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1. Introduction

Given a sequence S = S[1], S[2], . . . , S[n], we get a sub-
sequence by deleting 0 or more symbols from S , keeping
the order of the symbols in S intact. A sequence S is said
to be increasing if we have S[i + 1] > S[i] for all 1 � i < n.
Let π = π(1),π(2), . . . ,π(n) be a permutation of [1 . . .n]
and we are given a sequence S = S[1], S[2], . . . , S[n] =
π(1),π(2), . . . ,π(n), i.e., S is a permutation of [1 . . .n].
The Longest Increasing Subsequence (LIS) problem aims to
compute an increasing subsequence (IS) S ′ from S such
that |S ′| is maximum.

The LIS problem is related to a more studied problem
of computing a longest common subsequence (LCS) of two
strings, and to their alignment, in at least two ways. Firstly,
it is easy to realize that, the LIS of S is the LCS between S
and the sequence representing the identity permutation,
i.e., 1,2, . . . ,n. This leads to a straightforward O (n2) time
algorithm implementing the standard dynamic program-
ming technique used for computing a longest common

* Corresponding author.
E-mail addresses: rashed.muhammad@yahoo.com (M.R. Alam),

msrahman@cse.buet.ac.bd (M.S. Rahman).
0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.03.013
subsequence [25] (it can indeed be reduced to O (n2/ log n)

[17,6]). Notably, the LCS computation algorithm of Hunt
and Szymanski [14] reduces to an O (n log n) algorithm
for computing LIS under the above setting. Secondly, the
LIS question is involved in the solution to the problem of
whole-genome comparison proposed by Delcher et al. [8]
and in its subsequent variants. Such a comparison is based
on maximal exact matches between the two input genome
sequences, matches that are additionally constrained to oc-
cur only once in each sequence. An LIS is used to extract a
long subsequence of matches that are compatible between
each other, i.e., they appear in the same order along the
two sequences, for producing an alignment of the complete
genomes.

The question is also related to the representation
of permutations, elements of the symmetric group on
{1,2, . . . ,n}, with Young tableaux. This is certainly why
it has attracted a lot of attention. The readers are referred
to [2] for a presentation of Schensted’s algorithm [21] in
this context.

In parallel to using the LCS algorithms to solve the LIS
problem, direct algorithms to solve the problem are also
available in the literature. Fredman [10] devised an algo-
rithm running in O (n log n) time. This solution is clearly
optimal if the elements are drawn from an arbitrary
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set [10]. Parameterized by the LIS length k, the running
time becomes O (n log k). On integer alphabets, the fastest
known solution runs in O (n log log n) time [26] which re-
lies on a complex priority search tree of van Emde Boas
[24]. Very recently, Crochemore and Porat [7] presented
an O (n log log k) time algorithm for the problem assum-
ing a RAM model. This result improves a 30-year bound
of O (n log k). The algorithm also improves on the previ-
ous O (n log logn) bound. The question of optimality of the
new bound is still open [7]. Note that the algorithm of
Crochemore and Porat [7] assumes a permutation of [1..n]
as input.

A few parallel algorithms also have been proposed for
the LIS problem in the literature. A generic approach is
to reduce the problem to computing the longest common
subsequence (LCS) of two strings of length n. For example
in [12] the authors presented one such approach having
cost O (n2/p) on p processors. On the EREW PRAM model
with p processors, Nakashima and Fujiwara [18,19] pre-
sented two algorithms with O (m( n

p + logn)) and O (log n +
n logn

p + m2 log n
p + m log p) time,1 respectively. Semé [22]

gave a CGM algorithm that runs in O (n log(n/p)) time.
Krusche and Tiskin [15] have also given a parallel algo-
rithm obtaining a computational cost of O (n1.5/p) in BSP
model [23].

In this paper, we take a different approach to solve the
LIS problem. In particular we attack the problem using a
divide and conquer approach. Using our approach we are
able to devise a novel algorithm to solve LIS that also runs
in O (n log n) time. In the sequel, we show how our ap-
proach provides us with a parallel work optimal algorithm
considering the comparison model. The contribution of this
paper is as follows. Firstly, since many multithreaded algo-
rithms involving nested parallelism follow naturally from
the divide-and-conquer paradigm, our approach opens a
new and hitherto unexplored avenue to get direct multi-
processor solutions for the LIS problem. And indeed the
parallel algorithm devised in this paper based on the se-
rial divide and conquer algorithm presented outperforms
all the parallel algorithms for LIS in the literature. Sec-
ondly, all the sequential algorithms for the LIS problem in
the literature are online. As a result, being offline, our ap-
proach may turn out to be at least theoretically interesting
and may present many enthusiastic researchers with some
new ideas to devise even more efficient offline algorithms.

The rest of the paper is organized as follows. In Sec-
tion 2 we will recall the basic well-known algorithm for
solving the LIS problem. In Section 3 we present our divide
and conquer approach to solve the problem. In Section 4
we discuss the parallel algorithm and a brief comparison
with other parallel algorithms. Finally we conclude in Sec-
tion 5.

2. Basic algorithm

In our divide and conquer approach we make use of
the basic algorithm, referred to as BAlg henceforth, for
computing an LIS. For the sake of completeness, in this

1 Here, m is the number of decreasing subsequences in the solution.
section we briefly discuss how BAlg works. In BAlg, the
elements are processed in the order π(1),π(2), . . . ,π(n).
Conceptually, we compute for each length � = 1,2, . . . ,
the smallest last element that can end an increasing sub-
sequence of that length. It is called the best element for
that length and denoted by B[�]. Note that best elements
B[1], B[2], . . . , B[�] form an increasing sequence. This fact
is used for the choice of a data structure to implement the
list and is essential for efficient computation.

BAlg works as follows. Consider the ith iteration where
1 � i � n. Element π(i) can extend any increasing subse-
quence ending at an element of B (say, B[ j]) such that
B[ j] is smaller than π(i). Suppose, up to now, i.e., for
π(1),π(2), . . . ,π(i − 1), we have computed B[1] . . . B[�].
If π(i) > B[�], then we must also have π(i) > B[i], 1 �
i � �. In this case, π(i) can produce an IS longer than
any previous one. So, we set B[� + 1] = π(i). Otherwise,
π(i) becomes the best element for an existing length: it
replaces the smallest element greater than π(i), i.e., the
successor of π(i) in B . In both cases, we set the parent
of π(i), namely P (i), to the position of largest element
smaller than π(i), i.e., its predecessor in B . We can find the
original LIS by traversing the P -array backward. Notably,
B[0] is set to 0.

The runtime analysis of BAlg is straightforward. At the
ith iteration the index of the successor/predecessor of π(i)
can be found using binary search in O (log n) time. Hence
the O (n log n) running time of BAlg follows readily.

3. A divide and conquer approach

In this section, we discuss our divide and conquer ap-
proach. Without the loss of generality we can assume n
to be even. In order to compute the LIS of S , we divide S
into two subsequences S1 and S2 of equal length n/2. Now
we solve the LIS problem for S1 and S2. In other words,
using BAlg, we compute Bk and Pk , to compute the LIS
of Sk , where k ∈ {1,2}. Then we compute the B and P ar-
rays for S using Bk , Pk , k ∈ {1,2}. Notably, for our divide
and conquer approach we will slightly extend the structure
of the B array as follows. In particular, we will assume
B to be an array of 2-tuple, where each entry of B will
have two attributes, namely, val and pos. Hence, inserting
Si in B at some index k implies that B[k + 1].val = S[i]
and B[k + 1].pos = i. However, since S is a permutation,
the elements in S1 and S2 are distinct and without mul-
tiple occurrences. Hence, the parent array P can be global
and we don’t need two separate parent arrays P1 and P2.
Our divide and conquer algorithm, referred to as the D&C
algorithm henceforth works as follows.

Divide: We divide S in two subsequences S1 and S2 as fol-
lows. We delete from S the elements that are greater than
(less than or equal to) n/2 to get S1 (S2). In other words,
elements that are less than or equal to (greater than) n/2
appear in S1 (S2).

Conquer: We perform the LIS computation for the two
subsequences S1 and S2 recursively, i.e., compute B1, B2
and the P array (globally) for S1 and S2.
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Combine: In this phase, we iterate over the elements of S .
In the Combine phase, we will use the function Insert(x, y)

to insert the element x in B after the position of y in it. So,
if at some iteration i, x = S[i] and B[ j].value = y, then, ex-
ecuting Insert(x, y) sets B[ j + 1].val = x and B[ j + 1].pos =
i. Clearly, any element previously stored at position j +1 is
replaced by this operation. The case when y = 0 is treated
specially as follows. Insert(x,0) put x at the first position
of B (i.e., B[1].val = x and B[1].pos = i). Now, at the ith it-
eration, for an element x = S[i], we do the following. Note
that we have B1, B2 and the P array at our disposal and
our aim now is to compute B and update P . We have the
following two cases.

1. Case 1: x � n/2 (i.e., x is in S1): If the parent of x, i.e.,
y = S[P [i]] is currently present in B , then we exe-
cute Insert(x, y). Note that, if y = 0 then we execute
Insert(x,0). Notably, if y �= 0 then y will always be
present in B (Lemma 1).

2. Case 2: x > n/2 (i.e., x is in S2): Similar to the case be-
fore, if the parent of x, i.e., y = S[P [i]] is present in B ,
then we execute Insert(x, y). If, however, y = 0 or y is
not currently present in B , then we execute Insert(x, z)
where z is the largest element of S1 currently in B .
Additionally, we update parent of x, P [i] by setting it
to the index of z.

For efficient implementation, we will have to use an ar-
ray isPresent to check the presence of an element y in B
as follows. If j is the index of y in S , isPresent[ j] = 0 if y
is not present in B and isPresent[ j] = � if B[�] = y.

Now we prove the correctness of the D&C algorithm
and deduce its running time. Clearly, the key operation of
this algorithm is the Combine operation. We start with the
following lemma.

Lemma 1. During the Combine operation, suppose that x =
S[i], j = P [i], and y = S[ j], i.e., y is the parent of x. If 0 <

y � n/2 then y will always be present in B.

Proof. Since every element of S1 is less than or equal n/2,
an element y of S1 will be the predecessor of x if and
only if y also belongs to S1 and y < x. Thus if y is the
predecessor of x during the computation of S1, then it is
also predecessor of x during the computation of LIS of S .
Hence the result follows. �
Lemma 2. The Combine operation correctly computes in linear
time B and P arrays for S from the LIS computation of the two
subsequences S1 and S2 .

Proof. Recall that, while computing an LIS, at some itera-
tion i, we always place an element x = S[i] immediately
after it’s predecessor in the queue B . Now we have two
cases as discussed below.

Case 1: x belongs to the set S1. In this case, the predeces-
sor of x must also belong to the set S1. Clearly, if y is
the predecessor of x in the computation of LIS of S1,
then y is also the predecessor of x in the computa-
tion of LIS of S . As we have already computed the LIS
of S1, we have already known the predecessor y of x.
Hence, we correctly place x immediately after the po-
sition of y in B by executing Insert(x, y) as mentioned
in Case 1 of the Combine operation.

Case 2: x belongs to the set S2 . In this case, the predeces-
sor of X either belongs to the set S2 or is the largest
element of S1 currently present in B . Now, we have
already computed the LIS of S2. Suppose y′ has been
found to be the predecessor of x during the compu-
tation of LIS of S2. While computing the LIS of S , we
need to check whether y′ is currently present in B . If
yes, then we correctly execute Insert(x, y′) as stated in
Case 2 of the Combine operation. If on the other hand,
y′ is not present in B , then the largest element z of
the set S1 that is currently present in B will be prede-
cessor of x and we correctly place x immediately after
z executing Insert(x, z) as stated in Case 2 of the Com-
bine operation.

Now at each iteration, the only operations are to check
the presence of predecessor y of x using the array isPresent.
So, the Combine operation runs in O (n) time. �

The D&C algorithm is initiated by calling the function
COMPUTE-LIS(S, P ) where S is the input sequence and P is
the parent array to be computed. The complete algorithm
is formally given below:

COMPUTE-LIS(S, P )
1: if |S| > 1 then
2: n ← |S|
3: Divide S into S1 and S2 each of which has length

n/2.
4: COMPUTE-LIS(S1, P )

5: COMPUTE-LIS(S2, P )

6: COMBINE-LIS(S, P )

7: end if

COMBINE-LIS(S, P )
1: n ← |S|; max ← 0; max _si ← 0; � ← 0
2: for i ← 1 to n do
3: x ← S[i]; j ← P [i]; y ← S[ j]; k ← isPresent[ j]
4: if k + 1 > � then
5: � ← � + 1
6: end if
7: if x � n/2 then
8: isPresent[B[k + 1].pos] ← 0; P [i] ← k
9: B[k + 1].val ← x; B[k + 1].pos ← i; isPresent[i] ←

k + 1
10: if (max < x) then
11: max ← x; max _si ← k + 1
12: end if
13: else
14: if k = 0 then
15: k ← max _si
16: end if
17: isPresent[B[k + 1].pos] ← 0; P [i] ← k
18: B[k + 1].val ← x; B[k + 1].pos ← i; isPresent[i] ←

k + 1
19: end if
20: end for
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To find the longest increasing subsequence of S = S[1],
S[2], . . . , S[n], we make the initial call COMPUTE-LIS(S, P ).
The algorithm consists in combining pairs of subsequence
of length one to compute an LIS of a subsequence of
length 2, combining the pairs of subsequence of length 2
to find an LIS of subsequence of length 4, and so on, until
two subsequences of length n/2 are combined to find the
LIS of the original (input) sequence of length n. As the run-
ning time of combine operation is Θ(n), the running time
T (n) for the algorithm can be evaluated using the follow-
ing well known recursive equation:

T (n) = 2T (n/2) + Θ(n) = Θ(n log n). (1)

3.1. An illustrative example

Example 1. We consider the sequence S = (8,9,2,6,3,7,

10,4,1,5) where n = 10. To clearly identify the positions
of the elements of the subsequences in the original se-
quence, in the rest of the example we denote each element
of a subsequence S ′ of S as a two-tuple (value,pos), where
S ′[i].value indicate the ith element and S ′[i].pos denote
its original position in S . Under this convention, a subse-
quence S ′ = 9,6,10 of S may also be denoted as follows:

S ′ = (9,2), (6,4), (10,7).

If we compute the LIS of S using the basic algorithm
then we will have B = (1,9), (3,5), (4,8), (5,10) and P =
0,1,0,3,3,5,6,5,0,8. In what follows, we say x belongs
to a sequence S if we have S[i] = x for some 1 � i � |S|.

Divide: Now we divide the S into S1 and S2 as follows:

S1 = (2,3), (3,5), (4,8), (1,9), (5,10),

S2 = (8,1), (9,2), (6,4), (7,6), (10,7).

Conquer: After computing the LIS of S1 and S2 recur-
sively, we will have B1 = (1,9), (3,5), (4,8), (5,10), B2 =
(6,4), (7,6), (10,7) and P = 0,1,0,0,3,4,6,5,0,8.

Combine: We iterate over the elements of S , given that B
is initially empty.

At iteration 1, S[1] = 8 and parent of 8, P [1] = 0. We
insert 8 into B and hence we have B = (8,1). Nothing
changes in P .

At iteration 2, S[2] = 9, P [2] = 1 and S[P [2]] = S[1] =
8, which is currently present in B . So we insert 9 after 8
in B . Now, B = (8,1), (9,2). Nothing changes in P .

At iteration 3, S[3] = 2 and P [3] = 0. Since 2 belongs
to S1, we insert 2 at the first index of B replacing the
previous entry. Now B = (2,3)(9,2). Nothing changes in P .

At iteration 4, S[4] = 6 and P [4] = 0. Now, 6 belongs to
S2 and the largest element of S1 that is currently present
in B is 2. So, we insert 6 after 2 in B and set parents of 6,
P [4] = 3, which is position of 2 in S . Now B = (2,3)(6,4)

and P = 0,1,0,3,3,4,6,5,0,8.
At iteration 5, S[5] = 3, and P [5] = 3 which is the po-

sition of 2. So we place 3 after 2 in B and hence B =
(2,3)(3,5). Nothing changes in P .
At iteration 6, S[6] = 7, P [6] = 4 and S[4] = 6, which
is currently not present in B . Now, 7 belongs to S2. So we
place 7 after the largest element of S1 currently present
in B , which is 3 and set P [6] to 5, i.e., the position of 3.
Now B = (2,3)(3,5), (7,6) and P = 0,1,0,3,3,5,6,5,0,8.

At iteration 7, S[7] = 10, P [7] = 6 and S[6] = 7, which
is currently present in B . So, we insert 10 after 7 in B .
Now B = (2,3)(3,5), (7,6), (10,7). Nothing changes in P .

At iteration 8, S[8] = 4, P [8] = 5, and S[5] = 3, which is
currently present in B . So we insert 4 after 3 in B replac-
ing the previous entry. Now, B = (2,3)(3,5), (4,8), (10,7).
Nothing changes in P .

At iteration 9, S[9] = 1, and P [9] = 0. Since, 1 belongs
to S1, we insert 1 at the first index of B replacing the
previous entry. Now B = (1,9)(3,5), (4,8), (10,7). Nothing
changes in P .

At iteration 10, S[10] = 5, P [10] = 8 and S[8] = 4,
which is currently present in B . So we insert 5 after 4 in B
replacing the previous entry. Now B = (1,9)(3,5), (4,8),

(5,10). Nothing changes in P .
Thus after the Combine operation we have:

B = (1,9)(3,5), (4,8), (5,10)

and

P = 0,1,0,3,3,5,6,5,0,8.

3.2. Non-permutations

So far we have discussed our algorithms considering a
permutation π = π(1),π(2), . . . ,π(n) of set [1 . . .n]. How-
ever our algorithm can be easily adapted to work on a
general sequence that is not a permutation of [1..n]. To do
this, we first select the median of the input sequence us-
ing a linear time algorithm and use that median to divide
the sequence into two subsequences, each of length n/2.
So our slightly revised divide and conquer algorithm will
be as follows:

COMPUTE-LIS-General(S, P )
1: if |S| > 1 then
2: n ← |S|
3: x = MEDIAN(S)

4: Divide S based on x into S1 and S2 such that |S1| =
|S2| = n/2.

5: COMPUTE-LIS-General(S1, P )

6: COMPUTE-LIS-General(S2, P )

7: COMBINE-LIS(S, P )

8: end if

We conclude this section with another illustrative
example that considers a general sequence, i.e., non-
permutations and show how COMPUTE-LIS-General(S, P )

works.

Example 2. We consider the sequence S = 51,62,34,56,

42, where n = 5. Like the example in Section 3.1, here as
well we follow the following convention. To clearly iden-
tify the positions of the elements of the subsequences
in the original sequence, we denote each element of a
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subsequence S ′ of S as a two-tuple (value,pos), where
S ′[i].value indicate the ith element and S ′[i].pos denote its
original position in S . Now, if we compute the LIS of S
using the basic algorithm then we get, B = (34,42) and
P = 0,1,0,3,3.

Divide: We first compute the median of S , which is 51.
we divide the queue S into two subsequences S1 = (51,1),

(34,3), (42,5) and S2 = (62,2), (56,4).

Conquer: After computing the LIS of S1 and S2 recur-
sively, we get B1 = (34,3), (42,5), B2 = (56,4) and P =
(0,0,0,0,3).

Combine: Now let us iterate over the elements of S , given
that B is initially empty.

At iteration 1, S[1] = 51 and P [1] = 0. So we inset 51
into B and we get B = (51,1). Nothing changes in P .

At iteration 2, S[2] = 62 and P [2] = 0. Now, 62 belongs
to the set S2. Since, the largest element of S1 currently
present in B is 51, we insert 62 after 51 in B . We further
set 51 to be the parent of 62 by setting P [2] = 1. Now
B = (51,1), (62,2) and P = 0,1,0,0,3.

At iteration 3, S[3] = 34 and P [3] = 0. Since, 34 belongs
to the set S1, we insert 34 at the first index of B replac-
ing the previous entry. Now B = (34,3), (62,2). Nothing
changes in P .

At iteration 4, S[4] = 56 and P [4] = 0. Now, 56 belongs
to the set S2. Since the largest element of S1 currently
present in B is 31, we insert 56 after 31 in B replac-
ing the previous entry. We further set 34 as the parent
of 56 by setting P [4] = 3. Now B = (34,3), (56,4) and
P = (0,1,0,3,3).

At iteration 5, S[5] = 42, P [5] = 3 and S[3] = 34. So,
we place 42 after 34 in B replacing the previous entry. So,
we get B = (34,3)(42,5). Nothing changes in P .

Thus after the Combine operation B = (34,3)(42,5) and
P = (0,1,0,3,3).

4. Dynamic multithreaded LIS

Many multithreaded algorithms involving nested par-
allelism follow naturally from the divide-and-conquer
paradigm. In this section, we will adopt our D&C algo-
rithm to work in a multithreaded environment. We will
use the multithreading model discussed in [5]. Although
we mainly focus on COMPUTE-LIS(S, P ), the same strategy
applies for COMPUTE-LIS-General(S, P ) (of Section 3.2) as
well. The following discussion briefly presents the model
and is borrowed from [13,5].

Dynamic-multithreading supports two features: nested
parallelism and parallel loops. Nested parallelism allows
a subroutine to be spawned allowing the caller to pro-
ceed while the spawned subroutine is computing its re-
sult. This model is a simple extension of our serial pro-
gramming model. We can describe a multithreaded algo-
rithm by adding to our pseudocode just three concurrency
keywords, namely, parallel, spawn, and sync. Moreover, if
we delete these concurrency keywords from the multi-
threaded pseudocode, the resulting text becomes a serial
pseudocode for the same problem. This process is referred
to as the serialization of the multithreaded algorithm. It
provides a theoretically clean way to quantify parallelism
based on the notions of work and span. A growing number
of concurrency platforms support one variant or another
of dynamic multithreading, including Cilk [3,11], Cilk++
[1], OpenMP [4], Task Parallel Library [16], and Threading
Building Blocks [20].

Below, we augment the pseudocode of our serial D&C
algorithm to make it a multithreaded algorithm (referred
to as Mult-D&C henceforth) by adding the concurrency
keywords spawn and sync.

PCOMPUTE-LIS(S, P )
1: if |S| > 1 then
2: n ← |S|
3: Divide S into S1 and S2 each of which has length

n/2.
4: spawn PCOMPUTE-LIS(S1, P )

5: spawn PCOMPUTE-LIS(S2, P )

6: sync
7: COMBINE-LIS(S, P )

8: end if

Nested parallelism occurs when the keyword spawn
precedes a procedure call, as in Lines 4 and 5. The se-
mantics of a spawn differs from an ordinary procedure
call in that the procedure instance that executes the spawn
(the parent) may continue to execute in parallel with the
spawned subroutine (its child) instead of waiting for the
child to complete, as would normally happen in a serial
execution. The keyword spawn does not say, however, that
a procedure must execute concurrently with its spawned
children, only that it may. The concurrency keywords ex-
press the logical parallelism of the computation, indicating
which parts of the computation may proceed in parallel.
At runtime, it is up to a scheduler to determine which
subcomputations actually run concurrently by assigning
them to available processors as the computation unfolds.
A procedure cannot safely use the values returned by its
spawned children until after it executes a sync statement,
as in Line 6. The keyword sync indicates that the proce-
dure must wait as necessary for all its spawned children
to complete before proceeding to the statement after the
sync.

In our algorithm like its serial counterpart, PCOMPUT-
LIS finds the LIS of subsequences S1 and S2. After the
two recursive subroutines in Lines 4 and 5 have com-
pleted, which is ensured by the sync statement in Line 6,
PCOMPUT-LIS calls the same COMBINE-LIS procedure as its
serial counter part. As the COMBINE-LIS procedure is se-
rial, it does Θ(n) work. Assume that T p(n) denotes the
asymptotic running time a parallel algorithm running on
p processors. Then, the following recurrence characterizes
the asymptotic running time T1(n) of PCOMPUT-LIS on n
elements running on a single processor:

T1(n) = 2T1(n/2) + Θ(n) = Θ(n log n). (2)

Clearly this is the same as the serial running time of
D&C algorithm. Since, the two recursive calls of PCOMPUTE-
LIS can now run in parallel, the asymptotic runtime
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T p(n) of PCOMPUT-LIS is given by the following recur-
rence:

T p(n) = T p(n/2) + Θ(n) = Θ(n). (3)

Thus the parallelism of PCOMPUTE-LIS turns out to be
T1(n)/T p(n) = Θ(log n). Now, we utilize the notion of the
linear speedup as defined in [13] as follows. Suppose that
for a problem, the best known serial algorithm has an
asymptotic runtime of S(n) and a parallel algorithm PAlg
for the same problem has an asymptotic runtime of T p(n).
Here n is the problem size and p is the number of proces-
sors for the parallel algorithm. If S(n)/T p(n) = Θ(p), then
PAlg will be said to have achieved a linear speedup.

Note that, we can easily augment the pseudocode of
COMPUTE-LIS-General(S, P ) of Section 3.2 as well to make
it a multithreaded algorithm following the same strat-
egy to parallelize COMPUTE-LIS of Section 2. Now, if we
consider that the elements are drawn form an arbitrary
set (of integers), the O (n log n) time serial algorithm for
computing LIS is clearly optimal. In that case, we have
O (n log n)/T p(n) = Θ(log n). Hence, if we are running on
a multiprocessor machine with Θ(log n) number of pro-
cessors, PCOMPUT-LIS will achieve a linear speedup. And
as a parallel algorithm is said to be work-optimal if and
only if it has linear speed up [13], PCOMPUTE-LIS is a work-
optimal algorithm considering the above setting.

4.1. Comparison with other parallel algorithm

In Section 1, we have cited the parallel algorithms on
LIS that exist in the literature to the best of our knowl-
edge [12,18,19,22,15]. However, these algorithms either do
not achieve work-optimality with respect to the fastest se-
quential running time, or have rather restrictive slackness
conditions. In [12] the presented parallel algorithm in CGM
(Coarse Grained Multicomputer) model has O (n2/p) cost
on p processor, which is not work optimal since the fastest
sequential algorithm runs in O (n log n) time. For the same
reason the algorithm by Krusche and Tiskin in [15] ob-
taining computational cost of O (n1.5/p) is also not work
optimal. On the EREW PRAM model the given algorithm
by Nakashima and Fujiwara [18,19] with O (m( n

p + log n))

time is not work optimal as well. Their second algorithm
with O (log n + n logn

p + m2 log n
p + m log p) time becomes

work optimal only if p < n/k2 where k is the length of
an LIS. This algorithm becomes asymptotically sequential
once k >

√
(n). Any sequence of n numbers must have

either a monotonically increasing or a monotonically de-
creasing subsequence of minimum length

√
(n) [9]. There-

fore, for any sequence of numbers, the condition p < n/k2

definitely inhibits parallelism either for running the algo-
rithm on the sequence itself, or on its reversal. The CGM
algorithm presented in [22] with O (n log(n/p)) time is
not asymptotically faster than the sequential algorithm be-
cause the number of processors p only appear in a lower
order polynomial term. Notably, in [15] the authors posed
an open question as to whether it would be possible to ob-
tain a generally work optimal parallel algorithm for the LIS
problem running in time O ((n log n)/p) in the comparison-
based model. Our algorithm thus answers this question
positively.
5. Conclusion

In this paper, we have presented a divide and conquer
approach for the longest increasing subsequence problem.
Our algorithm runs in O (n log n) time which is optimal
in the comparison model. We have also shown that our
divide and conquer algorithm provides us with a work op-
timal parallel algorithm.

Notably, for a permutation our sequential algorithm has
worse running time than the existing solution. However,
we believe our divide and conquer approach is interest-
ing and useful at least from two different angles. Firstly,
since many multithreaded algorithms involving nested
parallelism follow naturally from the divide-and-conquer
paradigm, our approach opens a new and hitherto unex-
plored avenue to get direct multiprocessor solutions for
the LIS problem. Secondly, as all the sequential algorithms
for this problem in the literature are online, being offline,
our approach may turn out to be at least theoretically in-
teresting.
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