains one phrase spanning the entire T .
The factorizations are represented by the sets Bk of phrase boundaries: the starting
positions of all phrases of Fk except for the leftmost one.

The local consistency of recompression is characterized as follows: Whether two
subsequent phrases of Fk - 1 are concatenated into the same phrase of Fk depends
solely on the names of these two phrases (where matching phrases have equal names).
Unfortunately, since the phrases can get arbitrarily long, we cannot conclude that
the resulting set Bk of phrase boundaries is locally consistent: For any fixed k > 1,
whether a given i position belongs to Bk may depend on a context whose size is not
bounded by any function of k. Consequently, in the restricted recompression, two
subsequent phrases of Fk may be concatenated into the same phrase of Fk+1 only if
their lengths are not ``too large.""

Our construction (underlying Proposition 3.4) guarantees that every phrase of Fk

has length at most 7
4\lambda k or primitive root of length at most \lambda k. Moreover, this will

also ensure that whether a given i position belongs also to Bk depends only on its
context of length \alpha k \leq 16\lambda k - 1.

Synchronizing fragments and synchronizing positions. Since the density condition
in Definition 3.1 depends also on the notion of periodicity, our construction needs to
capture it as well. For an integer \tau \in [1 . . n], we define the set of \tau -runs in T as

RUNS\tau (T) =

\biggl\{
\gamma \in RUNS(T) : | \gamma | \geq \tau and per(\gamma)\leq 1

3
\tau

\biggr\}
.

Our synchronizing sets consist of two kinds of positions: those obtained from the sets
Bk and those related to the structure of \tau -runs.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1539

U V W X W W X Y Z

b1 b2 b3 b4 b5 b6 b7 b8

\bullet

s6

\bullet

s3

\bullet

s5

\bullet

s2

\bullet

s4

\bullet

s7

\tau \tau

Fig. 4. Assume Fk = (U,V,W,X,W,W,X,Y,Z), where the symbols U,V,W,X,Y,Z are the
names of the phrases. The set Bk consists of the starting positions of the phrases. The \tau -
synchronizing set is obtained by going \tau characters back from the start of each phrase (provided
that a length-2\tau fragment starts at the resulting position). The set Sync consists of positions in T
marked by a blue dot. The figure illustrates the case without highly periodic fragments.

\bullet

\bullet
2\tau

2\tau

Fig. 5. Synchronizing positions and synchronizing fragments induced by a \tau -run. The first
(last) positions of such fragments are one position to the left (resp., right) of a \tau -run. The set Sync
includes the first positions of synchronizing fragments (blue dots).

The \tau -synchronizing set is based on Bk at the lowest level k such that \tau \geq
16\lambda k - 1 \geq \alpha k. Define

k(\tau) =max\{ j \in \BbbZ \geq 0 : j = 0 or 16\lambda j - 1 \leq \tau \} .

The middle point of a fragment T [i . . i+ 2\ell) is defined as i+ \ell .

Construction 3.5 (sets of synchronizing positions and fragments). The set
SyncFr of \tau -synchronizing fragments consists of all \tau

3 -nonperiodic fragments of length
2\tau such that

(a) their middle point is in Bk(\tau), or
(b) their first position is one position to the left of a \tau -run, or
(c) their last position is one position to the right of a \tau -run.

The set Sync consists of the first positions of fragments in SyncFr.

Schematic illustrations can be found in Figures 4--6. The procedure constructing
the sets Bk is described and analyzed in section 4. Then, in section 5, we prove
that Construction 3.5 indeed yields \tau -synchronizing sets and that these sets can be
constructed efficiently.

4. Restricted recompression and proof of Proposition 3.4. In this section,
we use a version of recompression [60] to construct a family of sets Bk satisfying
Proposition 3.4; as described above, this set gives the main part of our synchronizing
sets hierarchy.

4.1. Definition of restricted recompression. Given a string T \in \Sigma +, we
create a sequence of factorizations (F0, . . . ,Fq), where each factorization Fk decom-
poses T into mk phrases T [fk,i . . fk,i+1) for i\in [0 . .mk). The set of phrase boundaries

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1540 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

b1 b2 b3 b4 b5 b6 b7

\bullet

\bullet

\bullet

\bullet

\bullet

s1 s2 s3 s4 s5

\tau \tau

Fig. 6. Illustration of synchronizing fragments of length 2\tau in a general situation: the nonpe-
riodic case and the case of synchronizing fragments generated by \tau -runs. The set of \tau -synchronizing
positions is Sync= \{ s1, . . . , s5\} , and the set of phrase boundaries is Bk = \{ b1, b2, . . . , b7\} .

A B A C D B

fk,0 fk,1 fk,2 fk,3 fk,4 fk,5

T =

Fig. 7. The factorization Fk for mk = 6. We have Bk = \{ fk,1, fk,2, fk,3, fk,4, fk,5\} and
Tk =ABACDB, where \{ A,B,C,D\} \subseteq S are phrase names.

corresponding to Fk is defined as Bk = \{ fk,1, . . . , fk,mk - 1\} ; see Figure 7. In particular,
if Fk consists of just a single phrase, then Bk = \emptyset .

We identify the factorization Fk with a string Tk \in S+ of phrase names such that
Tk[i] = Tk[j] holds if and only if T [fk,i . . fk,i+1)\sim = T [fk,j . . fk,j+1).

The phrase names belong to an alphabet S of symbols defined as the least fixed
point of the following equation:

S=\Sigma \cup (S\times S)\cup (S\times \BbbZ \geq 2).

The phrase names can be converted into strings using an expansion function val :
S\rightarrow \Sigma +,

val(S) =

\left\{
S if S \in \Sigma ,

val(S1) \cdot val(S2) if S = (S1, S2) for S1, S2 \in S,

val(S\prime)m if S = (S\prime ,m) for S\prime \in S and m\in \BbbZ \geq 2,

that is extended to a morphism val : S\ast \rightarrow \Sigma \ast with val(S1 \cdot \cdot \cdot Ss) = val(S1) \cdot \cdot \cdot val(Ss)
for S1, . . . , Ss \in S. Hence, val(Tk[j])\sim = T [fk,j . . fk,j+1) and val(Tk) = T .

Remark 4.1. The characters in S are rather conceptual; the phrase name can be
viewed as a ``parse tree"" of the phrase (see Figure 8). In an efficient implementation of
restricted recompression presented in section 4.2, for each k, we represent the symbols
of Tk as small integers.

Next, we describe operations constituting the basic building blocks of restrict-
ed recompression. They are modifications of operations used in standard recompres-
sion [60].

Definition 4.2 (restricted run-length compression). Given a string U \in S\ast and
a subset A\subseteq S, we define an operation RunShrinkA(U), which returns a string in S\ast ,
as shown in Algorithm 1.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1541

S1 S2 S3 S4 S4 S4

(S1, S2) S3 (S4, 3)

Fig. 8. Schematic view of one iteration of restricted recompression (with phrase boundaries
indicated).

Algorithm 1: RunShrinkA(U).

foreach maximal unary run U [i . . i+m)\sim =Am in U do
if m\geq 2 and A\in A then
replace U [i . . i+m) with the symbol (A,m)\in S;

return U ;

Definition 4.3 (restricted pair compression). Given a string U \in S\ast and disjoint
subsets L,L\subseteq S, we define an operation PairShrinkL,R(U), which returns a string in
S\ast , as shown in Algorithm 2.

Algorithm 2: PairShrinkL,R(U).

foreach fragment U [i . . i+ 1] in U do
if U [i]\in L and U [i+ 1]\in L then

replace U [i . . i+ 1] with (U [i],U [i+ 1])\in S;
return U ;

Let Ak := \{ S \in S : | val(S)| \leq \lambda k\} . Given a string T \in \Sigma +, the strings Tk for
k \in \BbbZ \geq 0 are constructed as shown in Algorithm 3; see also Figure 9.

Algorithm 3: Constructing restricted recompression.

T0 := T ; k := 0;
while | Tk| > 1 do
if k mod 2= 0 then
Tk+1 :=RunShrinkAk

(Tk);
else
Lk,Rk:= disjoint subsets of Ak specified below;
Tk+1 :=PairShrinkLk,Rk

(Tk);
k := k+ 1;

q := k;

Construction of Lk and Rk. The classification into left symbols Lk and right
symbols Rk is made similarly as in [59, Lemma 6.2]. We formulate an auxiliary
problem and use its folklore deterministic linear-time solution employing the so-called
method of conditional expectations [90, section 6.3].

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1542 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

\lambda k\lambda k \lambda k \lambda k

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

D A B E C B D D D E E A B A C

\lambda k

b1 b3 b4 b6 b9 b10 b11 b13 b14

D E E E A C(A,B) (C,B) (D, 3) (A,B)

Fig. 9. Detailed illustration of two iterations of computing the restricted recompression, moving
from Tk = DABECBDDDEEABAC to Tk+2 = D (A,B)E (C,B) (D,3)EE (A,B)AC for an
even k. The dots correspond to phrase boundaries. The set of phrase boundaries is changed as fol-
lows: Bk = \{ b1, b2, . . . , b14\} - \rightarrow Bk+2 = \{ b1, b3, b4, b6, b9, b10, b11, b13, b14\} . We have Lk+1 = \{ A,C\}
and Rk+1 = \{ B,D\} . We assume that | val(A)| , . . . , | val(D)| \leq \lambda k = \lambda k+1 < | val(E)| , | val((D,3))| . In
particular, EE is not shrunk.

Approximate Maximum Directed Cut
Input: A directed multigraph G= (V,E) without self-loops.
Output: A partition V =L\cup R such that at least 1

4 | E| arcs lead from L to R.

A proof of the following lemma is provided in Appendix A for completeness.

Lemma 4.4. Approximate Maximum Directed Cut problem can be solved in
linear time.

Our construction of Lk and Rk works as follows:
\bullet We construct a multigraph with vertices alph(Tk)\cap Ak and, for i\in [1 . . | Tk|),

an arc from Tk[i - 1] to Tk[i] if both symbols belong to Ak; i.e., both lengths
| val(Tk[i - 1])| and | val(Tk[i])| are at most \lambda k.

\bullet The sets Lk,Rk are the outputs L,R of the Approximate Maximum Di-
rected Cut on this multigraph.

The number of arcs from L to R is exactly the number of pairs of merged phrases;
the fact that it is bounded from below guarantees that | Bk| decreases exponentially.
This implies, in particular, that Bk is empty for appropriately large k =\Theta (logn), so
the number of iterations q of the restricted recompression is \scrO (logn). The steps using
RunShrink are not needed to reduce the number of phrases, but they guarantee that
there are no self-loops in the constructed multigraphs.

4.2. Proof of Proposition 3.4. Before we proceed with an efficient construc-
tion of the family of sets Bk, let us show two basic properties of restricted recompres-
sion. We view each application of a shrinking method (RunShrink or PairShrink) in
Algorithm 3 as a decomposition of Tk into fragments, called blocks, such that single-
character blocks stay intact and longer blocks are collapsed into single characters in
Tk+1. We refer to block boundaries as positions of Tk where blocks start. A dis-
tinctive feature of recompression (compared to some other locally consistent parsing
techniques) is that matching phrases are given equal names. More generally, the
following property is shown by induction.

Lemma 4.5. For every k \in \BbbZ \geq 0 and fragments x,x\prime of Tk, if the fragments expand
to equal strings, that is, val(x) = val(x\prime), then x and x\prime are formed of the same
sequences of phrase names, that is, x\sim = x\prime .

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1543

Proof. We proceed by induction on k. Let x,x\prime be fragments of Tk satisfying
val(x) = val(x\prime). If k = 0, then x \sim = x\prime holds due to val(x) \sim = x and val(x\prime) \sim = x\prime .
Otherwise, let y and y\prime be the fragments of Tk - 1 obtained from x and x\prime , respectively,
by expanding collapsed blocks.

Note that val(y) = val(x) = val(x\prime) = val(y\prime), so the inductive assumption guaran-
tees y\sim = y\prime . Inspecting Definitions 4.2 and 4.3, we can observe that if Tk - 1[i - 1 . . i]\sim =
Tk - 1[i

\prime - 1 . . i\prime] for i, i\prime \in [1 . . | Tk - 1|), then block boundaries at positions i and i\prime are
placed consistently, that is, either at both of them or at neither of them. Conse-
quently, block boundaries within y and y\prime are placed consistently. Moreover, both y
and y\prime consist of full blocks (since they are collapsed to x and x\prime , resp.). Thus, y and
y\prime are consistently partitioned into blocks. Matching blocks get collapsed to matching
symbols in both Definition 4.2 and Definition 4.3, so we derive x\sim = x\prime .

In particular, we conclude that Tk =RunShrinkAk
(Tk) holds for all odd k \in \BbbZ \geq 0.

Corollary 4.6. For every odd k \in \BbbZ \geq 0, there is no j \in [1 . . | Tk|) such that
Tk[j - 1] = Tk[j]\in Ak.

Proof. For a proof by contradiction, suppose that Tk[j - 1] = Tk[j] \in Ak holds
for some j \in [1 . . | Tk|). By the definition of \lambda k = \mu \lfloor k/2\rfloor , we have Ak = Ak - 1. Let
x= Tk - 1[i - \ell . . i) and x\prime = Tk - 1[i . . i+\ell \prime) be blocks of Tk - 1 collapsed to Tk[j - 1] and
Tk[j], respectively. Due to val(x) = val(Tk[j - 1]) = val(Tk[j]) = val(x\prime), Lemma 4.5
guarantees x \sim = x\prime and, in particular, \ell = \ell \prime . If \ell = 1, then Tk - 1[i - 1] = Tk[j -
1] = Tk[j] = Tk - 1[i] \in Ak = Ak - 1. Otherwise, x \sim = x\prime \sim = A\ell for some symbol A \in
Ak - 1, which means that Tk - 1[i - 1] = Tk - 1[i] = A \in Ak - 1. In either case, Tk - 1[i -
1] = Tk - 1[i] \in Ak - 1, which means that RunShrinkAk - 1

(Tk - 1) does not place a block
boundary at position i in Tk - 1, a contradiction.

We are ready to prove Proposition 3.4. We repeat its statement for convenience.

Proposition 4.7. Given a length-n text T over an alphabet [0 . . n\scrO (1)), one can
construct in \scrO (n) time a chain of sets \emptyset = Bq \subsetneq Bq - 1 \subseteq Bq - 2 \subseteq \cdot \cdot \cdot \subseteq B0 = [1 . . n)
such that each Bk satisfies the following:

(a) | Bk| \leq 4\lambda - 1
k n.

(b) For every i, j \in [\alpha k . . n - \alpha k], if i\in Bk and T [i - \alpha k . . i+\alpha k)\sim = T [j - \alpha k . . j+
\alpha k), then j \in Bk.

(c) If i, j are consecutive positions in Bk\cup \{ 0, n\} , then T [i . . j) has length at most
7
4\lambda k or a primitive root of length at most \lambda k.

Proof. For subsequent integers k, we represent the symbols of Tk via identifier
functions idk mapping distinct symbols to distinct identifiers in [0 . . | Tk|). Thus, we
actually store strings Ik such that | Ik| = | Tk| and Ik[i] = idk(Tk[i]) for i \in [0 . . | Tk|).
Moreover, we store arrays mapping identifiers to expansion lengths of the correspond-
ing symbols: lenk(Ik[i]) := | val(Tk[i])| .

From this representation, it is easy to derive the equality

Bk =

\Biggl\{
j - 1\sum
i=0

lenk(Ik[i]) : j \in [1 . . | Ik|)

\Biggr\}
.

In order to construct I0 and len0, we sort the characters of T and assign them con-
secutive positive integer identifiers; the lengths are obviously len0(I0[i]) = 1 for all
i \in [0 . . | I0|). This step takes \scrO (n) time due to the assumption \sigma = n\scrO (1). Moreover,
| B0| = n - 1< 4n= 4n

\lambda 0
holds as claimed.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1544 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

In order to construct Ik+1 and lenk+1 for k\geq 0, we process Ik and lenk depending
on the parity of k. The algorithm terminates after constructing the first string Iq
with | Iq| = 1 and even q (then Bk = \emptyset for k\geq q).

Case 1. k is even, that is, Tk+1 =RunShrinkAk
(Tk).

We scan Ik from left to right outputting the representations of subsequent symbols
of Tk+1. The initial representations are elements of [0 . . | Tk|) \cup [0 . . | Tk|)2; later, they
will be given identifiers in [0 . . | Tk+1|). Each symbol S in Tk+1 is represented as
(idk(S

\prime),m) such that S\prime \in alph(Tk), m\geq 2, and S = (S\prime ,m) does not occur in Tk or
as idk(S) otherwise. Suppose that Ik[j . . | Ik|) is yet to be processed. If

j = | Ik| - 1, lenk(Ik[j])>\lambda k, or Ik[j] \not = Ik[j + 1],

we output Ik[j] as the next symbol of Tk+1 and continue processing Ik[j + 1 . . | Ik|).
Otherwise, we determine the maximum integer m \geq 2 such that Ik[j

\prime] = Ik[j] for
j\prime \in [j . . j+m), output (Ik[j],m) as the next symbol of Tk+1, and continue processing
Ik[j +m. . | Ik|). By Lemma 4.5, (Tk[j],m) does not occur in Tk in this case.

Note that | Tk+1| \leq | Tk| . The characters of Ik+1 are initially represented as el-
ements of [0 . . | Tk|) \cup [0 . . | Tk|)2, and these representations can be sorted in \scrO (| Tk|)
time so that consecutive integer identifiers idk+1 are assigned to symbols of Tk+1. We
also set

\bullet lenk+1(idk+1(S)) =m \cdot lenk(idk(S\prime)) if S is represented as (idk(S
\prime),m);

\bullet lenk+1(idk+1(S)) = lenk(idk(S)) if S is represented as idk(S).
Overall, this algorithm constructs Ik+1 in \scrO (| Tk|) =\scrO (| Bk|) time.

Case 2. k is odd, that is, Tk+1 =PairShrinkLk,Rk
(Tk).

We first partition Ak \cap alph(Tk) into Lk and Rk. Technically, this step results
in appropriately marking idk(Tk[i]) depending on whether Tk[i] \in Lk, Tk[i] \in Rk, or
Tk[i] \not \in Ak.

For this, we scan the array Ik and construct a directed multigraph Gk with
V (Gk) = alph(Ik). For each i\in [1 . . | Tk|), we add an arc Ik[i - 1]\rightarrow Ik[i] provided that

lenk(Ik[i - 1])\leq \lambda k and lenk(Ik[i])\leq \lambda k.

By Corollary 4.6, this arc is not a self-loop, so the algorithm of Lemma 4.4 yields in
\scrO (| Bk|) time a partition V (Gk) =L\cup R with at least 1

4 | E(Gk)| arcs from L to R. For
all symbols S such that lenk(idk(S)) \leq \lambda k, we add S to Lk if idk(S) \in L and to Rk

otherwise.
Next, we scan Ik from left to right, outputting representations of subsequent

symbols of Tk+1. Initially, each symbol S in Tk+1 is represented as (idk(S1), idk(S2))
such that S1, S2 \in alph(Tk) and S = (S1, S2) does not occur in Tk or as idk(S)
otherwise. Suppose now that Ik[j . . | Ik|) is yet to be processed. If

j = | Ik| - 1, Tk[j] /\in Lk, or Tk[j + 1] /\in Rk,

we output Ik[j] as the next symbol of Tk+1 and continue processing the fragment
Ik[j+1 . . | Ik|). Otherwise, we output (Ik[j], Ik[j+1]) as the next symbol of Tk+1 and
continue processing Ik[j + 2 . . | Ik|). By Lemma 4.5, (Tk[j], Tk[j + 1]) does not occur
in Tk in this case.

Note that | Tk+1| \leq | Tk| and that the characters of Tk+1 are initially represented
as elements of [0 . . | Tk|) \cup [0 . . | Tk|)2. These representations can be sorted in \scrO (| Tk|)
time so that consecutive integer identifiers idk+1 can be assigned to symbols of Tk+1.
We also set

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1545

\bullet lenk+1(idk+1(S)) = lenk(idk(S1))+lenk(idk(S2)) if S is represented as (idk(S1),
idk(S2));

\bullet lenk+1(idk+1(S)) = lenk(idk(S)) if S is represented as idk(S).
Overall, this algorithm constructs Ik+1 in \scrO (| Tk|) =\scrO (| Bk|) time.

Proof of item (a). If k is even, then \lambda k = \lambda k+1, so Bk+1 \subseteq Bk implies that

| Bk+1| \leq | Bk| \leq
4n

\lambda k
=

4n

\lambda k+1
.

If k is odd, then we have | Bk+1| \leq | Bk| - 1
4 | E(Gk)| by construction of the partition

Ak \cap alph(Tk) = Lk \cup Rk. Observe that, for i \in [1 . . | Tk|), an arc Ik[i - 1] \rightarrow Ik[i] is
not added to Gk only if | val(Tk[i - 1])| > \lambda k or | val(Tk[i])| > \lambda k. There are at most
n
\lambda k

indices i\in [0 . . | Tk|) such that | val(Tk[i])| >\lambda k, and each of them prevents at most

two arcs from being added to Gk. Thus, | E(Gk)| \geq | Bk| - 2n
\lambda k

, and consequently

| Bk+1| \leq | Bk| -
1

4
| E(Gk)| \leq | Bk| -

1

4

\biggl(
| Bk| -

2n

\lambda k

\biggr)
=

3

4
| Bk| +

n

2\lambda k
\leq 3n

\lambda k
+

n

2\lambda k

=
7n

2\lambda k
=

4n

\lambda k+1

since \lambda k+1 =
8
7\lambda k holds for odd integers k \in \BbbZ \geq 0.

Time complexity. The overall running time is

\scrO

\Biggl(
n+

q\sum
k=0

| Bk|

\Biggr)
=\scrO

\Biggl(\infty \sum
k=0

4n

\lambda k

\Biggr)
=\scrO

\Biggl(\infty \sum
k=0

\biggl(
7

8

\biggr) k/2

n

\Biggr)
=\scrO (n).

Proof of item (b). We proceed by induction on k. The base case of k = 0 is
trivially satisfied due to B0 = [\alpha 0 . . n - \alpha 0]. Assume now that k > 0. For a proof by
contradiction, suppose that

i\in Bk and T [i - \alpha k . . i+ \alpha k)\sim = T [j - \alpha k . . j + \alpha k) yet j /\in Bk.

By \alpha k >\alpha k - 1 and the inductive assumption, i\in Bk \subseteq Bk - 1 implies that j \in Bk - 1.
Let us set i\prime , j\prime so that i and j are the first positions of the phrases induced by

Tk - 1[i
\prime] and Tk - 1[j

\prime], respectively, that is,

i= fk - 1,i\prime = | val(Tk - 1[0 . . i
\prime))| and j = fk - 1,j\prime = | val(Tk - 1[0 . . j

\prime))| .

Since a block boundary was not placed at Tk - 1[j
\prime], we have (see Definitions 4.2

and 4.3) that Tk - 1[j
\prime - 1], Tk - 1[j

\prime]\in Ak - 1. Therefore, the phrases

T [j - \ell . . j)\sim = val(Tk - 1[j
\prime - 1]) and T [j . . j + r)\sim = val(Tk - 1[j

\prime])

around position j are of length at most \lfloor \lambda k - 1\rfloor .
Since \alpha k = \alpha k - 1 + \lfloor \lambda k - 1\rfloor , by the inductive assumption, j - \ell \in Bk - 1 and j+ r \in

Bk - 1 imply that i - \ell \in Bk - 1 and i+ r \in Bk - 1, respectively. Due to Lemma 4.5, this
yields

Tk - 1[i
\prime - 1] = Tk - 1[j

\prime - 1] and Tk - 1[i
\prime] = Tk - 1[j

\prime].

Consequently, a block boundary was not placed at Tk - 1[i
\prime], which contradicts i\in Bk.

Proof of item (c). We proceed by induction on k. Let S be a symbol in Tk. If
k= 0, then | val(S)| = 1< 7

4 \cdot 1 = 7
4\lambda 0. Thus, we may assume that k > 0.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1546 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

If S also occurs in Tk - 1, then the inductive assumption shows that val(S) is of
length at most 7

4\lambda k - 1 \leq 7
4\lambda k or that its primitive root is of length at most \lambda k - 1 \leq \lambda k.

Otherwise, we have two possibilities. If k is odd, then S = (A,m) \in Ak - 1 \times \BbbZ \geq 2,
and thus the primitive root of S is of length at most | val(A)| \leq \lambda k - 1 = \lambda k. If k is even,
then S = (S1, S2) \in Ak - 1 \times Ak - 1, so | val(S)| = | val(S1)| + | val(S2)| \leq 2\lambda k - 1 = 7

4\lambda k.
This completes the proof of the proposition.

5. Details of the synchronizing set hierarchy construction---Proof of
Theorem 1.13. In this section, we use Proposition 3.4 and properties of the family
RUNS\tau (T) of \tau -runs to prove that Construction 3.5 yields synchronizing sets of desired
size. Moreover, we show how to efficiently build these synchronizing sets. We start
with an auxiliary fact.

Fact 5.1. For every text T and positive integer \tau \leq | T | , we have | RUNS\tau (T)| <
3| T | /\tau .

Proof. By Fact 2.6, distinct \tau -runs \gamma , \gamma \prime satisfy | \gamma \cap \gamma \prime | < 2
3\tau . Consequently, each

\tau -run \gamma contains more than 1
3\tau (trailing) positions that are disjoint from all \tau -runs

starting to the left of \gamma .

Lemma 5.2. Let Sync be as in Construction 3.5 for a text T of length n and a
given \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
]. Then Sync is a \tau -synchronizing set of size | Sync| < 70n

\tau .

Proof. We prove that Sync satisfies the two conditions of Definition 3.1 and ana-
lyze the size of Sync.

Consistency. Suppose that two length-2\tau fragments x = T [i - \tau . . i + \tau) and
x\prime = T [j - \tau . . j + \tau) satisfy x \sim = x\prime and x \in SyncFr. We will show that if x satisfies
any of the conditions (a)--(c) in Construction 3.5, then x\prime satisfies the same conditions
and x\prime \in SyncFr.

If x satisfies condition (a), then i \in Bk(\tau), and we need to prove that j \in Bk(\tau).
This statement is trivial if k(\tau) = 0 due to B0 = [1 . . n). Otherwise, Observation 3.3
implies that \alpha k \leq 16\lambda k - 1 for k = k(\tau), and 16\lambda k - 1 \leq \tau holds by definition of k(\tau);
hence, x \sim = x\prime implies that T [i - \alpha k . . i+ \alpha k) \sim = T [j - \alpha k . . j + \alpha k). Thus, j \in Bk(\tau)

follows from Proposition 3.4(b). Moreover, if x is \tau
3 -nonperiodic, then so is x\prime \sim = x.

By the next claim, in conditions (b) and (c) of Construction 3.5, we do not need to
explicitly mention that the respective synchronizing fragment is \tau

3 -nonperiodic. The
claim follows from Fact 2.6.

Claim 5.3. If the first (last) position of a length-2\tau fragment of T is one position
to the left (resp., right) of a \tau -run, then the fragment is \tau

3 -nonperiodic.

If x satisfies condition (b), then

per(T [i - \tau + 1 . . i]) = per(T [j - \tau + 1 . . j])\leq \tau

3
< per(T [i - \tau . . i]) = per(T [j - \tau . . j]),

so there is a \tau -run extending the fragment T [j - \tau +1 . . j] to the right in T ; therefore,
x\prime satisfies condition (b) and x\prime \in SyncFr (cf. Claim 5.3).

Condition (c) is symmetric to condition (b); in this case, there is a \tau -run extending
the fragment T [j - 1 . . j + \tau - 2] to the left in T .

Density. Consider a position i\in [0 . . n - 3\tau +1]. We first show that if [i . . i+ \tau)\cap
Sync= \emptyset , then per(T [i . . i+ 3\tau - 1))\leq \tau

3 .
We start by identifying a \tau -run T [p . . q) with p\leq i+\tau - 1 and i+2\tau . First, suppose

that there exists a position b\in [i+\tau . . i+2\tau)\cap Bk. Then per(T [b - \tau . . b+\tau))\leq \tau
3 since

otherwise T [b - \tau . . b+\tau) would have been added to SyncFr by condition (a), and thus

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1547

b - \tau \in [i . . i+ \tau) would have been added to Sync. Hence, the run run(T [b - \tau . . b+ \tau))
starts at position p\leq b - \tau \leq i+ \tau - 1 and ends at position q\geq b+ \tau \geq i+ 2\tau .

Next, suppose that [i+ \tau . . i+2\tau)\cap Bk = \emptyset . Then T [i+ \tau - 1 . . i+2\tau) is contained
in a single phrase of Fk of length at least \tau + 1. If k= 0, then \tau + 1> 1 contradicts the
fact that all phrases in F0 are of length 1. Otherwise, \tau +1\geq 16\lambda k - 1+1\geq 14\lambda k+1>
7
4\lambda k, so Proposition 3.4(c) yields

per(T [i+ \tau - 1 . . i+ 2\tau))\leq \lambda k <
14

3
\lambda k \leq

16

3
\lambda k - 1 \leq

\tau

3
.

Now the \tau -run run(T [i+ \tau - 1 . . i+ 2\tau)) satisfies the desired requirement.
Note that the fragments T [p - 1 . . p+2\tau - 1) and T (q - 2\tau . . q] satisfy conditions (b)

and (c), respectively (cf. Claim 5.3). Due to [i . . i+ \tau) \cap Sync = \emptyset , this implies that
p\leq i and q\geq i+3\tau - 1, which means that per(T [i . . i+3\tau - 1))\leq \tau

3 holds as claimed.
It remains to show, for all i \in [0 . . n - 3\tau + 1], that if per(T [i . . i+ 3\tau - 1)) \leq \tau

3 ,
then [i . . i+ \tau)\cap Sync= \emptyset ; equivalently, we need to argue that if [i . . i+ \tau)\cap Sync \not = \emptyset ,
then per(T [i . . i+ 3\tau - 1))> \tau

3 . Indeed, if s\in [i . . i+ \tau)\cap Sync, then

per(T [i . . i+ 3\tau - 1))\geq per(T [s . . s+ 2\tau))>
\tau

3
.

Size. Observe that | Sync| \leq | Bk| +2| RUNS\tau (T)| . The second term can be bounded
using Fact 5.1. As for | Bk| , we rely on the upper bound of Proposition 3.4(a) and
note that \tau < 16\lambda k holds by the definition of k= k(\tau). Hence,

| Sync| \leq | Bk| + 2| RUNS\tau (T)| <
4n

\lambda k
+ 2 \cdot 3n

\tau
<

64n

\tau
+

6n

\tau
=

70n

\tau
.

Before we provide an implementation of Construction 3.5, we need to make sure
that the sets RUNS\tau (T) can be built efficiently.

Lemma 5.4. After \scrO (n)-time preprocessing of a text T of length n, given an
integer \tau \in [1 . . n], one can construct in \scrO (n\tau) time the set RUNS\tau (T) (with runs
ordered by their first positions).

Proof. For every k \in \BbbZ \geq 0, let us define

Rk =

\Biggl\{
\gamma \in RUNS(T) : | \gamma | \geq

\biggl(
4

3

\biggr) k

and per(\gamma)<
4

9

\biggl(
4

3

\biggr) k
\Biggr\}
.

By Fact 2.6, distinct runs \gamma , \gamma \prime \in Rk satisfy | \gamma \cap \gamma \prime | \leq 8
9 (

4
3)

k, and therefore
| Rk| \leq 9 \cdot (34)

kn. Moreover, note that RUNS\tau (T)\subseteq Rk holds for k= \lfloor log4/3 \tau \rfloor due to

\tau \geq
\biggl(
4

3

\biggr) k

and
\tau

3
=

4

9

\biggl(
4

3

\biggr) (log4/3 \tau) - 1

<
4

9

\biggl(
4

3

\biggr) k

.

Preprocessing. In the preprocessing phase, the algorithm computes the values
\lfloor log4/3 \tau \rfloor for \tau \in [1 . . n] and the sets Rk for k \in [0 . . \lfloor log4/3 n\rfloor], with runs ordered by
their first positions. In order to construct the sets Rk, the algorithm builds RUNS(T)
using Proposition 2.5 and sorts the runs in RUNS(T) according to their first positions
using bucket sort. Then each \gamma \in RUNS(T) is added to the appropriate sets Rk, i.e.,
whenever k \in [\lfloor log4/3(94per(\gamma))\rfloor . . \lfloor log4/3 | \gamma | \rfloor]. The preprocessing time is therefore
\scrO (n+ | RUNS(T)| +

\sum \infty
k=0 | Rk|) =\scrO (n).

Queries. At query time, given an integer \tau , the algorithm retrieves k= \lfloor log4/3 \tau \rfloor
and iterates over \gamma \in Rk, outputting \gamma whenever \gamma \in RUNS\tau (T). The correctness

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1548 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

follows from RUNS\tau (T) \subseteq Rk, and the query time is \scrO (1 + | Rk|) = \scrO (n\tau) due to

| Rk| \leq 9 \cdot (34)
kn= 12 \cdot (34)

\lfloor log4/3 \tau \rfloor +1n< 12n
\tau .

We are ready to prove the main result of this section, that is, \scrO (n)-time construc-
tion of a data structure that allows computing a \tau -synchronizing set in time \scrO (n/\tau)
for any \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
]. We restate the theorem for convenience.

Theorem 1.13 (construction of synchronizing sets hierarchy). Given a text T of
length n over an alphabet [0 . . n\scrO (1)), one can construct in \scrO (n) time a synchronizing
sets hierarchy that, for any \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
], in \scrO (n\tau) time returns a \tau -synchronizing set

Sync of T such that | Sync| < 70 n
\tau and every \tau -synchronizing fragment induced by Sync

has smallest period larger than \tau
3 .

Proof. We separately describe preprocessing and query algorithms.
Preprocessing. The preprocessing phase consists of three steps:
\bullet construct the sets (Bk)

q
k=0 using Proposition 3.4;

\bullet perform the preprocessing related to Lemma 5.4;
\bullet compute k(\tau) =max\{ j \in \BbbZ \geq 0 : j = 0 or 16\lambda j - 1 \leq \tau \} for all \tau \in [1 . .

\bigl\lfloor
n
2

\bigr\rfloor
].

Query: Constructing \tau -synchronizing set. The query algorithm follows Construc-
tion 3.5. Synchronizing fragments satisfying conditions (a)--(c) are constructed inde-
pendently (in left-to-right order), and then the three sorted lists are merged. The
construction of all three lists relies on the list RUNS\tau (T) of \tau -runs obtained from
Lemma 5.4. The list is sorted by first positions but also, since no \tau -run is contained
within another \tau -run, by last positions. The \tau -synchronizing set is computed in three
steps:

\bullet The synchronizing positions satisfying condition (a) are j - \tau for each j \in
Bk(\tau) \cap [\tau . . n - \tau] such that T [j - \tau . . j + \tau) is not contained in any \tau -run,
i.e.,

\{ T [\ell . . r)\in RUNS\tau (T) : \ell \leq j - \tau and r\geq j + \tau \} = \emptyset .

To check this condition, the algorithm simultaneously iterates over positions
in Bk(\tau) and the list RUNS\tau (T).

\bullet The positions satisfying condition (b) are \ell - 1 for every T [\ell . . r)\in RUNS\tau (T)
with \ell \in [1 . . n - 2\tau +1]. (Recall Claim 5.3.) Thus, they can be generated by
iterating over the list RUNS\tau (T).

\bullet Finally, the positions satisfying condition (c) are r - 2\tau +1 for every T [\ell . . r)\in
RUNS\tau (T) with r \in [2\tau - 1 . . n - 1]. Thus, they can be generated by iterating
over the list RUNS\tau (T).

Overall, constructing Sync costs \scrO (1 + | Bk(\tau)| + | RUNS\tau (T)|) time. As observed in
the proof of Lemma 5.2, each of these terms can be bounded by \scrO (n\tau). Finally, the
same lemma guarantees that Sync is a \tau -synchronizing set of size | Sync| < 70n

\tau .

6. IPM Queries with non--highly periodic patterns. As discussed in sec-
tion 1.4, in order to support IPM Queries in the text T , we use a classic idea of
pattern matching by deterministic sampling [109] in a novel way. The main trick is to
select a consistent family Samples of samples. This allows answering restricted IPM
Queries, with x\in Samples, using a relatively simple approach in \scrO (| Samples|) space;
see section 6.2.

In the general case, we first select an arbitrary sample \^x \in Samples contained in
x and search for the occurrences of \^x within y. Then our query algorithm checks
which occurrences of \^x can be extended to occurrences of x; see Figure 10. In order
to achieve constant query time with this approach, we need to guarantee that \^x has

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1549

x: y:

Fig. 10. The main idea of the query algorithm for fragments x and y. We find the occurrences
of \^x\in Samples contained in y (depicted as gray rectangles). If there is an occurrence x\prime of x contained
in y, then x\prime can be obtained by extending an occurrence of \^x within y. Hence, x\prime must be one of
the fragments marked with dashed rectangles.

\scrO (1) occurrences in y. In general, already x might have \omega (1) occurrences within y.
Nevertheless, the following observation can be applied to bound the number of occur-
rences provided that x does not have a short period. In particular, if x \in NHP and
| y| < 2| x| , then x has at most three occurrences within y.

Fact 6.1 (sparsity of occurrences). If a substring u occurs in a text T at distinct
positions i, i\prime , then | i - i\prime | \geq per(u).

Proof. If i, i + d \in Occ(u,T) with d \in [1 . . | u|], then u[j + d] = T [i + j + d] =
T [i+ j] = u[j] for every j \in [0 . . | u| - d); i.e., d is a period of u.

6.1. Selection of samples. Let us start with a formal definition based on the
discussion above.

Definition 6.2. A family Samples of fragments of T is a samples family if it
satisfies the following conditions:

(a) For all fragments x,x\prime of T , if x\sim = x\prime and x\in Samples, then x\prime \in Samples.
(b) For every x \in NHP, there exists a fragment \^x \in Samples contained in x such

that per(\^x) =\Theta (| x|).
Let us first analyze simple ways to select samples. Arguably, the most naive choice

is Samples= NHP. In this case, the correctness is obvious, with each x \in NHP being
its own sample. However, the number of samples can only be bounded by \scrO (n2).

An easy way to dramatically reduce the number of samples is to set Samples =
\{ \^x\in NHP : log | \^x| \in \BbbZ \} so that | Samples| =\scrO (n logn). Then, as a sample of x\in NHP,
we can select an arbitrary fragment \^x \in NHP of length 2\lfloor log | x| \rfloor contained in x. By
the following result, such a fragment always exists.

Fact 6.3. For every fragment x\in NHP and length \ell \in [1 . . | x|], there is a fragment
\^x\in NHP of length \ell contained in x.

Proof. Suppose that x[0 . . \ell) /\in NHP. Then there exists a run \gamma := run(x[0 . . \ell))
with per(\gamma) \leq 1

3\ell \leq 1
3 | x| < per(x). Hence, x \cap \gamma is a proper prefix of x, i.e., x \cap

\gamma = x[0 . . i) for some i \in [\ell . . | x|). We then define y = x(i - \ell . . i]. If y /\in NHP,
then there would be another run \gamma \prime := run(y) \not = \gamma in x with per(\gamma \prime) \leq 1

3\ell . Now
| \gamma \cap \gamma \prime | \geq | x(i - \ell . . i)| = \ell - 1 contradicts Fact 2.6.

We aim to select just \scrO (n) samples. For this, we use synchronizing sets of Theo-
rem 1.13.

Lemma 6.4. The family Samples= \{ T [i . . i] : i \in [0 . . n)\} \cup
\bigcup \lfloor logn\rfloor

k=1 SyncFrk, where
SyncFrk is the set of 2k - 1-synchronizing fragments of Theorem 1.13, satisfies Defini-
tion 6.2.

Proof. Let Synck denote the 2k - 1-synchronizing set containing starting positions
of fragments in SyncFrk. The consistency property (a) follows immediately from the
corresponding property of synchronizing sets.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1550 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

As for the existence of samples (property (b)), let us fix x \in NHP and choose
k \in [0 . . \lfloor logn\rfloor] so that 3 \cdot 2k - 1 - 1\leq | x| < 3 \cdot 2k - 1.

If k= 0, then | x| = 1, so x\in Samples can be chosen as its own sample.
Otherwise, let z \in NHP be a fragment contained in x such that | z| = 3 \cdot 2k - 1 - 1;

such a fragment z exists due to Fact 6.3. Observe that

per(z)\geq 1

3
(| z| + 1) = 2k - 1 >

1

3
\cdot 2k - 1.

Let z = T [i . . i + | z|); by Definition 3.1, Synck \cap [i . . i + 2k - 1) \not = \emptyset , so we select an
arbitrary fragment \^x := T [s . . s+ 2k) \in SyncFrk with s \in [i . . i+ 2k - 1) \cap Synck as the
sample of x. Note that \^x is contained in z and that z is contained in x. Moreover,

per(\^x)>
1

3
\cdot 2k - 1 =

1

18
\cdot 3 \cdot 2k > 1

18
| x|

by the extra condition of Theorem 1.13, and thus per(\^x) = \Theta (| x|) holds as
required.

We conclude with an algorithmic construction based on Lemma 6.4.

Proposition 6.5. Given a text T of length n, one can in \scrO (n) time construct a
samples family Samples along with a data structure that, given a fragment x\in NHP, in
\scrO (1) time reports a sample \^x\in Samples contained in x and satisfying per(\^x)> 1

18 | x| .
Moreover, for each m\in [1 . . n], we have | \{ \^x\in Samples : | \^x| \geq m\} | =\scrO (n/m).

Proof. The construction builds 2k - 1-synchronizing sets Synck for k \in [1 . . \lfloor logn\rfloor]
and the family Samples as specified in Lemma 6.4. The synchronizing sets are built
using Theorem 1.13, which gives | Synck| =\scrO (n

2k - 1). Moreover, the construction time

is \scrO (n+
\sum \lfloor logn\rfloor

k=1
n

2k - 1) =\scrO (n). For every m\in [1 . . n], the number of samples of length

m or more is \scrO (
\sum \lfloor logn\rfloor

k=\lceil logm\rceil
n

2k - 1) =\scrO (n/m) as claimed.
It remains to efficiently implement assigning samples to fragments x \in NHP,

following the approach described in the proof of Lemma 6.4.
The case of | x| = 1, when x is its own sample, does not require any infrastructure.
To efficiently find samples for | x| \in [3 \cdot 2k - 1 - 1 . .3 \cdot 2k - 1) and k \in [1 . . \lfloor logn\rfloor],

we store

pred(Synck, i) =max\{ j \leq i : j \in Synck\} and succ(Synck, i) =min\{ j > i : j \in Synck\}

for each position i divisible by 2k - 1. The size and construction time of this component
is \scrO (n

2k
), which is \scrO (n) in total across all values of k.

A query for a sample of x= T [\ell . . r) \in NHP is answered as follows. As described
in the proof of Lemma 6.4, we have Synck \cap [\ell . . r - 2k] \not = \emptyset . Moreover, r - \ell = | x| \geq
3 \cdot 2k - 1 - 1 also yields

i := 2k - 1

\biggl\lceil
\ell

2k - 1

\biggr\rceil
\in [\ell . . r - 2k].

Consequently, pred(Synck, i)\in [\ell . . r - 2k] or succ(Synck, i)\in [\ell . . r - 2k], and the under-
lying fragment can be reported as the sample of x. The query time is
constant.

6.2. Implementation of the data structure. As outlined at the beginning of
this section, to search for the occurrences of x in y, we first find in y the occurrences
of the sample \^x of x. This step is implemented using auxiliary Restricted IPM
Queries specified below. Next, we apply LCE Queries (see Proposition 1.8) to
check which occurrences of \^x can be extended to occurrences of x; see also Figure 10.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1551

Restricted IPM Queries
Input: A text T and a family Samples of fragments of T .
Queries: Given a fragment x \in Samples and a fragment y of T , report all frag-
ments x\prime \in Samples contained in y and matching x.

Due to the sparsity of occurrences (Fact 6.1), it is relatively easy to implement

Restricted IPM Queries in \scrO (| y|
per(x)) time using static deterministic dictionaries.

Lemma 6.6. For any family Samples of fragments of a length-n text T , there exists
a data structure of size \scrO (n+ | Samples|) that answers Restricted IPM Queries

in \scrO (| y|
per(x)) time. It can be constructed in \scrO (n+ | Samples| log2 log | Samples|) time in

general and in \scrO (n+ | Samples|) time if | x| = \omega \scrO (1) for each x \in Samples, where \omega is
the machine word size.

Proof. Given the family Samples, we build an identifier function id : Samples\rightarrow \BbbZ
such that id(x) = id(x\prime) if and only if the fragments x,x\prime \in Samples match. For this,
we order the fragments x= T [\ell . . r)\in Samples by the length | x| and the lexicographic
rank of the suffix T [\ell . . n) among the suffixes of T (this rank is the \ell th entry of the
inverse suffix array of T , which can be built in \scrO (n) time [62]). Matching frag-
ments x \in Samples appear consecutively in this order, so we use LCE Queries (see
Proposition 1.8) to determine the boundaries between the equivalence classes.

We store two collections of dictionaries. The first collection allows converting
samples to identifiers. The second collection stores nonempty answers to selected
Restricted IPM Queries.

Dictionaries of identifiers. We store the id function in multiple static dictionaries
jointly mapping each fragment x \in Samples to the identifier id(x). Specifically, for
each position \ell in T , we store a dictionary \scrD (\ell) mapping r to id(x) for every fragment
x= T [\ell . . r)\in Samples.

In the general case, we use deterministic dictionaries by Ru\v zi\'c [102], which provide
\scrO (1) query time, take \scrO (m) space, and have \scrO (m log2 logm) construction time, where
m is the dictionary size. Across all positions \ell , this brings the overall space consump-
tion to \scrO (n+ | Samples|) and the overall construction time to \scrO (n+ | Samples| log2 log |
Samples|). In case of short fragments | x| = \omega \scrO (1), we use fusion trees [95], which
provide \scrO (1 + log\omega m) query time, take \scrO (m) space, and require \scrO (m(1 + log\omega m))
construction time. Since the number of fragments in Samples starting at any given
position \ell is \omega \scrO (1) in this case, this brings the overall space consumption and the
overall construction time to \scrO (n+ | Samples|), whereas the query time is \scrO (1).

Dictionaries of answers to selected queries. For each k \in [0 . . \lceil logn\rceil], we cover
the text T with blocks (fragments) of length 2k+1 - 1 with overlaps of length 2k - 1
(the last block can be shorter) and denote the resulting family of blocks by Y(k).
We store the non-empty answers to Restricted IPM Queries for x \in Samples
and y \in Y(\lceil log | x| \rceil) in multiple static dictionaries. Specifically, for each integer k \in
[0 . . \lceil logn\rceil] and each fragment y \in Y(k), we store a dictionary \scrD \prime (k, y). For each
sample x \in Samples that is contained in y and satisfies \lceil log | x| \rceil = k, the dictionary
\scrD \prime (k, y) maps the identifier id(x) to the answer to a Restricted IPM Query for x
and y. Note that each fragment x is contained in one or two blocks y \in Y (\lceil log | x| \rceil), so
each x\in Samples appears in \scrO (1) precomputed answers, and thus the total number of
dictionary entries is \scrO (| Samples|). If no fragment x\prime \in Samples matching x \in Samples
is contained in y, the dictionary \scrD \prime (k, y) does not store id(x) = id(x\prime).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1552 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

In the general case, we use deterministic dictionaries by Ru\v zi\'c [102], which provide
\scrO (1) query time, take\scrO (n+| Samples|) space in total, and have\scrO (n+ | Samples| log2 log |
Samples|) overall construction time. In case of short patterns, we use fusion trees
[95], which provide \scrO (1) query time, take \scrO (n+ | Samples|) space in total, and have
\scrO (n + | Samples|) construction time since each individual dictionary is of size \omega \scrO (1)

in this case (because each y \in Y(k) contains \omega \scrO (1) fragments x \in Samples with
\lceil log | x| \rceil = k).

Query algorithm. To answer a query for x = T [\ell . . r) \in Samples and y, we first
compute k= \lceil log | x| \rceil and id(x) using \scrD (\ell). Next, we use simple arithmetic to obtain

\scrO (| y| | x|) blocks y
\prime \in Y(k) that collectively contain all length-| x| fragments contained in y.

We take the union of the precomputed answers for the identifier id(x) in dictionaries
\scrD \prime (k, y\prime) to obtain a collection of fragments x\prime \in Samples matching x and contained

in one of the blocks y\prime . By Fact 6.1, there are \scrO (| y|
per(x)) such fragments x\prime , so we can

filter and report those contained in y spending \scrO (1) time on each candidate x\prime .

Corollary 6.7. Given the family Samples of samples of a length-n text T con-
structed through Proposition 6.5, one can in \scrO (n) time construct a data structure that

answers Restricted IPM Queries in \scrO (| y|
per(x)) time.

Proof. We store two instances of the data structure of Lemma 6.6: The first
instance, for fragments of length more than \omega , contains \scrO (n\omega) samples, and thus its
construction time is \scrO (n + n

\omega log2 log n
\omega) = \scrO (n). The instance for the remaining

fragments, of length at most \omega , contains \scrO (n) samples, and thus its construction time
is also \scrO (n).

We conclude with a full description of the data structure for IPM Queries for
NHP patterns.

Proposition 6.8. For every text T of length n, there exists a data structure of
size \scrO (n) that answers IPM Queries in \scrO (1) time provided that x\in NHP. The data
structure can be constructed in \scrO (n) time.

Proof. The core of our data structure is the samples family Samples, constructed
using Proposition 6.5 along with a component for efficiently selecting a sample, plus
the data structure answering Restricted IPM Queries for Samples, constructed
using Corollary 6.7. Additionally, we include a data structure for LCE Queries
(Proposition 1.8). Each of these ingredients takes \scrO (n) space and \scrO (n) time to build.

The query algorithm for fragments x \in NHP and y works as follows. First, we
use Proposition 6.5 to obtain in \scrO (1) time a sample \^x \in Samples contained in x and
satisfying per(\^x) =\Theta (| x|). Next, we query the component of Corollary 6.7 to find all

occurrences of \^x contained in y; this takes \scrO (| y|
per(\^x)) = \scrO (1) time. As a result, we

obtain a constant number of candidate positions where x may occur in y. We verify
them using LCE Queries in \scrO (1) time each. Recall that the occurrences of x in y
form an arithmetic progression (Fact 2.3).

7. IPM Queries with highly periodic patterns. Our approach to IPM
Queries with HP patterns relies on the structure of HP runs in the text. In or-
der to answer a query, we look for runs that may arise as run(x\prime) for the occurrences
x\prime of x within y. Due to the assumption | y| < 2| x| , all these runs contain the middle
position of y (the position T

\bigl[\bigl\lfloor
\ell +r
2

\bigr\rfloor \bigr]
if y = T [\ell . . r)). All such runs need to have

length at least | x| and period at most per(x) \leq 1
3 | x| , which allows us to show that

there are \scrO (1) such runs. In section 7.1, we develop a component listing such runs in
\scrO (1) time after \scrO (n)-time preprocessing.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1553

Next, we look for the occurrences of x contained in each candidate run \gamma . For x
to have any occurrence in \gamma , the periods of x and \gamma need to be equal; furthermore, the
string periods of x and \gamma ---that is, the prefixes of the two fragments of length equal
to their periods---need to be cyclic rotations of each other. We then say that x and
\gamma are compatible. To check this condition, we compare the lexicographically minimal
rotations of the string periods, called Lyndon roots. We use techniques originating
from a paper by Crochemore et al. [36], listed in section 7.2, to check compatibility
of substrings of T and list occurrences of an HP pattern in a compatible HP text; in
this case, the set of occurrences forms an arithmetic progression.

The query algorithm is described in section 7.3. In brief, for each run \gamma in y that
is compatible with x, we can find all occurrences of x in y\cap \gamma using the toolbox of [36]
(recalled in section 7.2). We may obtain \scrO (1) arithmetic progressions representing
the occurrences of x in y, but Fact 2.3 guarantees that they can be merged into a
single progression.

7.1. Special HP runs. If x is an HP fragment, then Observation 2.7 yields the
following useful characterization of run(x).

Observation 7.1. Consider a text T and an HP fragment x with k = \lfloor log | x| \rfloor .
Then \gamma = run(x) satisfies the following condition:

per(\gamma)<
1

3
\cdot 2k+1, | \gamma | \geq 2k, and \gamma is a HP run.(7.1)

For a positive integer k, we say that a run \gamma is k-special if it satisfies condition
(7.1) above. Denote by SpRunsk(i) the set of k-special runs covering position i in T .
Below, we develop a data structure for efficiently answering the following queries:

Special Run Locating Queries
Given a position i of T and an integer k \in [0 . . \lfloor logn\rfloor], compute SpRunsk(i).

We first prove that the answers must be of constant size. Then we develop a
component for answering Special Run Locating Queries based on the fact that,
even though there are \Theta (n logn) possible queries, it suffices to precompute answers
to \scrO (n) of them.

Lemma 7.2. | SpRunsk(i)| \leq 5 for every integer k \in [0 . . \lfloor logn\rfloor] and position i
in T .

Proof. For a proof by contradiction, suppose that there are at least six such runs
\gamma j = T [\ell j . . rj) with pj = per(\gamma j) for j \in [1 . .6] and \ell 1 \leq \cdot \cdot \cdot \leq \ell 6. For each j \in [1 . .6),
Fact 2.6 yields

| \gamma j \cap \gamma j+1| < pj + pj+1 \leq
1

3
(2k+1 + | \gamma j+1|)\leq | \gamma j+1| ,

so \gamma j+1 is not contained in \gamma j . Observe also that | \gamma j | - 2pj \geq 1
3 | \gamma j | \geq

1
3 \cdot 2k. Conse-

quently,

\ell 6 - \ell 1 =

5\sum
j=1

(\ell j+1 - \ell j) =

5\sum
j=1

(| \gamma j | - | \gamma j \cap \gamma j+1|)>
5\sum

j=1

(| \gamma j | - (pj + pj+1))

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1554 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

= | \gamma 1| - (p1 + p6) +

5\sum
j=2

(| \gamma j | - 2pj)\geq | \gamma 1| - 2 \cdot 1
3
\cdot 2k+1 +

5\sum
j=2

1

3
\cdot 2k

= | \gamma 1| -
2

3
\cdot 2k+1 +

4

3
\cdot 2k = | \gamma 1| .

We derived \ell 6 - \ell 1 > | \gamma 1| , which contradicts \gamma 1 \cap \gamma 6 \not = \emptyset .
Lemma 7.3. For every text T , there exists a data structure that answers Special

Run Locating Queries in \scrO (1) time, takes \scrO (n) space, and can be constructed in
\scrO (n) time.

Proof. For every integer k \in [0 . . \lfloor logn\rfloor], the data structure contains the precom-
puted answers for all positions i divisible by 2k. Each of these answers takes \scrO (1)
space by Lemma 7.2, so the total size of the data structure is \scrO (n).

As for the query algorithm, we note that if a k-special run \gamma covers position i,
then, due to | \gamma | \geq 2k, it also covers position 2k

\bigl\lfloor
i
2k

\bigr\rfloor
or 2k

\bigl\lceil
i
2k

\bigr\rceil
. Thus, the query

algorithm retrieves the answers for these two positions and, among the obtained
k-special runs, reports those covering position i. The query time is constant by
Lemma 7.2.

As for the construction algorithm, we enumerate all runs using Proposition 2.5.
For each HP run \gamma = T [\ell . . r) and each k \in [\lfloor log(3per(\gamma))\rfloor . . \lfloor log | \gamma | \rfloor], we append \gamma to
the precomputed answers for all positions i \in [\ell . . r) that are multiples of 2k. Since
there is at least one such position for each considered pair (\gamma , k), the running time of
this process is proportional to the time complexity of the algorithm of Proposition 2.5
plus the total size of the precomputed answers, both of which are \scrO (n).

7.2. Compatibility of strings and runs. A primitive string w \in \Sigma + is called
a Lyndon word [84, 33] if w\preceq w\prime for every rotation w\prime of w. Let u be a string with the
smallest period per(u) = p. The Lyndon root \lambda of u is the lexicographically smallest
rotation of the prefix u[0 . . p). We say that two strings are compatible if they have the
same Lyndon root.

A string u with Lyndon root \lambda can be uniquely represented as \lambda \prime \lambda k\lambda \prime \prime , where
\lambda \prime is a proper suffix of \lambda , \lambda \prime \prime is a proper prefix of \lambda , and k \in \BbbZ \geq 0 is a nonnegative
integer. The Lyndon signature of u is defined as (| \lambda \prime | , k, | \lambda \prime \prime |). Note that the Lyndon
signature uniquely determines u within its compatibility class. This representation is
very convenient for pattern matching if the text is compatible with the pattern.

Lemma 7.4. Let x and y be compatible strings. The set of positions where x
occurs in y is an arithmetic progression that can be computed in \scrO (1) time given the
Lyndon signatures of x and y.

Proof. Let \lambda be the common Lyndon root of x and y, and let their Lyndon signa-
tures be (p, k, s) and (p\prime , k\prime , s\prime), respectively. Lemma 2.2 (synchronization property)
implies that \lambda occurs in y only at positions i such that i\equiv p\prime (mod | \lambda |). Consequently,
x occurs in y only at positions i such that i \equiv p\prime - p (mod | \lambda |). Clearly, x occurs in
y at all such positions i within the interval [0 . . | y| - | x|]. Therefore, it is a matter of
simple calculation to compute the arithmetic progression of these positions.

Crochemore et al. [36] showed how to efficiently compute Lyndon signatures of
the runs of a given text.

Fact 7.5 ([36]). There exists an algorithm that, given a text T of length n, in
\scrO (n) time computes Lyndon signatures of all runs in T .

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1555

Finally, we note that the Lyndon signature of a periodic fragment x can be derived
from the Lyndon signature of run(x).

Observation 7.6. Let u be a fragment of a periodic string w such that | u| \geq
2per(w). Then u is compatible with w. Moreover, given the Lyndon signature of w,
one can compute the Lyndon signature of u in \scrO (1) time.

7.3. Answering queries. Our data structure consists of the set of runs RUNS(T)
(Proposition 2.5), with each run accompanied by its period and Lyndon signature
(Fact 7.5), the data structure for LCE Queries (Proposition 1.8), and the data
structure of Lemma 7.3 for Special Run Locating Queries. The entire data
structure takes \scrO (n) space and can be constructed in \scrO (n) time.

As outlined at the beginning of section 7, the query algorithm consists of the
following steps:
Algorithm answering IPM Queries with HP patterns

(A) Compute the Lyndon signature of x.
(B) Find all \lfloor log | x| \rfloor -special runs \gamma containing the middle position of y, defined

as T [\lceil \ell +r
2 \rceil] for y= T [\ell . . r), along with their Lyndon signatures.

(C) Filter out runs \gamma incompatible with x.
(D) For each of the compatible runs \gamma , compute an arithmetic progression repre-

senting the occurrences of x in y \cap \gamma .
(E) Combine the resulting occurrences of x in y into a single arithmetic progres-

sion.
Correctness. Clearly, a fragment matching x (and contained in y) starts at each

of the reported positions. It remains to prove that no occurrence x\prime is missed. Since
| y| < 2| x| , each occurrence x\prime of x in y contains the middle point of y. Therefore,
\gamma = run(x\prime) is among the runs found in step (B). By Observation 7.6, \gamma is compatible
with x\prime , and, since x and x\prime match, \gamma must be compatible with x. Hence, \gamma is
considered in step (D), and the starting position of x\prime is reported in step (E).

Implementation. In step (A), we use a Special Run Locating Query to list
all \lfloor log | x| \rfloor -special runs containing the first position of x, and then we check if any
of these runs contains the whole x and has period not exceeding 1

3 | x| . If so, this run
is run(x) by Observation 2.7; otherwise, we raise an error to indicate that x \in NHP.
We then use Fact 7.5 and Observation 7.6 to retrieve the Lyndon signature of run(x)
and x, respectively. In step (B), we use another Special Run Locating Query to
identify all \lfloor log | x| \rfloor -special runs \gamma containing the middle position of y. Lemma 7.2
guarantees that we obtain at most five runs \gamma . In step (C), for each run \gamma , we use the
Lyndon signatures to identify the Lyndon roots of x and \gamma , represented as fragments
of T , and we ask an LCE Query to check if the Lyndon roots match.

For the remaining (compatible) runs \gamma , we apply Lemma 7.4 to find the occur-
rences of x in y \cap \gamma . There is nothing to do if | x| > | y \cap \gamma | . Otherwise, | y \cap \gamma | \geq | x| \geq
3per(x) = 3per(\gamma), so Observation 7.6 lets us retrieve the Lyndon signature of y \cap \gamma .
We are left with at most five arithmetic progressions, one for each compatible run \gamma .
As argued above, their union represents all occurrences of x in y. By Fact 2.3, this
set must form a single arithmetic progression. If the progressions are stored by (at
most) three elements---the last one and the first two---it is easy to compute the union
in constant time.

The above query algorithm also checks if the fragment x is highly periodic. This
concludes the proof of the following result.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1556 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

Proposition 7.7. For every text T of length n, there exists a data structure of
size \scrO (n) that answers IPM Queries in \scrO (1) time provided that x\in HP and reports
an error whenever x\in NHP. The data structure can be constructed in \scrO (n) time.

Combining Proposition 7.7 with Proposition 6.8, we obtain an efficient data struc-
ture for IPM Queries over integer alphabets of polynomial size.

Theorem 7.8. For every text T of length n, there exists a data structure of size
\scrO (n) that answers IPM Queries in \scrO (1) time. The data structure can be constructed
in \scrO (n) time.

In the following section, we show how the data structure can be improved in the
case of a small alphabet.

8. IPM Queries in texts over small alphabets. In this section, we assume
that \sigma \leq 19

\surd
n; otherwise, Theorem 1.2 follows directly from Theorem 7.8. We trans-

form the string T into a string T \prime of length \scrO (n/\tau), where \tau =
\bigl\lfloor

1
19 log\sigma n

\bigr\rfloor
. Then each

IPM Query in T is reduced to a constant number of IPM Queries in T \prime . Without
loss of generality, we assume that T starts and ends with unique characters to avoid
degenerate cases.

A naive idea to construct the string T \prime would be to partition T into blocks of
length \tau and interpret each block as an integer with \tau \cdot \lceil log\sigma \rceil =\scrO (logn) bits. Unfor-
tunately, this approach is not helpful: Even if a pattern fragment x has an occurrence
in a text fragment y of T , the longest fragment of x consisting of full blocks may
have no ``aligned"" occurrence in the longest fragment of y consisting of full blocks.
Therefore, we partition the string into blocks using the elements of a \tau -synchronizing
set, which can be constructed in \scrO (n/ log\sigma n) time for the aforementioned value of \tau ;
see Proposition 1.11.

8.1. Constructing data structure. We use a \tau -synchronizing set Sync =
\{ s0, . . . , sm - 1\} of T , where s0 < \cdot \cdot \cdot < sm - 1, and the corresponding set of synchronizing
fragments SyncFr = \{ f0, . . . , fm - 1\} , where fi = T [si . . si + 2\tau). The aforementioned
assumption on T implies that s0 \in [0 . . \tau) and sm - 1 \in (n - 3\tau . . n - 2\tau]; in particular,
Sync \not = \emptyset .

Denote \Delta i = si+1 - si for i \in [0 . .m - 1). We construct a length-(2m - 1) string
T \prime such that

T \prime [2i] = fi for i\in [0 . .m),

T \prime [2i+ 1] =\Delta i for i\in [0 . .m - 1).

Every character of T \prime is either an integer in [0 . . n] or a length-2\tau substring of T (which
can be interpreted as an integer with 2\tau \lceil log\sigma \rceil =\scrO (logn) bits); see Figure 11.

We say that a fragment of T is regular if it is of the form T [si . . sj + 2\tau) for
0\leq i\leq j <m. For such a fragment z, we denote the fragment code(z) = T \prime [2i . .2j].

Fact 8.1. If z and z\prime are regular fragments, then

z \sim = z\prime \Leftarrow \Rightarrow code(z)\sim = code(z\prime).

Proof. Let z = T [si . . sj + 2\tau) and z\prime = T [si\prime . . sj\prime + 2\tau).
(Implication \Rightarrow). Suppose that T [si . . sj + 2\tau) \sim = T [si\prime . . sj\prime + 2\tau). We conclude

from the consistency property of Sync that j - i = j\prime - i\prime and (\Delta i, . . . ,\Delta j - 1) =
(\Delta i\prime , . . . ,\Delta j\prime - 1). This implies that (fi, . . . , fj) \sim = (fi\prime , . . . , fj\prime). Hence, T \prime [2i . .2j] \sim =
T \prime [2i\prime . .2j\prime] holds as claimed.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1557

T = s0 s1 s2 s3 s4j

\sansB \sansl \sanso \sansc \sansk (j) = 2

f0

f1

f2

f3

f4

T \prime = f0 f1 f2 f3 f4,\Delta 0, ,\Delta 1, ,\Delta 2, ,\Delta 3,

Fig. 11. A schematic view of the transformation from T to T \prime , assuming Sync = \{ s0, . . . , s4\}
and \Delta i = si - si - 1. The Block operation returns the index of the nearest synchronizing position if
it exists; see below.

(Implication \Leftarrow). Suppose that T \prime [2i . .2j] \sim = T \prime [2i\prime . .2j\prime]. Equivalently, we have
(fi, . . . , fj)\sim = (fi\prime , . . . , fj\prime) and (\Delta i, . . . ,\Delta j - 1) = (\Delta i\prime , . . . ,\Delta j\prime - 1). To obtain T [si . . sj+
2\tau)\sim = T [si\prime . . sj\prime + 2\tau), we only need to show that if \Delta a =\Delta a\prime > 2\tau holds for some a,
a\prime such that 0\leq a - i= a\prime - i\prime \leq j - i, then T [sa . . sa+1) = T [sa\prime . . sa\prime +1). In this case,
by the density property of Sync, we have

p := per(T (sa . . sa+1 + 2\tau - 1))\leq 1

3
\tau and p\prime := per(T (sa\prime . . sa\prime +1 + 2\tau - 1))\leq 1

3
\tau .

Since T [sa . . sa+2\tau) = fa \sim = fa\prime = T [sa\prime . . sa\prime +2\tau), Observation 2.7 implies that p= p\prime

and therefore that T (sa . . sa+1 + 2\tau - 1) \sim = T (sa\prime . . sa\prime +1 + 2\tau - 1). As fa \sim = fa\prime also
yields T [sa] = T [sa\prime], this concludes the proof.

Let sm = n and s - 1 = 0 be sentinels. The sequence s - 1, s0, . . . , sm - 1, sm of
synchronizing positions together with the sentinels partitions [0 . . n) into intervals
called blocks:

[s - 1 . . s0), [s0 . . s1), [s1 . . s2), [s2 . . s3), . . . , [sm - 1 . . sm).

We define the following operation mapping each position j \in [1 . . n) to the index of
the block it belongs to (see Figure 11):

Block(j) = i, where i is chosen such that j \in [si - 1 . . si).

We build a length-n bitmask representing Sync. Then the Block(j) = | \{ i \in [0 . .m) :
si \leq j\} | operation can be viewed as a rank query on this bitmask. These queries
can be answered in \scrO (1) time using a data structure of size \scrO (n/ logn) that can be
constructed in \scrO (| Sync| + n/ logn) =\scrO (n/ log\sigma n) time [58, 14, 92].

Recall that a run \gamma is a \tau -run if | \gamma | \geq \tau and per(\gamma)\leq 1
3\tau . We say that a \tau -run \gamma

is long if | \gamma | \geq 3\tau - 1 and use the following proposition for the considered \tau .

Proposition 8.2 ([65, section 6.1.2]). For a positive integer \tau , a string T \in
[0 . . \sigma)n contains \scrO (n/\tau) long \tau -runs. Moreover, if \tau \leq 1

9 log\sigma n, we can compute all
long \tau -runs in T , compute their Lyndon signatures, and group the long \tau -runs by their
Lyndon roots in \scrO (n/\tau) time.

Let us note that a \tau -run is \lfloor log \tau \rfloor -special. Hence, each position in T belongs
to at most five \tau -runs (Lemma 7.2). Moreover, we can locate long \tau -runs using the

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1558 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

T =
x y

z
z\prime

x\prime

Fig. 12. We have z = MaxReg(x) and z\prime = MaxReg(x\prime). The arrows correspond to the same
distances due to synchronization. Each fragment z\prime matching z and contained in y determines a
single location of a candidate match x\prime .

same data structure as in Lemma 7.3 but constructed only for k= \lfloor log \tau \rfloor (and using
Proposition 8.2 to compute all long \tau -tuns).

Lemma 8.3. For every text T , there exists a data structure that can compute all
long \tau -runs containing a given position in \scrO (1) time, takes \scrO (n/\tau) space, and can be
constructed in \scrO (n/\tau) time.

We compute TR in \scrO (n/ log\sigma n) time with tabulation, reversing one half-word at
a time (cf. [17]). We also perform preprocessing for LCE Queries (Proposition 1.8)
on T and on TR.

Finally, for every pair (x, y) of strings such that | x| < 8\tau and | y| < 10\tau , we
precompute the set of occurrences of x in y, represented as an arithmetic progression.
The total number of such pairs (x, y) is \scrO (\sigma 18\tau) =\scrO (n18/19), and for each such pair,
the output can be computed in \scrO (\tau \scrO (1)) = no(1) time, so this preprocessing can be
performed in \scrO (n/\tau) time.

8.2. Answering queries. We denote by MaxReg(u) the longest regular frag-
ment contained in the fragment u of T and denote \Phi (u) = code(MaxReg(u)). Note
that, for any two matching fragments u \sim = u\prime , we have MaxReg(u) \sim = MaxReg(u\prime) (by
consistency of Sync) and \Phi (u)\sim =\Phi (u\prime) (by Fact 8.1); see Figure 12.

Observation 8.4. After \scrO (n/\tau)-time preprocessing, given fragments x, y of T , we
can compute the fragments MaxReg(x), MaxReg(y) in T and their codes \Phi (x), \Phi (y)
in T \prime in \scrO (1) time.

First, we consider the case when | x| \geq 8\tau and MaxReg(x) \not = \varepsilon ; the remaining
corner cases will be addressed later. In IPM Queries, we assume that the length of
y is proportional to the length of x. Here, we will make a stronger assumption that
| x| \leq | y| \leq 5

4 | x| . However, this assumption does not imply immediately that | \Phi (y)|
is proportional to | \Phi (x)| . The latter condition is needed to apply IPM Queries to
fragments \Phi (x) and \Phi (y) because | \Phi (y)| could be too large compared with | \Phi (x)| .

Denote y = T [\ell . . r), and let Mid(y) =
\bigl\lfloor
\ell +r
2

\bigr\rfloor
be the middle position of y. Our

approach, in this case, is to restrict the search to an appropriate fragment of length
at most 2| \Phi (x)| + 1,

\Phi \prime (y) = T \prime [2i - | \Phi (x)| - 1 . .2i+ | \Phi (x)| - 1]\cap \Phi (y), where i=Block(Mid(y)),

equal to an approximately ``middle"" part of \Phi (y); see Figure 13.

Fact 8.5. Let x and y be fragments of T such that 8\tau \leq | x| \leq | y| \leq 5
4 | x| , and

let x\prime be a fragment matching x and contained in y. If MaxReg(x) \not = \varepsilon , then \Phi (x\prime)
contains T \prime [2i - 2] or T \prime [2i], where i=Block(Mid(y)).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1559

y =

\sansM \sansi \sansd (y) = j

\sansM \sansa \sansx \sansR \sanse \sansg (y)

x =

z = \sansM \sansa \sansx \sansR \sanse \sansg (x)

\Phi (y) =

i = \sansB \sansl \sanso \sansc \sansk (j)

\Phi \prime (y) =

i
| \Phi (x)| | \Phi (x)|

\Phi (x) = \sansc \sanso \sansd \sanse (z)

Fig. 13. Instead of searching for \Phi (x) within \Phi (y), we only search within a fragment \Phi \prime (y) of
length at most 2| \Phi (x)| + 1. Recall that each character of \Phi (x) and \Phi (y) fits in a single machine
word.

Proof. Recall that MaxReg(x) \sim = MaxReg(x\prime), so MaxReg(x\prime) \not = \varepsilon . Let z\prime =
MaxReg(x\prime) = T [si\prime . . sj\prime + 2\tau) so that \Phi (x\prime) = T [2i\prime . .2j\prime]. It suffices to prove that
\{ i - 1, i\} \cap [i\prime . . j\prime] \not = \emptyset .

\bullet If Mid(y) \in (si\prime - 1 . . sj\prime +1), then si \in [si\prime . . sj\prime +1], so i \in [i\prime . . j\prime + 1] and \{ i -
1, i\} \cap [i\prime . . j\prime] \not = \emptyset .

\bullet If Mid(y) \leq si\prime - 1, then, since both T [Mid(y)] and z\prime = T [si\prime . . sj\prime + 2\tau) are
contained in x\prime , we conclude that T [si\prime - 1 . . sj\prime + 2\tau) is contained in x\prime , con-
tradicting the definition of MaxReg(x\prime).

\bullet Finally, if Mid(y)\geq sj\prime +1, then we claim that T [si . . sj\prime +1 + 2\tau) is contained
in x\prime , contradicting the definition of MaxReg(x\prime). Indeed, 1

2 | y| + 2\tau \leq 5
8 | x| +

1
4 | x| < | x| , so x\prime contains both T [si\prime . . sj\prime + 2\tau) and T [Mid(y) . .Mid(y) + 2\tau)
and thus also T [si\prime . . sj\prime +1 + 2\tau).

In the query algorithm below, we assume without loss of generality that | x| \leq
| y| \leq 5

4 | x| . (To handle | y| \leq 2| x| , we combine the answers of up to four queries.)
Algorithm answering IPM Queries over small alphabets

(A) If | x| < 8\tau , return a precomputed answer.
(B) If MaxReg(x) = \varepsilon , apply the query algorithm for HP patterns of section 7.3.
(C) Apply IPM Queries for pattern \Phi (x) and text \Phi \prime (y) (Theorem 7.8), obtain-

ing at most two arithmetic progressions of occurrences.
(D) Apply Lemma 1.14(b) for T and TR to test which of these occurrences extend

to occurrences of x.
Correctness. In step (B), if MaxReg(x) = \varepsilon , then the density of Sync implies that

per(x)\leq 1
3\tau , so indeed x is an HP pattern.

In step (C), we have | \Phi \prime (y)| \leq 2| \Phi (x)| + 1, so Fact 2.3 implies that there are up
to two arithmetic progressions.

In step (D), we only care about occurrences of \Phi (x) starting at even positions of
\Phi \prime (y). Each arithmetic progression from step (C) forms a periodic progression p =
(pi)

k - 1
i=0 in T . This is because, by Fact 8.1, subsequent occurrences of z =MaxReg(x)

start at all these positions. Let x=wzw\prime and y= T [\ell . . r). We apply Lemma 1.14(b)
in T to sequence p, position r, and fragment zw\prime to check which positions pi contain
occurrences of zw\prime . Then we apply Lemma 1.14(b) in TR to sequence p\prime = (n -
pk - 1 - i)

k - 1
i=0 , position n - \ell , and fragment wR to check which positions pi - 1 in T are

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1560 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

endpoints of occurrences of w. In each case, the lemma returns an integer interval of
indices. The intersection of the two intervals can be transformed into an arithmetic
progression of positions. The two resulting arithmetic progressions can be joined
together to one progression by Fact 2.3.

Implementation. Recall that T is given in a packed representation. In step (A),
this lets us retrieve any fragment of length at most 10\tau , encoded in a single machine
word, in \scrO (1) time. Then we can use the precomputed answer.

In step (B), the preprocessing of the query algorithm of section 7.3 takes only
\scrO (n/\tau) time and space as we use Lemma 8.3 to find long \tau -runs and the LCE queries
of Proposition 1.8.

In step (C), we have | T \prime | =\scrO (n/\tau), and T \prime can be extracted from the packed rep-
resentation of T in \scrO (n/\tau) time. The preprocessing of IPM Queries of Theorem 7.8
on T \prime takes \scrO (n/\tau) time and space.

For step (D), we compute TR in \scrO (n/ log\sigma n) time and use LCE queries of Propo-
sition 1.8.
This concludes the description of our data structure for IPM Queries.

Theorem 1.2 (main result). For every text T \in [0 . . \sigma)n, there exists a data
structure of size \scrO (n/ log\sigma n) that answers IPM Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

9. Applications of IPM and LCE queries. We present some applications
of our data structure for Internal Pattern Matching Queries. This includes
answering Period Queries (section 9.2), Cyclic Equivalence Queries (sec-
tion 9.3), and variants of LZ Substring Compression Queries (section 9.4). Be-
fore that, we prove Lemma 1.14, which is useful in all our applications, as discussed
in section 1.4.

9.1. Proof of Lemma 1.14. Lemma 1.14 is restated and proved below. Before
that, we present useful notations and facts.

Let us recall that a sequence p of positions p0 < p1 < \cdot \cdot \cdot < pk - 1 in a string w
is a periodic progression of length k (in w) if w[p0 . . p1) \sim = \cdot \cdot \cdot \sim = w[pk - 2 . . pk - 1). If
k \geq 2, we call the string v \sim = w[pi . . pi+1) the (string) period of p, while its length
pi+1 - pi is the difference of p. Periodic progressions p,p\prime are called nonoverlapping
if the last term of p is smaller than the first term of p\prime or vice versa: the last term
of p\prime is smaller than the first term of p. Every periodic progression is an arithmetic
progression and, consequently, can be represented by three integers, e.g., the terms
p0, p1, and pk - 1 (with p1 omitted if k= 1, i.e., if pk - 1 = p0).

All our applications of IPM Queries rely on the structure of the values LCE(pi, q)
for a periodic progression (pi)

k - 1
i=0 . In Lemma 1.14 below, we give a combinatorial

characterization of this structure (in a slightly more general form) amended with its
immediate algorithmic applications. Let us start with a simple combinatorial result.

Fact 9.1. For strings u, v \in \Sigma \ast and \rho \in \Sigma +, let du = lcp(\rho \infty , u) and dv =
lcp(\rho \infty , v).

(a) If du \not = dv, then lcp(u, v) =min(du, dv).
(b) If du = dv, then lcp(u, v)\geq du = dv.

Proof. Let d = min(du, dv). Note that u[0 . . d) \sim = (\rho \infty)[0 . . d) \sim = v[0 . . d), so
lcp(u, v) \geq d. If d = du < dv, then v[d] = (\rho \infty)[d] \not = u[d], so lcp(u, v) = d. The
case of d= dv <du is symmetric.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1561

u0

u1

u2

du

\rho

v

v

v

dv

\rho

Fig. 14. An illustration of notions used in Lemma 1.14. Shaded rectangles represent the com-
mon prefixes of ui and v. In this case, du - dv

| \rho | = 1.

Fact 9.2 (applications of LCE Queries). Assume that we have access to a
text T equipped with a data structure answering LCE Queries in \scrO (1) time. Given
fragments x, y of T , the values lcp(x, y) and lcp(x\infty , y) can be computed in \scrO (1) time.

Proof. If x = T [ix . . jx) and y = T [iy . . jy), then lcp(x, y) can be computed in
constant time due to lcp(x, y) =min(LCE(ix, iy), | x| , | y|).

If lcp(x, y) < | x| , i.e., x is not a prefix of y, then lcp(x\infty , y) = lcp(x, y). Oth-
erwise, consider a fragment y\prime = T [iy + | x| . . jy). A simple inductive proof shows
that lcp(x\infty , y) = | x| + lcp(x\infty , y\prime) = | x| + lcp(y, y\prime). In either case, lcp(x\infty , y) can be
computed in constant time.

Although our applications use Fact 9.1 for two different purposes, the overall
scheme is the same each time. Consequently, we group two application-specific queries
in a single algorithmic lemma; see Figure 14.

Lemma 9.3. Consider a text T equipped with a data structure answering LCE
Queries in \scrO (1) time. Given a fragment v of T and a collection of fragments ui =
T [pi . . r) represented with a periodic progression p= (pi)

k - 1
i=0 and a position r\geq pk - 1,

the following queries can be answered in \scrO (1) time:
(a) Report indices i\in [0 . . k) such that ui matches a prefix of v, represented as a

subinterval of [0 . . k).
(b) Report indices i \in [0 . . k) maximizing lcp(ui, v), represented as a subinterval

of [0 . . k).

Proof. There is nothing to do for k = 0. For k = 1, Fact 9.2 lets us check if
lcp(u0, v) = | u0| , that is, whether u0 matches a prefix of v. Moreover, i= 0 maximizes
lcp(ui, v).

Henceforth, we shall assume that k \geq 2. In this case, we retrieve an occurrence
T [p0 . . p1) of the string period \rho of p and apply Fact 9.2 to determine du = lcp(\rho \infty , u0)
and dv = lcp(\rho \infty , v). We also compute it =

du - dv

| \rho | .

Let us observe that for i \in [0 . . k), u0 = \rho iui, so lcp(\rho \infty , ui) = lcp(\rho \infty , u0) - i| \rho | =
du - i| \rho | . If it \in [0 . . k), then lcp(\rho \infty , uit) = dv. Hence, by Fact 9.1, we have lcp(ui, v) =
dv for i < it, lcp(ui, v)\geq dv for i= it (if it \in [0 . . k)), and lcp(ui, v) = du - i| \rho | <dv for
i > it.

(a) We shall report i \in [0 . . k) such that lcp(ui, v) = | ui| . For i < it, we have
lcp(ui, v) = dv < du - i| \rho | \leq | u0| - i| \rho | = | ui| , so these indices are never reported.
If it \in [0 . . k), we compute lcp(uit , v) using Fact 9.2, and this index may need to be
reported. For i > it, we have lcp(ui, v) = du - i| \rho | and | ui| = | u0| - i| \rho | , so we report
either all these indices (if du = | u0|) or none of them (otherwise).

(b) If it \in [0 . . k), we check whether lcp(uit , v) > dv using Fact 9.2. If so, we
report it as the only index maximizing lcp(ui, v) because lcp(ui, v)\leq dv holds unless
i = it. Otherwise, the maximum of lcp(ui, v) is dv, attained for all i \in [0 . . k) such
that i\leq it (if it \geq 0), or du, attained for i= 0 (if it \leq 0).

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1562 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

y y\prime

2d - 1

x\prime y0

x\prime y1

x\prime y2

x x\prime

d

Fig. 15. The notions used in the algorithms answering Prefix-Suffix Queries and Bounded
LCP Queries (for the latter, see section 9.4).

9.2. Prefix-suffix queries and their applications. In this section, we show
the solutions for Prefix-Suffix Queries, Period Queries, and Periodic Ex-
tension Queries using IPM Queries. We start with Prefix-Suffix Queries.
Let us recall that in this problem, we are given fragments x and y of T and a positive
integer d and are to report all suffixes of y of length in [d . .2d) that also occur as
prefixes of x. The output is represented as an arithmetic progression of the lengths
of suffixes.

Assume that | x| , | y| \geq d; otherwise, there are no suffixes to be reported. Let x\prime

be the prefix of x of length d and y\prime be the suffix of y of length min(2d - 1, | y|).
Suppose that a suffix z of y matches a prefix of x. If | z| \geq d, then z must start with a
fragment matching x\prime . Moreover, if | z| \leq 2d - 1, then z is a suffix of y\prime , so this yields
an occurrence of x\prime in y\prime . We find all such occurrences with a single IPM Query
and then use Lemma 1.14 to find out which of them can be extended to the sought
suffixes z of y.

By Fact 2.3, the starting positions of the occurrences of x\prime in y\prime form a periodic
progression in T . Let yi be the suffix of y starting with the ith occurrence of x\prime ; see
Figure 15. We need to check which of the fragments yi occur as prefixes of x. This is
possible using Lemma 1.14(a), which lets us find all indices i such that yi is a prefix
of x. The result is an integer interval of indices, which can be transformed into an
arithmetic progression of lengths | yi| . Consequently, the data structure of Theorem 1.2
(which already contains the component of Proposition 1.8 for LCE Queries) can
answer Prefix-Suffix Queries in\scrO (1) time. Hence, we obtain the following results.

Theorem 1.4. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Prefix-Suffix Queries in \scrO (1) time. The data structure
can be constructed in \scrO (n/ log\sigma n) time given the packed representation of T .

Theorem 1.3. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Period Queries in \scrO (log | x|) time. The data structure
can be constructed in \scrO (n/ log\sigma n) time given the packed representation of T .

Proof. Period Queries can be answered using Prefix-Suffix Queries for
y = x. To compute all periods of x, we use Prefix-Suffix Queries to find all
borders of x of length within [2k . .2k+1) for each k \in [0 . . \lfloor log | x| \rfloor]. The lengths of
borders can be easily transformed to periods since x has period p if and only if it has
a border of length | x| - p.

Theorem 1.5. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Periodic Extension Queries in \scrO (1) time. The data
structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1563

Proof. Periodic Extension Queries can be answered using Prefix-Suffix
Queries and LCE Queries in T and TR. Given a fragment x = T [\ell . . r), we use
a Prefix-Suffix Query to find the longest proper border of x provided that its
length is at least 1

2 | x| . If no such border exists, we report that run(x) =\bot . Otherwise,
the length of the longest border yields the period p=per(x)\leq 1

2 | x| . In this case,

run(x) = T [\ell - lcs(T [0 . . \ell), T [0 . . \ell + p)) . . \ell + p+ lcp(T [\ell . . n), T [\ell + p . .n))),

where lcs(uv,w) denotes the length of their longest common suffix of strings v
and w.

9.3. Cyclic equivalence queries. Recall that, for a nonempty string w \in \Sigma n,
we define a string rot(w) = w[n - 1]w[0] \cdot \cdot \cdot w[n - 2]. First, we prove that the sought
set Rot(x, y) = \{ j \in \BbbZ : y= rotj(x)\} indeed forms an arithmetic progression.

Fact 9.4. If Rot(x, y) \not = \emptyset , then Rot(x, y) is an infinite arithmetic progression
whose difference divides | x| .

Proof. Let us note that if j, j\prime \in Rot(x,x), then j - j\prime \in Rot(x,x) and thus also
gcd(j, j\prime)\in Rot(x,x). Consequently, Rot(x,x) consists of multiples of some integer m.
Due to | x| \in Rot(x,x), this integer m is a divisor of | x| .

Next, observe that if j \in Rot(x, y), then Rot(x, y) = \{ j+j\prime : j\prime \in Rot(x,x)\} . Hence,
if Rot(x, y) \not = \emptyset , then Rot(x, y) is an infinite arithmetic progression whose difference
divides | x| .

While answering Cyclic Equivalence Queries, we can assume that | x| = | y| ;
we denote the common length of x and y by d. Our query algorithm is based on the
following characterization of Rot(x, y).

Observation 9.5. Let x, y be strings of common length d. For every j \in [0 . . d], we
have j \in Rot(x, y) if and only if y[0 . . j)\sim = x[d - j . . d) and y[j . . d)\sim = x[0 . . d - j).

Below, we provide an algorithm that computes Rot(x, y) \cap [
\bigl\lceil
d
2

\bigr\rceil
. . d). By Obser-

vation 9.5, j \in Rot(x, y) if and only if d - j \in Rot(y,x), so running this algorithm
for both (x, y) and (y,x) lets us retrieve Rot(x, y) \cap [1 . . d). This is sufficient to de-
termine Rot(x, y) because an LCE Query lets us easily check if x\sim = y, i.e., whether
0\in Rot(x, y), and Fact 9.4 yields Rot(x, y) = \{ j \in \BbbZ : j mod d\in Rot(x, y)\cap [0 . . d)\} .

By Observation 9.5, if j \in [
\bigl\lceil
d
2

\bigr\rceil
. . d) \cap Rot(x, y), then the length-j suffix of x

matches a prefix of y. Since d - 1 \leq 2
\bigl\lceil
d
2

\bigr\rceil
 - 1, all lengths j0 < \cdot \cdot \cdot < jk - 1 satisfying

the latter condition form an arithmetic progression and can be retrieved with a single
Prefix-Suffix Query. Moreover, Observation 9.5 yields [

\bigl\lceil
d
2

\bigr\rceil
. . d)\cap Rot(x, y) = \{ ji :

i \in [0 . . k) and y[ji . . d) \sim = x[0 . . d - ji)\} . Hence, it suffices to check for which indices
i the suffix yi := y[ji . . d) of y matches a prefix of x. For this, we note that (ji)

k - 1
i=0

is a periodic progression in y: For each i \in [1 . . k), the string y[ji - 1 . . ji) matches a
suffix of x whose length is the difference of the arithmetic progression (ji)

k - 1
i=0 . Hence,

Lemma 1.14(a) lets us retrieve an integer interval consisting of indices i such that ji \in
Rot(x, y), and this interval can be easily transformed into an arithmetic progression of
the corresponding values ji. Consequently, the data structure of Theorem 1.2 (which
already contains the component of Proposition 1.8 for LCE Queries and which can
answer Prefix-Suffix Queries in \scrO (1) time; cf. Theorem 1.4) can also answer
Cyclic Equivalence Queries in \scrO (1) time.

Theorem 1.6. For every text T \in [0 . . \sigma)n, there exists a data structure of size
\scrO (n/ log\sigma n) that answers Cyclic Equivalence Queries in \scrO (1) time. The data

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1564 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

structure can be constructed in \scrO (n/ log\sigma n) time given the packed representation
of T .

Finally, let us note that the query algorithms behind Theorems 1.3--1.6 indeed
access the text only through \ttP \ttI \ttL \ttL \ttA \ttR operations. (Actually, even the \ttA \ttc \ttc \tte \tts \tts method
is not used; the characters of the strings are only accessed indirectly through LCE
Queries and IPM Queries.) This implies Corollary 1.10.

9.4. Queries related to Lempel--Ziv compression. Substring Compres-
sion Queries are internal queries asking for a compressed representation of a sub-
string or the (exact or approximate) size of this representation. This family of prob-
lems was introduced by Cormode and Muthukrishnan [34], and some of their results
were later improved by Keller et al. [64]. Substring Compression Queries have a
fairly direct motivation: Consider a server holding a long repetitive text T and clients
asking for substrings of T (e.g., chunks that should be displayed). A limited capacity
of the communication channel justifies compressing these substrings.

The aforementioned papers [34, 64] apply the classic LZ77 compression
scheme [114]. Among other problems, they consider internal queries for the LZ factor-
ization of a given fragment x and for the generalized LZ factorization of one fragment
x in the context of another fragment y. The latter is defined as the part representing
x in the LZ factorization of a string y\#x, where \# is a special sentinel symbol not
present in the text. A server can send such a generalized LZ factorization to a client
who requests y and has previously received x.

Thus, in this section, we consider variants of LZ Substring Compression
Queries. Let us first recall Lempel--Ziv LZ77 algorithm [114] and range successor
queries that will be used in our solution.

LZ77 compression. Consider a string w \in \Sigma \ast . We say that a fragment w[\ell . . r)
has a previous occurrence (or is a previous fragment) if w[\ell . . r) \sim = w[\ell \prime . . r\prime) for some
positions \ell \prime < \ell and r\prime < r. The fragment w[\ell . . r) has a nonoverlapping previous
occurrence (or is a nonoverlapping previous fragment) if additionally r\prime \leq \ell .

The Lempel--Ziv factorization LZ(w) is a factorization w = f1 \cdot \cdot \cdot fk into frag-
ments (called phrases) such that each phrase fi is the longest previous fragment
starting at position | f1 \cdot \cdot \cdot fi - 1| or a single letter if there is no such previous frag-
ment. The nonoverlapping Lempel--Ziv factorization LZN (w) is defined analogously,
allowing for nonoverlapping previous fragments only. Both factorizations (and several
closely related variants) are useful for compression because a previous fragment can
be represented using a reference to the previous occurrence (e.g., the positions of its
endpoints).

Strings w \in \Sigma \ast are sometimes compressed with respect to a context string
(or dictionary string) v \in \Sigma \ast . Essentially, there are two ways to define the factor-
ization LZ(w | v) of w with respect to v. In the relative LZ factorization [115, 81]
LZR(w | v), each phrase is the longest fragment of w that starts at the given posi-
tion and occurs in v (or a single letter if there is no such fragment). An alternative
approach is to allow both substrings of v and previous fragments of w as phrases.
This results in the generalized LZ factorization, denoted LZG(w | v); see [34, 64].
Equivalently, LZG(w | v) can be defined as the suffix of LZ(v\#w) corresponding to
w, where \# is a special symbol that is present neither in v nor in w. The previous
fragments in the nonoverlapping generalized LZ factorization LZNG(w | v) must be
nonoverlapping.

Example 9.6. Let w= \tta \tta \tta \tta \ttb \tta \tta \ttb \tta \tta \tta \tta and v= \ttb \tta \tta \ttb \tta \ttb . We have

LZ(w) = \tta \cdot \tta \tta \tta \cdot \ttb \cdot \tta \tta \ttb \tta \tta \cdot \tta \tta , LZN (w) = \tta \cdot \tta \cdot \tta \tta \cdot \ttb \cdot \tta \tta \ttb \cdot \tta \tta \tta \tta ,

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1565

LZR(w | v) = \tta \tta \cdot \tta \tta \ttb \tta \cdot \tta \ttb \tta \cdot \tta \tta \cdot \tta , LZG(w | v) = \tta \tta \cdot \tta \tta \ttb \tta \cdot \tta \ttb \tta \tta \cdot \tta \tta ,
LZGN (w | v) = \tta \tta \cdot \tta \tta \ttb \tta \cdot \tta \ttb \tta \cdot \tta \tta \tta .

Range successor queries. We define the successor of an integer t in a set A as
succA(t) =min\{ z \in A : z > t\} . Successor queries on a range A[\ell . . r] of an array A are
defined as follows.

Range Successor Queries (Range Next Value Queries)
Input: An array A of n integers.
Queries Given a range [\ell . . r] and an integer t, compute succA[\ell ..r](t) (and an
index j \in [\ell . . r] such that A[j] = succA[\ell ..r](t), if any).

The following three trade-offs describe the current state of the art for such queries.

Proposition 9.7. For any constant \varepsilon > 0 and the functions S\itr \its \itu \itc \itc , Q\itr \its \itu \itc \itc , and
C\itr \its \itu \itc \itc specified below, there is a data structure of size S\itr \its \itu \itc \itc (n) that answers range
successor queries in Q\itr \its \itu \itc \itc (n) time and can be constructed in C\itr \its \itu \itc \itc (n) time:

(a) S\itr \its \itu \itc \itc (n) =\scrO (n), Q\itr \its \itu \itc \itc (n) =\scrO (log\varepsilon n), and C\itr \its \itu \itc \itc (n) =\scrO (n
\surd
logn) [93, 17];

(b) S\itr \its \itu \itc \itc (n) = \scrO (n log logn), Q\itr \its \itu \itc \itc (n) = \scrO (log logn), and C\itr \its \itu \itc \itc (n) =
\scrO (n

\surd
logn) [113, 48];

(c) S\itr \its \itu \itc \itc (n) =\scrO (n1+\varepsilon), Q\itr \its \itu \itc \itc (n) =\scrO (1), and C\itr \its \itu \itc \itc (n) =\scrO (n1+\varepsilon) [37].

LZ substring compression queries. We consider the following types of queries.

(Nonoverlapping) LZ Substring Compression Queries
Given a fragment x of T , compute the (nonoverlapping) LZ factorization of x,
i.e., LZ(x) (resp., LZN (x)).

Relative LZ Substring Compression Queries
Given two fragments x and y of T , compute the relative LZ factorization of x
with respect to y, i.e., LZR(x | y).

Generalized (Nonoverlapping) LZ Substring Compression Queries
Given two fragments x and y of T , compute the generalized (nonoverlapping) LZ
factorization of x with respect to y, i.e., LZG(x | y) (resp., LZGN (x | y)).

Our query algorithms heavily rely on the results of Keller et al. [64] for LZ
Substring Compression Queries and Generalized LZ Substring Compres-
sion Queries. The main improvement is a more efficient solution for the following
auxiliary problem.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1566 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

Bounded Longest Common Prefix (LCP) Queries
Given two fragments x and y of T , find the longest prefix p of x which occurs
in y.

The other, easier auxiliary problem defined in [64] is used as a black box.

Interval Longest Common Prefix (LCP) Queries
Given a fragment x of T and an interval [\ell . . r] of positions in T , find the longest
prefix p of x which occurs in T at some position within [\ell . . r].

The data structure for Interval Longest Common Prefix (LCP) Queries
uses range successor queries, so we state the complexity in an abstract form. This
convention gets propagated to further results in this section.

Lemma 9.8 ([64]). For a text T of length n, there exists a data structure of
size \scrO (n + S\itr \its \itu \itc \itc (n)) that answers Interval Longest Common Prefix (LCP)
Queries in \scrO (Q\itr \its \itu \itc \itc (n)) time. The data structure can be constructed in \scrO (n +
C\itr \its \itu \itc \itc (n)) time.

As observed in [64], the decision version of IPM Queries easily reduces to
Interval Longest Common Prefix (LCP) Queries. For x = T [\ell x . . rx) and
y= T [\ell y . . ry), it suffices to check if the longest prefix of x occurring at some position
in [\ell y . . ry - | x|] of T is x itself.

Corollary 9.9 ([64]). For a text T of length n, there exists a data structure
of size \scrO (n+ S\itr \its \itu \itc \itc (n)) that, given fragments x, y of T , can decide in \scrO (Q\itr \its \itu \itc \itc (n))
time whether x occurs in y. The data structure can be constructed in \scrO (n+C\itr \its \itu \itc \itc (n))
time.

We proceed with our solution for Bounded LCP Queries. Let x = T [\ell x . . rx)
and y = T [\ell y . . ry). First, we search for the largest k such that the prefix of x of
length 2k (i.e., T [\ell x . . \ell x + 2k)) occurs in y. We use a variant of the binary search
involving exponential search (also called galloping search), which requires \scrO (logK)
steps, whereK is the optimal value of k. At each step, for a fixed k, we need to decide if
T [\ell x . . \ell x+2k) occurs in y. This can be done in \scrO (Q\itr \its \itu \itc \itc (n)) time using Corollary 9.9.
At this point, we have an integer K such that the optimal prefix p has length | p| \in
[2K . .2K+1). The running time is \scrO (Q\itr \its \itu \itc \itc (n) logK) =\scrO (Q\itr \its \itu \itc \itc (n) log log | p|) so far.

Let p\prime be the prefix obtained from an Interval Longest Common Prefix
Query for x and [\ell y . . ry - 2K+1]. We have | p\prime | < 2K+1, and thus the occurrence of
p\prime starting in [\ell y . . ry - 2K+1] lies within y. Consequently, | p| \geq | p\prime | ; moreover, if p
occurs at a position within [\ell y . . ry - 2K+1], then p= p\prime .

The other possibility is that p only occurs near the end of y, i.e., within the suffix
of y of length 2K+1 - 1, which we denote as y\prime . We use a similar approach as for
Prefix-Suffix Queries with d = 2K to detect p in this case. We define x\prime as the
prefix of x of length 2K . An occurrence of p must start with an occurrence of x\prime , so
we find all occurrences of x\prime in y\prime . If there are no such occurrences, we conclude that
p= p\prime .

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1567

Otherwise, we define yi as the suffix of y starting with the ith occurrence of x;
see Figure 15. Next, we apply Lemma 1.14(b) to compute maxi lcp(yi, x). By the
discussion above, this must be the length of the longest prefix of x that occurs in y\prime .
We compare its length to | p\prime | and choose the final answer p as the longer of the two
candidates.

Thus, the data structure for IPM Queries, accompanied by the components of
Lemma 9.8, Corollary 9.9, and Proposition 1.8, yields the following result.

Theorem 1.7. For every text T of length n over an alphabet [0 . . n\scrO (1)), there ex-
ists a data structure of size \scrO (n+S\itr \its \itu \itc \itc (n)) that answers Bounded LCP Queries in
\scrO (Q\itr \its \itu \itc \itc (n) log log | p|) time. The data structure can be constructed in \scrO (n+C\itr \its \itu \itc \itc (n))
time.

Finally, we generalize the approach of [64] to support multiple types of LZ Sub-
string Compression Queries using Theorem 1.7 to improve the running time.

Theorem 9.10. For every text T of length n, there is a data structure of size
\scrO (n+ S\itr \its \itu \itc \itc (n)) that answers

(A) Nonoverlapping LZ Substring Compression Queries,
(B) Relative LZ Substring Compression Queries,
(C) Generalized LZ Substring Compression Queries, and
(D) Generalized Nonoverlapping LZ Substring Compression Queries,

each in \scrO
\bigl(
F \cdot Q\itr \its \itu \itc \itc (n) log log

| x|
F

\bigr)
time, where F is the number of phrases reported.

The data structure can be constructed in \scrO (n+C\itr \its \itu \itc \itc (n)) time.

Proof. Let x = T [\ell x . . rx), and suppose that we have already factorized x\prime =
T [\ell x . .m); i.e., the next phrase needs to be a prefix of x\prime \prime = T [m. . rx). Depending on
the factorization type, it is chosen among the longest prefix of x\prime \prime that is a previous
fragment of x (i.e., has an occurrence starting within [\ell x . .m)), the longest prefix of x\prime \prime

that is a nonoverlapping previous fragment of x (i.e., occurs in x\prime), or the longest prefix
of x\prime \prime that occurs in y. The first case reduces to an Interval Longest Common
Prefix Query, while the latter two reduce to Bounded LCP Queries. For each
factorization type, we compute the relevant candidates and choose the longest one
as the phrase; if there are no valid candidates, the next phrase is a single letter, i.e.,
T [m. .m].

Thus, regardless of the factorization type, we report each phrase fi of the factor-
ization x= f1 \cdot \cdot \cdot fF in \scrO (Q\itr \its \itu \itc \itc (n) log log | fi|) time. This way, the total running time

is \scrO
\bigl(\sum F

i=1Q\itr \its \itu \itc \itc (n) log log | fi|
\bigr)
, which is \scrO

\bigl(
F \cdot Q\itr \its \itu \itc \itc (n) log log

| x|
F

\bigr)
due to Jensen's

inequality applied to the concave log log function.

Let us note that in the case of ordinary LZ Substring Compression Queries,
the approach presented in Theorem 9.10 would result in \scrO (F \cdot Q\itr \its \itu \itc \itc (n)) query time
because only Interval Longest Common Prefix (LCP) Queries would be used;
this is exactly the algorithm for LZ Substring Compression Queries provided
in [64].

Hence, despite our improvements, there is still an overhead for using variants
of the LZ factorization other than the standard one. Nevertheless, the overhead
disappears if we use the state-of-the-art \scrO (n)-size data structure for range successor
queries. This is because the \scrO (log\varepsilon n) time complexity lets us hide logo(1) n factors
by choosing a slightly greater \varepsilon . Formally, Theorem 9.10 and Proposition 9.7 yield
the following result.

Corollary 9.11. For every text T of length n over an alphabet [0 . . n\scrO (1)) and
constant \varepsilon > 0, there is a data structure of size \scrO (n) that answers Bounded LCP

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1568 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

Queries in \scrO (log\varepsilon n) time and LZ Substring Compression Queries (for all five
factorization types defined above) in \scrO (log\varepsilon n) time per phrase reported. Moreover,
the data structure can be constructed in \scrO (n

\surd
logn) time.

Appendix A. Auxiliary proofs.

Observation 3.3. For every k \in \BbbZ \geq 0, we have \alpha k+1 \leq 16\lambda k.

Proof. We denote Z =
\bigl\{ \bigl\lfloor

k
2

\bigr\rfloor
,
\bigl\lfloor
k - 1
2

\bigr\rfloor \bigr\}
and observe that 7 \cdot \mu z+1 = 8\mu z for any

z \in \BbbZ \geq 0 and 1
\mu - 1 = 7. We have

\alpha k+1 = 1+

k\sum
t=0

\lfloor \lambda t\rfloor \leq 1 +

k\sum
t=0

\mu \lfloor t/2\rfloor = 1+
\sum
z\in Z

z\sum
t=0

\mu t = 1+
\sum
z\in Z

7 \cdot (\mu z+1 - 1)

< 8\lambda k + 8\lambda k - 1 \leq 16\lambda k.

Lemma A.1. Approximate Maximum Directed Cut problem can be solved
in linear time.

Proof. First, we preprocess G so that each v \in V stores both incoming and
outgoing arcs. For A,B \subseteq V , we denote E(A,B) \subseteq E to be the set of arcs leading
from A to B; recall that the goal is to make sure that | E(L,R)| \geq 1

4 | E| . Given v \in V
and A\subseteq V , define deg+A(v) := | E(\{ v\} ,A)| and deg - A(v) := | E(A,\{ v\})| .

We maintain a partition V = L \cup M \cup R into three disjoint classes. Initially,
M = V , and, as long as M \not = \emptyset , we pick an arbitrary vertex v \in M and move v to L
or R, depending on whether

2deg+R(v) + deg+M (v)\geq 2deg - L (v) + deg - M (v).

This decision can be implemented in \scrO (1 + deg+V (v) + deg - V (v)) time, which yields a
total running time of \scrO (| V | + | E|).

As for correctness, we shall prove that

\Phi := 4| E(L,R)| + 2| E(L,M)| + 2| E(M,R)| + | E(M,M)|

cannot decrease throughout the algorithm. Consider the effect of moving v from M
to L on the four terms of \Phi (recall that there are no self-loops v\rightarrow v):

\bullet | E(L,R)| increases by deg+R(v);
\bullet | E(L,M)| increases by deg+M (v) and decreases by deg - L (v);
\bullet | E(M,R)| decreases by deg+R(v);
\bullet | E(M,M)| decreases by deg+M (v) and decreases by deg - M (v).

Overall, \Phi increases by

4 \cdot deg+R(v) + 2 \cdot (deg+M (v) - deg - L (v)) + 2 \cdot (- deg+R(v)) + (- deg+M (v) - deg - M (v))

= 2deg+R(v) + deg+M (v) - 2deg - L (v) - deg - M (v),

and this quantity is nonnegative when the algorithm decides to move v to L.
Similarly, if v is moved from M to R, then \Phi does not decrease. On the end of the

algorithm, we have \Phi = 4| E(L,R)| due to M = \emptyset , whereas, initially, \Phi = | E(M,M)| =
| E| due to M = V . Since \Phi is noncecreasing, we conclude that 4| E(L,R)| \geq | E| holds
as claimed.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1569

Appendix B. Information-theoretic bounds on the set of occurrences.
By Occ(x, y), we denote the set of starting positions of all occurrences of string x in
string y. The following result provides matching worst-case bounds for the encoding
size of Occ(x, y).

Proposition B.1. For all integers 1 \leq m \leq n and alphabets \Sigma of size at least
two, in order to encode Occ(x, y) for x\in \Sigma m and y \in \Sigma n,

\Theta
\Bigl(n

m
logmin(m+ 1, n - m+ 2)

\Bigr)
bits are sufficient and, in the worst case, necessary.

Proof. Let us first prove the upper bound. If n< 2m, then Occ(x, y)\subseteq [0 . . n - m]
forms a (possibly empty) arithmetic progression; such a progression can be encoded
using at most three elements of [0 . . n - m], i.e., using at most 3 log(n - m+2) bits. If
n\geq 2m, then one can decompose y into \lfloor n/m\rfloor fragments of length 2m - 1 contained
in y, with overlaps of at least m - 1 characters between the subsequent fragments.
The occurrences of x within each of these fragments can be encoded in 3 log(m+ 1)
bits, for a total of 3n/m \cdot log(m+ 1) bits.

As for the lower bound, suppose that \ttzero and \ttone are two distinct characters in \Sigma ,
and consider a pattern x = \ttzero m. If n \leq 2m, consider texts of the form yi = \ttone i\ttzero n - i

for i \in [0 . . n - m+ 1], and observe that the sets Occ(x, yi) = [i . . n - m] are pairwise
different. Hence, encoding Occ(x, y) requires log(n - m+ 2) bits in the worst case.
If n \geq 2m, let b = \lfloor n/(2m)\rfloor , and, for every sequence s \in [0 . .m]b, define a sequence
ys = (\ttone s[0]\ttzero m\ttone m - s[0]) \cdot (\ttone s[1]\ttzero m\ttone m - s[1]) \cdot \cdot \cdot (\ttone s[b - 1]\ttzero m\ttone m - s[b - 1]) \cdot \ttone n - 2mb. Observe that
the sets Occ(x, ys) are pairwise distinct since Occ(x, ys) \cap [2mi . .2m(i+ 1)] = \{ s[i]\}
holds for each i\in [0 . . b) and s\in [0 . .m]b. Thus, encoding Occ(x, y) requires b log(m+
1)\geq n

4m log(m+ 1) bits in the worst case.

Appendix C. Implementations of Corollary 1.10. In this section, we ob-
tain efficient implementations of the queries of Corollary 1.10 in the dynamic, fully
compressed, and quantum settings.

C.1. Dynamic setting. Let \scrX be a growing collection of nonempty persistent
strings; it is initially empty and then undergoes updates by means of the following
operations:

\bullet \ttM \tta \ttk \tte \tts \ttt \ttr \tti \ttn \ttg (u): Insert a nonempty string u to \scrX .
\bullet \ttC \tto \ttn \ttc \tta \ttt (u, v): Insert string uv to \scrX for u, v \in \scrX .
\bullet \ttS \ttp \ttl \tti \ttt (u, i): Insert u[0 . . i) and u[i . . | u|) to \scrX for u\in \scrX and i\in [0 . . | u|).

ByN , we denote an upper bound on the total length of all strings in \scrX throughout
all updates executed by an algorithm. As shown in [30] using [51], a collection \scrX of
nonempty persistent strings of total length N can be dynamically maintained with op-
erations \ttM \tta \ttk \tte \tts \ttt \ttr \tti \ttn \ttg (u), \ttC \tto \ttn \ttc \tta \ttt (u, v), and \ttS \ttp \ttl \tti \ttt (u, i), requiring time \scrO (logN + | u|),
\scrO (logN), and \scrO (logN), respectively, so that \ttP \ttI \ttL \ttL \ttA \ttR operations can be performed
in time \scrO (log2N). All stated time complexities hold with probability 1 - 1/N\Omega (1).
Moreover, Kempa and Kociumaka [67, sect. 8 in the arXiv version] presented an
alternative deterministic implementation which supports operations \ttM \tta \ttk \tte \tts \ttt \ttr \tti \ttn \ttg (u),
\ttC \tto \ttn \ttc \tta \ttt (u, v), and \ttS \ttp \ttl \tti \ttt (u, i) in time \scrO (| u| log\scrO (1) logN), \scrO (log | uv| log\scrO (1) logN),
and \scrO (log | u| log\scrO (1) logN), respectively, so that \ttP \ttI \ttL \ttL \ttA \ttR operations can be performed
in time \scrO (logN log\scrO (1) logN). With these implementations, we obtain the following
result.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

1570 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

Theorem C.1 (dynamic setting). A collection \scrX of nonempty persistent strings
of total length N can be dynamically maintained with operations \ttM \tta \ttk \tte \tts \ttt \ttr \tti \ttn \ttg (u),
\ttC \tto \ttn \ttc \tta \ttt (u, v), and \ttS \ttp \ttl \tti \ttt (u, i), requiring time \scrO (logN+ | u|), \scrO (logN), and \scrO (logN),
respectively, so that we can answer Prefix-Suffix Queries, 2-Period Queries,
and Cyclic Equivalence Queries on strings from \scrX in \scrO (log2N) time and Pe-
riod Queries in \scrO (log3N) time. All stated time complexities hold with probability
1 - 1/N\Omega (1). Randomization can be avoided at the cost of a log\scrO (1) logN multiplicative
factor in all the update times, with Prefix-Suffix Queries, 2-Period Queries,
and Cyclic Equivalence Queries on strings from \scrX answered in \scrO (logN log\scrO (1)

logN) time and Period Queries in \scrO (log2N log\scrO (1) logN) time.

C.2. Fully compressed setting. A straight-line grammar is a context-free
grammar G that consists of a set \Sigma of terminals and a set NG = \{ A1, . . . ,An\} of
nonterminals such that each Ai \in NG is associated with a unique production rule
Ai \rightarrow fG(Ai) \in (\Sigma \cup \{ Aj : j < i\})\ast . We can assume without loss of generality that
G is a straight-line program; that is, each production rule is of the form A \rightarrow BC
for some symbols B and C. Every symbol A \in SG := NG \cup \Sigma generates a unique
string, which we denote by val(A)\in \Sigma \ast . The string val(A) can be obtained from A by
repeatedly replacing each nonterminal with its production. We say that G generates
val(G) := val(An).

In the fully compressed setting, given a collection \scrX of straight-line programs
of total size n generating strings of total length N , each \ttP \ttI \ttL \ttL \ttA \ttR operation can be
performed in \scrO (log2N log logN) time after an \scrO (n logN)-time preprocessing [30].

Theorem C.2 (fully compressed setting). Let GX , GY denote straight-line pro-
grams of total size n generating strings X, Y , respectively, of total length N . For
strings X and Y , we can answer a Prefix-Suffix Query, a 2-Period Query,
and a Cyclic Equivalence Query in \scrO (n logN + log2N log logN) time and a
Period Query in \scrO (n logN + log3N log logN) time.

In particular, Theorem C.2 can be compared with the algorithm of I et al. [56]
that, with the improvement of Ganardi, Je\.z, and Lohrey [47], computes all the periods
of a string of length N generated by a straight-line program of size n in \scrO (n2 logN)
time. (We note that N \leq 2n.)

C.3. Quantum setting. We say that an algorithm on an input of size n succeeds
with high probability if the success probability can be made at least 1 - 1/nc for any
desired constant c > 1. In what follows, we assume that the input strings can be
accessed in a quantum query model [5, 22]. We are interested in the time complexity
of quantum algorithms.

In the quantum setting, LCE Queries can be answered in \~\scrO (
\surd
n)5 time with

high probability [61, Observation 2.3]. IPM Queries can be answered using the work
of Hariharan and Vinay [54].

Lemma C.3. IPM Queries can be answered in \~\scrO (
\surd
n) time with high probability

in the quantum model.

Proof. Hariharan and Vinay [54] (see also [110] for an algorithm with improved
polylogarithmic factors) showed how to determine whether a given pattern of length
m occurs in a given text of length n in \~\scrO (

\surd
n+

\surd
m) time in the quantum model with

high probability. If the answer is positive, then the algorithm can return the leftmost

5The \~\scrO notation suppresses any log\scrO (1) n factors.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1571

occurrence. By Remark 1.1, this is sufficient to answer an IPM Query in \~\scrO (
\surd
n)

time.

All other \ttP \ttI \ttL \ttL \ttA \ttR operations are performed trivially in \scrO (1) quantum time. Thus,
while all \ttP \ttI \ttL \ttL \ttA \ttR operations can be implemented in \scrO (1) time after \scrO (n/ log\sigma n)-
time preprocessing in the standard setting by a classic algorithm, in the quantum
setting, all \ttP \ttI \ttL \ttL \ttA \ttR operations can be implemented in \~\scrO (

\surd
n) quantum time with no

preprocessing. We obtain the following result.

Theorem C.4 (quantum setting). Let X and Y be strings of total length n. For
strings X and Y , we can answer a Prefix-Suffix Query, a Period Query, and
a Cyclic Equivalence Query in \~\scrO (

\surd
n) time with high probability in the quantum

model.

Wang and Ying [110] proposed a bounded-error quantum algorithm answering
2-Period Queries in \~\scrO (

\surd
n) time. Akmal and Jin [4] showed how to compute

the lexicographically minimal rotation of a string in n1/2+o(1) time in the quantum
model. With LCE Queries, this implies a n1/2+o(1)-time algorithm for Cyclic
Equivalence Queries, slightly slower than the algorithm of Theorem C.4.

Acknowledgments. The authors wish to thank Dominik Kempa for helpful
discussions regarding synchronizing sets and Moshe Lewenstein for a suggestion to
work on the generalized substring compression problem.

REFERENCES

[1] P. Abedin, A. Ganguly, W. Hon, K. Matsuda, Y. Nekrich, K. Sadakane, R. Shah,
and S. V. Thankachan, A linear-space data structure for range-LCP queries in poly-
logarithmic time, Theoret. Comput. Sci., 822 (2020), pp. 15--22, https://doi.org/10.1016/
j.tcs.2020.04.009.

[2] P. Abedin, A. Ganguly, S. P. Pissis, and S. V. Thankachan, Efficient data structures
for range shortest unique substring queries, Algorithms, 13 (2020), 276, https://doi.org/
10.3390/a13110276.

[3] A. V. Aho and M. J. Corasick, Efficient string matching: An aid to bibliographic search,
Commun. ACM, 18 (1975), pp. 333--340, https://doi.org/10.1145/360825.360855.

[4] S. Akmal and C. Jin, Near-optimal quantum algorithms for string problems, Algorithmica,
85 (2023), pp. 2260--2317, https://doi.org/10.1007/S00453-022-01092-X.

[5] A. Ambainis, Quantum query algorithms and lower bounds, in Classical and New Paradigms of
Computation and Their Complexity Hierarchies, B. L\"owe, B. Piwinger, and T. R\"asch, eds.,
Springer-Verlag, Berlin, 2004, pp. 15--32, https://doi.org/10.1007/978-1-4020-2776-5 2.

[6] A. Amir, M. Amit, G. M. Landau, and D. Sokol, Period recovery of strings over the
Hamming and edit distances, Theoret. Comput. Sci., 710 (2018), pp. 2--18, https://
doi.org/10.1016/j.tcs.2017.10.026.

[7] A. Amir, A. Apostolico, G. M. Landau, A. Levy, M. Lewenstein, and E. Po-
rat, Range LCP , J. Comput. System Sci., 80 (2014), pp. 1245--1253, https://doi.org/
10.1016/j.jcss.2014.02.010.

[8] A. Amir, I. Boneh, P. Charalampopoulos, and E. Kondratovsky, Repetition detection
in a dynamic string, in 27th Annual European Symposium on Algorithms, ESA 2019,
LIPIcs 144, Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2019, pp.
5:1--5:18, https://doi.org/10.4230/LIPIcs.ESA.2019.5.

[9] A. Amir, A. Butman, E. Kondratovsky, A. Levy, and D. Sokol, Multidimensional pe-
riod recovery, Algorithmica, 84 (2022), pp. 1490--1510, https://doi.org/10.1007/s00453-
022-00926-y.

[10] A. Amir, P. Charalampopoulos, S. P. Pissis, and J. Radoszewski, Dynamic and in-
ternal longest common substring, Algorithmica, 82 (2020), pp. 3707--3743, https://doi.
org/10.1007/s00453-020-00744-0.

[11] A. Amir, G. M. Landau, M. Lewenstein, and D. Sokol, Dynamic text and static
pattern matching, ACM Trans. Algorithms, 3 (2007), 19, https://doi.org/10.1145/
1240233.1240242.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1016/j.tcs.2020.04.009
https://doi.org/10.1016/j.tcs.2020.04.009
https://doi.org/10.3390/a13110276
https://doi.org/10.3390/a13110276
https://doi.org/10.1145/360825.360855
https://doi.org/10.1007/S00453-022-01092-X
https://doi.org/10.1007/978-1-4020-2776-5_2
https://doi.org/10.1016/j.tcs.2017.10.026
https://doi.org/10.1016/j.tcs.2017.10.026
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.1007/s00453-022-00926-y
https://doi.org/10.1007/s00453-022-00926-y
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/1240233.1240242

1572 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

[12] A. Amir, G. M. Landau, S. Marcus, and D. Sokol, Two-dimensional maximal repetitions,
Theoret. Comput. Sci., 812 (2020), pp. 49--61, https://doi.org/10.1016/j.tcs.2019.07.006.

[13] A. Amir, M. Lewenstein, and S. V. Thankachan, Range LCP queries revisited , in 22nd
International Symposium on String Processing and Information Retrieval, SPIRE 2015,
LNCS 9309, Springer-Verlag, Berlin, 2015, pp. 350--361, https://doi.org/10.1007/978-3-
319-23826-5 33.

[14] M. Babenko, P. Gawrychowski, T. Kociumaka, and T. Starikovskaya, Wavelet trees meet
suffix trees, in 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
SIAM, Philadelphia, 2015, pp. 572--591, https://doi.org/10.1137/1.9781611973730.39.

[15] G. Badkobeh, P. Charalampopoulos, D. Kosolobov, and S. P. Pissis, Internal shortest
absent word queries in constant time and linear space, Theoret. Comput. Sci., 922 (2022),
pp. 271--282, https://doi.org/10.1016/j.tcs.2022.04.029.

[16] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta, The ``runs"" the-
orem, SIAM J. Comput., 46 (2017), pp. 1501--1514, https://doi.org/10.1137/15M1011032.

[17] D. Belazzougui and S. J. Puglisi, Range predecessor and Lempel-Ziv parsing, in 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, SIAM, Philadelphia, 2016,
pp. 2053--2071, https://doi.org/10.1137/1.9781611974331.ch143.

[18] O. Ben-Kiki, P. Bille, D. Breslauer, L. Ga¬ sieniec, R. Grossi, and O. Weimann, To-
wards optimal packed string matching, Theoret. Comput. Sci., 525 (2014), pp. 111--129,
https://doi.org/10.1016/j.tcs.2013.06.013.

[19] O. Birenzwige, S. Golan, and E. Porat, Locally consistent parsing for text indexing in
small space, in 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
SIAM, Philadelphia, 2020, pp. 607--626, https://doi.org/10.1137/1.9781611975994.37.

[20] R. S. Boyer and J. S. Moore, A fast string searching algorithm, Commun. ACM, 20 (1977),
pp. 762--772, https://doi.org/10.1145/359842.359859.

[21] D. Breslauer and Z. Galil, Finding all periods and initial palindromes of a string in parallel ,
Algorithmica, 14 (1995), pp. 355--366, https://doi.org/10.1007/BF01294132.

[22] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A
survey, Theoret. Comput. Sci., 288 (2002), pp. 21--43, https://doi.org/10.1016/S0304-
3975(01)00144-X.

[23] S. Butakov and V. Scherbinin, The toolbox for local and global plagiarism detection, Comput.
Educ., 52 (2009), pp. 781--788, https://doi.org/10.1016/j.compedu.2008.12.001.

[24] T. M. Chan, S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat, Approxi-
mating text-to-pattern Hamming distances, in 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2020, ACM, New York, 2020, pp. 643--656,
https://doi.org/10.1145/3357713.3384266.

[25] P. Charalampopoulos, T. Kociumaka, M. Mohamed, J. Radoszewski, W. Rytter,
and T. Wale\'n, Internal dictionary matching, Algorithmica, 83 (2021), pp. 2142--2169,
https://doi.org/10.1007/s00453-021-00821-y.

[26] P. Charalampopoulos, T. Kociumaka, S. P. Pissis, and J. Radoszewski, Faster algorithms
for longest common substring, in 29th Annual European Symposium on Algorithms, ESA
2021, LIPIcs 204, Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany,
2021, pp. 30:1--30:17, https://doi.org/10.4230/LIPIcs.ESA.2021.30.

[27] P. Charalampopoulos, T. Kociumaka, S. P. Pissis, J. Radoszewski, W. Rytter,
J. Straszy\'nski, T. Wale\'n, and W. Zuba, Circular pattern matching with k mismatches,
J. Comput. System Sci., 115 (2021), pp. 73--85, https://doi.org/10.1016/j.jcss.2020.07.003.

[28] P. Charalampopoulos, T. Kociumaka, J. Radoszewski, S. P. Pissis, W. Rytter,
T. Wale\'n, and W. Zuba, Approximate circular pattern matching, in 30th An-
nual European Symposium on Algorithms, ESA 2022, LIPIcs 244, Schloss Dagstuhl--
Leibniz Center for Informatics, Wadern, Germany, 2022, pp. 35:1--35:19, https://doi.org/
10.4230/LIPIcs.ESA.2022.35.

[29] P. Charalampopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Wale\'n, and W.
Zuba, Efficient enumeration of distinct factors using package representations, in 27th
International Symposium on String Processing and Information Retrieval, SPIRE 2020,
LNCS 12303, Springer-Verlag, Berlin, 2020, pp. 247--261, https://doi.org/10.1007/978-3-
030-59212-7 18.

[30] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz, Faster approximate pattern
matching: A unified approach, in 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, IEEE, New York, 2020, pp. 978--989, https://doi.org/
10.1109/FOCS46700.2020.00095.

[31] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz, Faster pattern matching
under edit distance: A reduction to dynamic puzzle matching and the seaweed

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1007/978-3-319-23826-5_33
https://doi.org/10.1007/978-3-319-23826-5_33
https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/j.tcs.2022.04.029
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1016/j.tcs.2013.06.013
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1145/359842.359859
https://doi.org/10.1007/BF01294132
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/j.compedu.2008.12.001
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.1007/s00453-021-00821-y
https://doi.org/10.4230/LIPIcs.ESA.2021.30
https://doi.org/10.1016/j.jcss.2020.07.003
https://doi.org/10.4230/LIPIcs.ESA.2022.35
https://doi.org/10.4230/LIPIcs.ESA.2022.35
https://doi.org/10.1007/978-3-030-59212-7_18
https://doi.org/10.1007/978-3-030-59212-7_18
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1573

monoid of permutation matrices, in 63rd IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2022, IEEE, New York, 2022, pp. 698--707,
https://doi.org/10.1109/FOCS54457.2022.00072.

[32] P. Charalampopoulos, S. P. Pissis, J. Radoszewski, W. Rytter, T. Wale\'n, and W.
Zuba, Approximate circular pattern matching under edit distance, in 41st International
Symposium on Theoretical Aspects of Computer Science, STACS 2024, LIPIcs 289,
Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2024, pp. 24:1--24:22,
https://doi.org/10.4230/LIPICS.STACS.2024.24.

[33] K. T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus, IV. The quo-
tient groups of the lower central series, Ann. Math., 68 (1958), pp. 81--95, https://doi.
org/10.2307/1970044.

[34] G. Cormode and S. Muthukrishnan, Substring compression problems, in 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, SIAM, Philadelphia, 2005,
pp. 321--330, http://dl.acm.org/citation.cfm?id=1070432.1070478.

[35] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings, Cambridge University
Press, Cambridge, 2007, https://doi.org/10.1017/cbo9780511546853.

[36] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and T.
Wale\'n, Extracting powers and periods in a word from its runs structure, Theoret. Comput.
Sci., 521 (2014), pp. 29--41, https://doi.org/10.1016/j.tcs.2013.11.018.

[37] M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, G. Tischler, and T. Wale\'n,
Improved algorithms for the range next value problem and applications, Theoret. Comput.
Sci., 434 (2012), pp. 23--34, https://doi.org/10.1016/j.tcs.2012.02.015.

[38] M. Crochemore, C. S. Iliopoulos, J. Radoszewski, W. Rytter, J. Straszy\'nski, T.
Wale\'n, and W. Zuba, Internal quasiperiod queries, in 27th International Symposium on
String Processing and Information Retrieval, SPIRE 2020, LNCS 12303, Springer-Verlag,
Berlin, 2020, pp. 60--75, https://doi.org/10.1007/978-3-030-59212-7 5.

[39] M. Crochemore and W. Rytter, Jewels of Stringology, World Scientific, River Edge, NJ,
2003, https://doi.org/10.1142/4838.

[40] D. Das, T. Kociumaka, and B. Saha, Improved approximation algorithms for Dyck edit
distance and RNA folding, in 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, LIPIcs 229, Schloss Dagstuhl--Leibniz Center for Informatics,
Wadern, Germany, 2022, pp. 49:1--49:20, https://doi.org/10.4230/LIPIcs.ICALP.2022.49.

[41] R. Das, M. He, E. Kondratovsky, J. I. Munro, and K. Wu, Internal masked prefix sums and
its connection to fully internal measurement queries, in 29th International Symposium on
String Processing and Information Retrieval, SPIRE 2022, LNCS 13617, Springer-Verlag,
Berlin, 2022, pp. 217--232, https://doi.org/10.1007/978-3-031-20643-6 16.

[42] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, KMC 2: Fast and
resource-frugal k-mer counting, Bioinformatics, 31 (2015), pp. 1569--1576, https://doi.org/
10.1093/bioinformatics/btv022.

[43] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan, On the sorting-complexity
of suffix tree construction, J. ACM, 47 (2000), pp. 987--1011, https://doi.org/
10.1145/355541.355547.

[44] M. Farach-Colton and S. Muthukrishnan, Perfect hashing for strings: Formalization and
algorithms, in 7th Annual Symposium on Combinatorial Pattern Matching, CPM 1996,
LNCS 1075, Springer-Verlag, Berlin, 1996, pp. 130--140, https://doi.org/10.1007/3-540-
61258-0 11.

[45] H. Fernau, F. Manea, R. Mercas, and M. L. Schmid, Pattern matching with variables:
Efficient algorithms and complexity results, ACM Trans. Comput. Theory, 12 (2020),
pp. 6:1--6:37, https://doi.org/10.1145/3369935.

[46] N. J. Fine and H. S. Wilf, Uniqueness theorems for periodic functions, Proc. Amer. Math.
Soc., 16 (1965), pp. 109--114, https://doi.org/10.2307/2034009.

[47] M. Ganardi, A. Je\.z, and M. Lohrey, Balancing straight-line programs, J. ACM, 68 (2021),
pp. 27:1--27:40, https://doi.org/10.1145/3457389.

[48] Y. Gao, M. He, and Y. Nekrich, Fast preprocessing for optimal orthogonal range reporting
and range successor with applications to text indexing, in 28th Annual European Sympo-
sium on Algorithms, ESA 2020, LIPIcs 173, Schloss Dagstuhl--Leibniz Center for Informat-
ics, Wadern, Germany, 2020, pp. 54:1--54:18, https://doi.org/10.4230/LIPIcs.ESA.2020.54.

[49] P. Gawrychowski, Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and
deterministic, in 19th Annual European Symposium on Algorithms, ESA 2011, LNCS 6942,
Springer-Verlag, Berlin, 2011, pp. 421--432, https://doi.org/10.1007/978-3-642-23719-5 36.

[50] P. Gawrychowski, T. I, S. Inenaga, D. K\"oppl, and F. Manea, Tighter bounds and opti-
mal algorithms for all maximal \alpha -gapped repeats and palindromes: Finding all maximal

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1109/FOCS54457.2022.00072
https://doi.org/10.4230/LIPICS.STACS.2024.24
https://doi.org/10.2307/1970044
https://doi.org/10.2307/1970044
http://dl.acm.org/citation.cfm?id=1070432.1070478
https://doi.org/10.1017/cbo9780511546853
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.tcs.2012.02.015
https://doi.org/10.1007/978-3-030-59212-7_5
https://doi.org/10.1142/4838
https://doi.org/10.4230/LIPIcs.ICALP.2022.49
https://doi.org/10.1007/978-3-031-20643-6_16
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/355541.355547
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1145/3369935
https://doi.org/10.2307/2034009
https://doi.org/10.1145/3457389
https://doi.org/10.4230/LIPIcs.ESA.2020.54
https://doi.org/10.1007/978-3-642-23719-5_36

1574 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

\alpha -gapped repeats and palindromes in optimal worst case time on integer alphabets, Theory
Comput. Syst., 62 (2018), pp. 162--191, https://doi.org/10.1007/s00224-017-9794-5.

[51] P. Gawrychowski, A. Karczmarz, T. Kociumaka, J. \La¬ cki, and P. Sankowski, Opti-
mal dynamic strings, in Proceedings of the 29th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, SIAM, Philadelphia, 2018, pp. 1509--1528, https://doi.org/
10.1137/1.9781611975031.99.

[52] P. Gawrychowski, M. Lewenstein, and P. K. Nicholson, Weighted ancestors in suffix trees,
in 22nd Annual European Symposium on Algorithms, ESA 2014, LNCS 8737, Springer-
Verlag, Berlin, 2014, pp. 455--466, https://doi.org/10.1007/978-3-662-44777-2 38.

[53] L. J. Guibas and A. M. Odlyzko, Periods in strings, J. Combin. Theory Ser. A, 30 (1981),
pp. 19--42, https://doi.org/10.1016/0097-3165(81)90038-8.

[54] R. Hariharan and V. Vinay, String matching in \~O(
\surd
n +

\surd
m) quantum time, J. Discrete

Algorithms, 1 (2003), pp. 103--110, https://doi.org/10.1016/S1570-8667(03)00010-8.
[55] M. C. Harrison, Implementation of the substring test by hashing, Commun. ACM, 14 (1971),

pp. 777--779, https://doi.org/10.1145/362919.362934.
[56] T. I, W. Matsubara, K. Shimohira, S. Inenaga, H. Bannai, M. Takeda, K. Narisawa,

and A. Shinohara, Detecting regularities on grammar-compressed strings, Inform. and
Comput., 240 (2015), pp. 74--89, https://doi.org/10.1016/j.ic.2014.09.009.

[57] C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, T. Wale\'n, and W. Zuba,
Linear-time computation of cyclic roots and cyclic covers of a string, in 34th Annual Sym-
posium on Combinatorial Pattern Matching, CPM 2023, Marne-la-Vall\'ee, France, LIPIcs
259, Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2023, pp. 15:1--
15:15, https://doi.org/10.4230/LIPICS.CPM.2023.15.

[58] G. Jacobson, Space-efficient static trees and graphs, in 30th Annual Symposium on
Foundations of Computer Science, FOCS 1989, IEEE, New York, 1989, pp. 549--554,
https://doi.org/10.1109/SFCS.1989.63533.

[59] A. Je\.z, Faster fully compressed pattern matching by recompression, ACM Trans. Algorithms,
11 (2015), pp. 20:1--20:43, https://doi.org/10.1145/2631920.

[60] A. Je\.z, Recompression: A simple and powerful technique for word equations, J. ACM, 63
(2016), pp. 4:1--4:51, https://doi.org/10.1145/2743014.

[61] C. Jin and J. Nogler, Quantum speed-ups for string synchronizing sets, longest com-
mon substring, and k-mismatch matching, in 34th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, SIAM, Philadelphia, 2023, pp. 5090--5121,
https://doi.org/10.1137/1.9781611977554.ch186.

[62] J. K\"arkk\"ainen, P. Sanders, and S. Burkhardt, Linear work suffix array construction,
J. ACM, 53 (2006), pp. 918--936, https://doi.org/10.1145/1217856.1217858.

[63] R. M. Karp and M. O. Rabin, Efficient randomized pattern-matching algorithms, IBM J.
Res. Dev., 31 (1987), pp. 249--260, https://doi.org/10.1147/rd.312.0249.

[64] O. Keller, T. Kopelowitz, S. Landau Feibish, and M. Lewenstein, Generalized sub-
string compression, Theoret. Comput. Sci., 525 (2014), pp. 42--54, https://doi.org/
10.1016/j.tcs.2013.10.010.

[65] D. Kempa and T. Kociumaka, String synchronizing sets: Sublinear-time BWT con-
struction and optimal LCE data structure, in 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, ACM, New York, 2019, pp. 756--767,
https://doi.org/10.1145/3313276.3316368.

[66] D. Kempa and T. Kociumaka, Resolution of the Burrows-Wheeler transform conjecture, in
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, IEEE,
New York, 2020, pp. 1002--1013, https://doi.org/10.1109/FOCS46700.2020.00097.

[67] D. Kempa and T. Kociumaka, Dynamic suffix array with polylogarithmic queries and updates,
in 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, ACM,
New York, 2022, pp. 1657--1670, https://doi.org/10.1145/3519935.3520061.

[68] D. Kempa and T. Kociumaka, Collapsing the hierarchy of compressed data structures: Suf-
fix arrays in optimal compressed space, in 64th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2023, IEEE, New York, 2023, pp. 1877--1886,
https://doi.org/10.1109/FOCS57990.2023.00114.

[69] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, Fast pattern matching in strings, SIAM
J. Comput., 6 (1977), pp. 323--350, https://doi.org/10.1137/0206024.

[70] T. Kociumaka, Minimal suffix and rotation of a substring in optimal time, in 27th An-
nual Symposium on Combinatorial Pattern Matching, CPM 2016, LIPIcs 54, Schloss
Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2016, pp. 28:1--28:12,
https://doi.org/10.4230/LIPIcs.CPM.2016.28.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1016/0097-3165(81)90038-8
https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1145/362919.362934
https://doi.org/10.1016/j.ic.2014.09.009
https://doi.org/10.4230/LIPICS.CPM.2023.15
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/2631920
https://doi.org/10.1145/2743014
https://doi.org/10.1137/1.9781611977554.ch186
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.1137/0206024
https://doi.org/10.4230/LIPIcs.CPM.2016.28

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1575

[71] T. Kociumaka, Efficient Data Structures for Internal Queries in Texts, Ph.D. thesis, Univer-
sity of Warsaw, 2018, https://www.mimuw.edu.pl/\sim kociumaka/files/phd.pdf.

[72] T. Kociumaka, R. Kundu, M. Mohamed, and S. P. Pissis, Longest unbordered factor in quasi-
linear time, in 29th International Symposium on Algorithms and Computation, ISAAC
2018, LIPIcs 123, Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany,
2018, pp. 70:1--70:13, https://doi.org/10.4230/LIPIcs.ISAAC.2018.70.

[73] T. Kociumaka, G. Navarro, and F. Olivares, Near-optimal search time in \delta -optimal space,
in 15th Latin American Symposium on Theoretical Informatics, LATIN 2022, LNCS 13568,
Springer-Verlag, Berlin, 2022, pp. 88--103, https://doi.org/10.1007/978-3-031-20624-5 6.

[74] T. Kociumaka, G. Navarro, and N. Prezza, Toward a definitive compressibility mea-
sure for repetitive sequences, IEEE Trans. Inform. Theory, 69 (2023), pp. 2074--2092,
https://doi.org/10.1109/TIT.2022.3224382.

[75] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Wale\'n, Efficient data structures for the
factor periodicity problem, in 19th International Symposium on String Processing and In-
formation Retrieval, SPIRE 2012, LNCS 7608, Springer-Verlag, Berlin, 2012, pp. 284--294,
https://doi.org/10.1007/978-3-642-34109-0 30.

[76] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Wale\'n, Internal pattern
matching queries in a text and applications, in 26th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, SIAM, Philadelphia, 2015, pp. 532--551,
https://doi.org/10.1137/1.9781611973730.36.

[77] R. Kolpakov, M. Podolskiy, M. Posypkin, and N. Khrapov, Searching of gapped re-
peats and subrepetitions in a word , J. Discrete Algorithms, 46--47 (2017), pp. 1--15,
https://doi.org/10.1016/j.jda.2017.10.004.

[78] R. M. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time,
in 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, IEEE, New
York, 1999, pp. 596--604, https://doi.org/10.1109/SFFCS.1999.814634.

[79] T. Kopelowitz, G. Kucherov, Y. Nekrich, and T. Starikovskaya, Cross-document
pattern matching, J. Discrete Algorithms, 24 (2014), pp. 40--47, https://doi.org/
10.1016/j.jda.2013.05.002.

[80] D. Kosolobov, F. Manea, and D. Nowotka, Detecting one-variable patterns, in 24th In-
ternational Symposium on String Processing and Information Retrieval, SPIRE 2017,
LNCS 10508, Springer-Verlag, Berlin, 2017, pp. 254--270, https://doi.org/10.1007/978-3-
319-67428-5 22.

[81] S. Kuruppu, S. J. Puglisi, and J. Zobel, Relative Lempel-Ziv compression of genomes for
large-scale storage and retrieval , in 17th International Symposium on String Process-
ing and Information Retrieval, SPIRE 2010, LNCS 6393, Springer-Verlag, Berlin, 2010,
pp. 201--206, https://doi.org/10.1007/978-3-642-16321-0 20.

[82] G. M. Landau and U. Vishkin, Fast string matching with k differences, J. Comput. System
Sci., 37 (1988), pp. 63--78, https://doi.org/10.1016/0022-0000(88)90045-1.

[83] H. Li, Minimap2: Pairwise alignment for nucleotide sequences, Bioinformatics, 34 (2018),
pp. 3094--3100, https://doi.org/10.1093/bioinformatics/bty191.

[84] R. C. Lyndon, On Burnside's problem, Trans. Amer. Math. Soc., 77 (1954), pp. 202--215,
https://doi.org/10.1090/S0002-9947-1954-0064049-X.

[85] R. C. Lyndon and M.-P. Sch\"utzenberger, The equation aM = bN cP in a free group, Michi-
gan Math. J., 9 (1962), pp. 289--298, https://doi.org/10.1307/mmj/1028998766.

[86] M. G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math., 25 (1989),
pp. 145--153, https://doi.org/10.1016/0166-218X(89)90051-6.

[87] G. K. Manacher, An application of pattern matching to a problem in geometrical complexity,
Inform. Process. Lett., 5 (1976), pp. 6--7, https://doi.org/10.1016/0020-0190(76)90092-2.

[88] K. Mehlhorn, R. Sundar, and C. Uhrig, Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time, Algorithmica, 17 (1997), pp. 183--198, https://doi.org/
10.1007/BF02522825.

[89] K. Mitani, T. Mieno, K. Seto, and T. Horiyama, Internal longest palindrome queries
in optimal time, in 17th International Conference and Workshops on Algorithms and
Computation, WALCOM 2023, LNCS 13973, Springer-Verlag, Berlin, 2023, pp. 127--138,
https://doi.org/10.1007/978-3-031-27051-2 12.

[90] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and
Probabilistic Analysis, Cambridge University Press, Cambridge, 2005, https://doi.org/
10.1017/CBO9780511813603.

[91] J. H. Morris, Jr., and V. R. Pratt, A Linear Pattern-Matching Algorithm, Technical report
40, University of California, Berkeley, CA, 1970.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://www.mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.4230/LIPIcs.ISAAC.2018.70
https://doi.org/10.1007/978-3-031-20624-5_6
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1007/978-3-642-34109-0_30
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1016/j.jda.2017.10.004
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1016/j.jda.2013.05.002
https://doi.org/10.1016/j.jda.2013.05.002
https://doi.org/10.1007/978-3-319-67428-5_22
https://doi.org/10.1007/978-3-319-67428-5_22
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1090/S0002-9947-1954-0064049-X
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1016/0166-218X(89)90051-6
https://doi.org/10.1016/0020-0190(76)90092-2
https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/978-3-031-27051-2_12
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603

1576 KOCIUMAKA, RADOSZEWSKI, RYTTER, AND WALE\'N

[92] J. I. Munro, Y. Nekrich, and J. S. Vitter, Fast construction of wavelet trees, Theoret.
Comput. Sci., 638 (2016), pp. 91--97, https://doi.org/10.1016/j.tcs.2015.11.011.

[93] Y. Nekrich and G. Navarro, Sorted range reporting, in 13th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2012, LNCS 7357, Springer-Verlag, Berlin, 2012,
pp. 271--282, https://doi.org/10.1007/978-3-642-31155-0 24.

[94] M. Patil, R. Shah, and S. V. Thankachan, Faster range LCP queries, in 20th International
Symposium on String Processing and Information Retrieval, SPIRE 2013, LNCS 8214,
Springer-Verlag, Berlin, 2013, pp. 263--270, https://doi.org/10.1007/978-3-319-02432-5 29.

[95] M. P\u atra\c scu and M. Thorup, Dynamic integer sets with optimal rank, select, and predecessor
search, in 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
IEEE, New York, 2014, pp. 166--175, https://doi.org/10.1109/FOCS.2014.26.

[96] W. Plandowski and W. Rytter, Application of Lempel-Ziv encodings to the solution
of words equations, in 25th International Colloquium on Automata, Languages and
Programming, ICALP 1998, LNCS 1443, Springer-Verlag, Berlin, 1998, pp. 731--742,
https://doi.org/10.1007/BFb0055097.

[97] M. Ponec, P. Giura, J. Wein, and H. Br\"onnimann, New payload attribution methods for
network forensic investigations, ACM Trans. Inform. Syst. Secur., 13 (2010), pp. 15:1--
15:32, https://doi.org/10.1145/1698750.1698755.

[98] J. Radoszewski and J. Straszy\'nski, Efficient computation of 2-covers of a string, in
28th Annual European Symposium on Algorithms, ESA 2020, LIPIcs 173, Schloss
Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2020, pp. 77:1--77:17,
https://doi.org/10.4230/LIPIcs.ESA.2020.77.

[99] E. Rivals and S. Rahmann, Combinatorics of periods in strings, in 28th International Col-
loquium on Automata, Languages and Programming, ICALP 2001, LNCS 2076, Springer-
Verlag, Berlin, 2001, pp. 615--626, https://doi.org/10.1007/3-540-48224-5.

[100] E. Rivals, M. Sweering, and P. Wang, Convergence of the number of period sets in strings, in
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023,
LIPIcs 261, Schloss Dagstuhl--Leibniz Center for Informatics, Wadern, Germany, 2023, pp.
100:1--100:14, https://doi.org/10.4230/LIPICS.ICALP.2023.100.

[101] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, Reducing storage
requirements for biological sequence comparison, Bioinformatics, 20 (2004), pp. 3363--3369,
https://doi.org/10.1093/bioinformatics/bth408.

[102] M. Ru\v zi\'c, Constructing efficient dictionaries in close to sorting time, in 35th International Col-
loquium on Automata, Languages and Programming, ICALP 2008, LNCS 5125, Springer-
Verlag, Berlin, 2008, pp. 84--95, https://doi.org/10.1007/978-3-540-70575-8 8.

[103] S. C. Sahinalp and U. Vishkin, On a parallel-algorithms method for string matching problems,
in 2nd Italian Conference on Algorithms and Complexity, CIAC 1994, Rome, LNCS 778,
Springer-Verlag, Berlin 1994, pp. 22--32, https://doi.org/10.1007/3-540-57811-0 3.

[104] S. C. Sahinalp and U. Vishkin, Symmetry breaking for suffix tree construction, in 26th An-
nual ACM Symposium on Theory of Computing, STOC 1994, ACM, New York, 1994,
pp. 300--309, https://doi.org/10.1145/195058.195164.

[105] S. C. Sahinalp and U. Vishkin, Efficient approximate and dynamic matching of pat-
terns using a labeling paradigm, in 37th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 1996, IEEE, New York, 1996, pp. 320--328, https://doi.org/
10.1109/SFCS.1996.548491.

[106] S. Schleimer, D. S. Wilkerson, and A. Aiken, Winnowing: Local algorithms for document
fingerprinting, in ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2003, ACM, New York, 2003, pp. 76--85, https://doi.org/10.1145/872757.872770.

[107] D. Sorokina, J. Gehrke, S. Warner, and P. Ginsparg, Plagiarism detection in arXiv , in
Sixth IEEE International Conference on Data Mining, ICDM 2006, IEEE, New York, 2006,
pp. 1070--1075, https://doi.org/10.1109/ICDM.2006.126.

[108] A. Thue, \"Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Skrifter utgit
av Videnskapsselskapet i Kristiania. I , Matematisk-naturvidenskabelig klasse, 1 (1912),
pp. 1--67, http://www.biodiversitylibrary.org/item/52278.

[109] U. Vishkin, Deterministic sampling---A new technique for fast pattern matching, SIAM J.
Comput., 20 (1991), pp. 22--40, https://doi.org/10.1137/0220002.

[110] Q. Wang and M. Ying, Quantum algorithm for lexicographically minimal string rota-
tion, Theory Comput. Syst., 68 (2024), pp. 29--74, https://doi.org/10.1007/S00224-023-
10146-8.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-319-02432-5_29
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1145/1698750.1698755
https://doi.org/10.4230/LIPIcs.ESA.2020.77
https://doi.org/10.1007/3-540-48224-5
https://doi.org/10.4230/LIPICS.ICALP.2023.100
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1007/978-3-540-70575-8_8
https://doi.org/10.1007/3-540-57811-0_3
https://doi.org/10.1145/195058.195164
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1145/872757.872770
https://doi.org/10.1109/ICDM.2006.126
http://www.biodiversitylibrary.org/item/52278
https://doi.org/10.1137/0220002
https://doi.org/10.1007/S00224-023-10146-8
https://doi.org/10.1007/S00224-023-10146-8

INTERNAL PATTERN MATCHING QUERIES IN A TEXT 1577

[111] P. Weiner, Linear pattern matching algorithms, in 14th Annual Symposium on Switching and
Automata Theory, SWAT 1973, IEEE, New York, 1973, pp. 1--11, https://doi.org/10.1109/
SWAT.1973.13.

[112] D. E. Wood and S. L. Salzberg, Kraken: Ultrafast metagenomic sequence classification
using exact alignments, Genome Biol., 15 (2014), R46, https://doi.org/10.1186/gb-2014-
15-3-r46.

[113] G. Zhou, Two-dimensional range successor in optimal time and almost linear space, Inform.
Process. Lett., 116 (2016), pp. 171--174, https://doi.org/10.1016/j.ipl.2015.09.002.

[114] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans.
Inform. Theory, 23 (1977), pp. 337--343, https://doi.org/10.1109/TIT.1977.1055714.

[115] J. Ziv and N. Merhav, A measure of relative entropy between individual sequences with appli-
cation to universal classification, IEEE Trans. Inform. Theory, 39 (1993), pp. 1270--1279,
https://doi.org/10.1109/18.243444.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

01
/2

5/
25

 to
 1

40
.1

17
.1

68
.4

3
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1016/j.ipl.2015.09.002
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/18.243444

	Introduction
	Applications of IPM queries
	Further applications of IPM queries
	Related queries
	Technical contributions

	Strings and periodicity
	Basic notations on strings
	Periodic structures in strings

	Overview of synchronizing sets hierarchy
	Restricted recompression and proof of Proposition <0:xref 0:ref-type="statement" 0:rid="pro3-4" >3.4</0:xref>
	Definition of restricted recompression
	Proof of Proposition <0:xref 0:ref-type="statement" 0:rid="pro3-4" >3.4</0:xref>

	Details of the synchronizing set hierarchy construction—Proof of Theorem <0:xref 0:ref-type="statement" 0:rid="the1-13" >1.13</0:xref>
	<0:sc >IPM Queries</0:sc> with non–highly periodic patterns
	Selection of samples
	Implementation of the data structure

	<0:sc >IPM Queries</0:sc> with highly periodic patterns
	Special <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	HP?></0:tex-math></0:inline-formula> runs
	Compatibility of strings and runs
	Answering queries

	<0:sc >IPM Queries</0:sc> in texts over small alphabets
	Constructing data structure
	Answering queries

	Applications of IPM and LCE queries
	Proof of Lemma <0:xref 0:ref-type="statement" 0:rid="lem1-14" >1.14</0:xref>
	Prefix-suffix queries and their applications
	Cyclic equivalence queries
	Queries related to Lempel–Ziv compression

	Acknowledgments
	References
	Auxiliary proofs
	Information-theoretic bounds on the set of occurrences
	Appendix C. Implementations of Corollary 1.10
	Dynamic setting
	Fully compressed setting
	Quantum setting

