
Received: March 5, 2024. Revised: November 7, 2024. Accepted: December 20, 2024
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Briefings in Functional Genomics, 2025, 24, elae050

https://doi.org/10.1093/bfgp/elae050

Protocol Article

A lossless reference-free sequence compression
algorithm leveraging grammatical, statistical, and
substitution rules
Subhankar Roy1,2, Dilip Kumar Maity1, Anirban Mukhopadhyay2, *

1Department of Computer Science & Engineering, Academy of Technology, Adisaptagram, Hooghly-712121, India
2Department of Computer Science & Engineering, University of Kalyani, Kalyani-741235, India
*Corresponding author: E-mail: anirban@klyuniv.ac.in

Abstract
Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when
processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely
used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar
performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose
a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses
sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats,
including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS’s performance using ten
benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences.
Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively.
Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that
the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of
sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact: anirban@klyuniv.
ac.in

Keywords: Reference-free Lossless Compression; DNA and RNA Sequence Compression; FASTA; Grammar Rules; Statistical Rules;
Substitution Rules

Introduction
The ongoing advancements in Next Generation Sequencing
(NGS) technology [1] have resulted in the rapid accumulation
of sequences from new species [2, 3]. This necessitates the
development of a reference-free compression method with
high compression ratios, speed, and memory efficiency [4, 5].
The concept of reference-free sequence compression was first
proposed in 1986 [6], and the first practical method, biocompress,
was developed in 1993 [4]. However, considering its 31-year
lifespan, it is evident that a more effective compressor is needed
as sequencing costs continue to decrease, despite Moore’s Law
being broken [3]. The exponential rise of genomic sequences over
time has raised the expense of storage and the burdens associated
with transmission [7–9].

Several benchmark lossless text compression algorithms are
widely used in practice. These include Zstd [10], Gzip [11], Bzip2
[12], and 7-zip [13]. These algorithms have proven their effec-
tiveness in various applications and are commonly employed
for compressing text-based data, including genome sequences.
The benchmark lossless text compression algorithms excel in
languages with a wide alphabet, like English. However, when
it comes to biological sequences such as deoxyribonucleic acid

(DNA), these algorithms may not perform optimally. This is due to
the fact that DNA sequences usually contain the specific letters
adenine (A), cytosine (C), guanine (G), and thymine (T), as well as
other special characters, and they have unique biological char-
acteristics, including repeats, palindromes, and minuscule alpha-
bets [14]. However, utilizing the training mode with a dictionary in
the Zstd [10] compressor significantly enhances the compression
ratio attainable on small datasets.

In the field of sequence compression, specialized algorithms
can be categorized into two main groups: reference-free and
reference-based algorithms [15], and implementations in two
other groups: sequential and random-access [16, 17]. Reference-
free algorithms [18] leverage the intrinsic characteristics of the
sequences to be compressed, while reference-based algorithms
[19] rely on a reference sequence for compression. Reference-
free compression methods analyze the target sequence ahead of
time to find patterns such as exact or nearly exact duplicates,
palindromes, and other recurring structures. They then use these
patterns in algorithmic changes, for example, by using indices to
encode the sequence, enabling efficient compression. In contrast,
reference-based techniques compare the target sequence with a
reference sequence [20]. They encode the differences between the

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

 8299 17809 a 8299
17809 a

mailto:anirban@klyuniv.ac.in
mailto:anirban@klyuniv.ac.in
mailto:anirban@klyuniv.ac.in
anirban@klyuniv.ac.in
anirban@klyuniv.ac.in
anirban@klyuniv.ac.in

2 | Roy et al.

two sequences, achieving high compression ratios. Reference-free
compression may yield advantageous compression ratios (CR) for
novel species that may lack adequate references [21, 22]. They
speed up processing more than reference-based compression
since they do not require reference sequence preprocessing [22].
However, even in the absence of a proper reference sequence,
reference-free compression can still be effective. Choosing the
appropriate reference sequence for a new species can be a
time-consuming task. However, once a suitable reference is
established, reference-based compression techniques can be
employed, offering potentially higher compression ratios.

Compression algorithms can be classified into two categories
based on their ability to preserve information: lossy and loss-
less compression. Lossy compression is commonly applied to
images, audio, and video files where the removal of redundant
or insignificant data has minimal impact on their quality [23].
On the other hand, lossless techniques ensure complete data
recovery after decompression, making them vital for preserving
the integrity of the compressed data. In the context of genome
compression, lossless techniques are particularly important since
they ensure that no data is lost during the compression pro-
cess. For proper data preservation utilizing DNA media, sequence
analysis [24, 25], and interpretation, this is essential. Any loss of
information in this domain could potentially lead to erroneous
conclusions.

In the field of bioinformatics [26], there are various compres-
sion techniques, algorithms, and software tools available [27].
Despite ongoing research and development, many databases still
rely heavily on the general-purpose lossless compression tech-
niques Zstd and Gzip. Although specialized compression algo-
rithms have been created in an effort to replace Zstd or Gzip
throughout the years, there is still opportunity for development in
this area in terms of higher compression ratios, quicker processing
times, and more effective CPU and memory usage.

The majority of the specialists experience one or more of the
following deficiencies [27]: (i) Choices made regarding parame-
ters, i.e., varying levels and/or threads, have a significant impact
on the effectiveness of the majority of practical benchmark-
ing procedures. (ii) As the size of the data goes beyond (>10
MB), certain benchmark methods experience significant slow-
downs. When the data size exceeds 245 MB, certain algorithms
are unable to handle them effectively. (iii) Some algorithms only
accept [ACGTN], while they classify all other characters as ‘N’
or ‘.’. Certain algorithms do not accommodate identifiers, all
IUPAC codes, lowercase letters, special characters, line length,
and block length. Hence, there is a requirement for specialized
algorithms that can more effectively manage these biological
sequences.

The aim of our research is to devise a technique for com-
pressing DNA and RNA sequences in commonly utilized forms,
such as FASTA and raw formats, without requiring reference
data. Because of its simplicity and ease of interpretation for
researchers, the FASTA format is frequently used in GenBank.
Owing to the significance of FASTA, an encryption tool [28] is
provided. Sequences with less repetition and sequences with
different degrees of intra-sequence similarity perform equally
well using GraSS. GraSS utilizes a two-phase technique to
achieve lossless sequence compression. The first phase separates
raw sequences, including N, from auxiliary data. The second
phase involves the actual compression process, which leverages
grammatical, statistical, and substitution rules. The fact that
GraSS is unaffected by the parameter configuration is one of its
noteworthy advantages. This characteristic makes it remarkably

user-friendly and straightforward to use. GraSS is versatile in its
applicability, accommodating both low-repetitive and high-
repetitive sequences across a wide range of sizes.

The CR of the proposed technique varies between 4.07 and
4.63, with a WACR of 4.5 when applied to ten benchmark DNA
sequences that have fewer repetitions. The WACR for fifteen raw
DNA sequences is 4.33, with a range of 3.78 to 4.5. The com-
pression ratio for highly repeated RNA sequences ranges from
17.33 to 25.72, with a WACR of 19.6, surpassing most benchmark
compression techniques.

The remainder of the article is organized in the following sec-
tions: Section 2 describes the background literature. Section 3 dis-
cusses the proposed approach in detail. In Section 4, we describe
the data sets and machine configuration. Section 5, presents the
results and findings, followed by a discussion on them. Finally,
Section 6 concludes the article.

Related works
In the field of genomic sequence compression, as of 2024, there
were many specialized raw and FASTA/Q-structured sequence
compressors in use. We have selected thirteen state-of-the-
art compressors from the available options. The other eleven
compressors are specifically made to compress DNA sequences,
whereas Gzip and Zstd are common general-purpose compressors
that data centers may use to compress genetic material.

The industry standard compressor, Gzip, is a flexible, cross-
platform compressor that frequently compresses a variety of data
types, including DNA patterns, to make them easier to access. It
uses the Lempel-Ziv method and Huffman compression. Higher
compression rates are what the Zstd algorithm tries to achieve.
The time it takes to decompress is very short. It has a very fast
entropy step, thanks to Huff0 and the Finite State Entropy (FSE)
package. Even though Zstd cannot compress files as quickly, it can
offer better compression ratios. It has better compression ratios
for sequences that repeat a lot, but not for sequences that repeat
a little.

The FASTA compressor DNA-COMPACT (DCom) [29] employs a
two-pass lossless methodology that integrates contextual model-
ing with pattern recognition. It can function as either a reference-
based or reference-free algorithm. The integration of complemen-
tary contextual models is emphasized to enhance compression
performance. The speed significantly decreases when data sizes
exceed 10 MB. The Unstable Huffman Tree (UHT) [30] algorithm
was formulated using a greedy Huffman tree methodology, lead-
ing to substantial enhancements in compression relative to Bzip2
and Gzip. However, it fails for files sized 245 MB or above. The
extension of UHT is referred to as the unstable Huffman tree
without greed (NUHT) [31]. However, the inherent constraints
of the NUHT compressor require a significant amount of RAM,
making it unsuitable for compressing large genomes like the 13.4
GB Picea abies plant genome.

Making use of FASTQ compressors with FASTA data is simple.
FQZComp [32] breaks FASTQ data; it encodes each stream sep-
arately and simultaneously, using context models and an arith-
metic coder. The FASTQ must have ACGTN in it. A ‘N’ or ‘.’
stands for anything else. To run on multiple threads, DSRC 2 [33]
uses Boost tools. A single thread reads the incoming FASTQ file
in blocks, creating an output queue. Next, the blocks undergo
multithreading, resulting in the creation of another output queue.
In the final step, a single thread writes the compressed block to
a file. A preprocessing method first compresses each stream in
LFQC [34]. Then, a regular data compressor further compresses

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

A compression algorithm leveraging the grass rules | 3

the stream. Minicom [22] shrinks FASTQ files using two main
ideas: indexing reads with minimizers and overlapping suffixes
and prefixes between two contigs. Large k-minimizers are used to
index reads and divide them into smaller groups.

While Jarvis [35] is only relevant for reference-free, the GeCo
[36], GeCo2 [37], and GeCo3 [38] algorithms are applicable to
both referential and reference-free. Their high compression ratio
makes them ideal for long-term storage and analysis [39–41]. Dur-
ing the computation process, the BIND algorithm [42] segregates
and saves identifiers, small cases (a, c, g, t), other characters, and
lengths for multi-FASTA files. The BIND method simplifies the
sequences to ACGT symbols.

Despite the development of specific compression algorithms,
there is still room for improvement in terms of achieving greater
compression ratios, faster processing times, more efficient mem-
ory management, and CPU usage in this field. The parameter
choices have a substantial impact on the effectiveness of most
practical benchmarking processes. The technique is complex and
requires a significant amount of time because of the parameter
configuration. As the data size approaches the gigabyte (GB)
region, several benchmark methods experience significant slow-
downs or become incapable of handling the data. Consequently,
there is a constant requirement for specialized algorithms capa-
ble of managing a diverse range of sequence sizes.

Methodology
The GraSS compression algorithm is based on statistical, substi-
tutional, and grammatical principles. It comprises six major steps
divided into two separate phases. Phase one involves sequence
extraction; Phase two involves utilizing a general-purpose com-
pressor (BSC), grammar rules 1 and 2, statistical, and the substi-
tution rule. All IUPAC codes found in the input data, including A, C,
G, T, U, R, Y, S, W, K, M, B, D, H, V, and N, are supported. The symbols
can be written in both lower- and upper-case, although upper-
case is used before compression sequences. In the first phase, the
sequence identifier, the lower-case tuple (position, length), special
character tuple (position, character), line length (for FASTA/multi-
FASTA), and block length (for multi-FASTA) are extracted from the
genomic sequence. Since the other special characters are rare,
the statistical model examines the frequency of the letters A,
C, G, T/U, and N in the sequence. Genome datasets are taken
into account in all of the examples, figures, and algorithms. For
RNA sequences, the same process applies. The grammar rule
reduces the character set from “A, C, G, T, N” to “A, C, Z”, “A, G,
Z”, “A, T, Z”, “C, G, Z”, “C, T, Z”, or “G, T, Z”, effectively reducing it
from 5 to 3 characters. In the substitution rule, three characters
are replaced with 0, 1, and 2, respectively. The second grammar
rule further reduces the character set by half. GraSS supports
both the genomic raw sequence format and FASTA/multi-FASTA
data. Figure 1 illustrates the basic flow of GraSS using a block
diagram. Any general-purpose encoder can be used in the last
stage. However, we used a BSC [43] compressor, as it is parameter-
independent. The following subsections provide a detailed work-
flow for each stage. The decompression process of GraSS is briefly
introduced in Section 3.3.

First phase
The initial stage involves preprocessing the given input sequence.
This process includes retrieving the sequence identification and
determining the line length and block length for FASTA/multi-
FASTA data. The line length is encoded using run-length encoding

Figure 1. Overview of the GraSS algorithm. Sequence pretreatment and
the encoding phase are its two phases. The first stage involves saving
the identifier, line length, block length, lowercase bases being changed
to uppercase, recording lowercases as (position, length), and recording
special characters as (position, character), respectively. The first three less
frequent characters are calculated during the encoding step. It then
applies three coding rules after that. The BSC encoder is used to create
the compressed file in its final form.

(RLE). The resulting data is then saved in a separate file named
F2, along with the identification. Before storing the data in file
F1, lowercase characters are converted to uppercase characters.
The position and length tuples are stored in the same file,
F2. Using static entropy encoding and delta coding, special
characters and locations are encoded and saved in the same
file, F2, respectively. Static entropy coding is utilized in order
to encode the length. Additionally, a modified delta encoding
technique is used to encode the position values. In the case
of sequence blocks, their lengths are encoded and stored in F2
using modified delta coding. Assume that the lengths of the
sequence (without the identifier) and other special characters are
denoted as nseq, nspl, and the preprocessed sequence is denoted
as ntar, accordingly. The relationship described below is valid as a
result.

ntar = nseq − nspl

Algorithm 1 is used to describe the specifics of this stage. Example 1
showed the results for a sample to-be-compressed sequence from
this step.

Example 1. seq1.fa
>chr
ATTGCATGTcgatggATGGggaAAA
ATCGataggatAGATTTTTAAAACC
CNNNNYYY
The following are included in the preprocessed output
from file seq1.fa:
Sequence identifier (F2): >chr;
Lower case tuple (F2): (9, 6), (4, 3), and (7, 7);
Special character tuple (F2): (55, 24), (1, 24), and (1, 24);
Line length (F2): 25;
Block length (F2): 58;
Sequence (F1):
ATTGCATGTCGATGGATGGGGAAAAATCGATAGGA
TAGATTTTTAAAACCCNNNN

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

4 | Roy et al.

Algorithm 1 Extraction and retention of auxiliary information
Input a to-be-compressed sequence Tar.

1: Set line = first line of Tar.
2: Set count = 0.
3: Set blockLen = 0.
4: while line �= null do
5: Set lineLen = line.length().
6: if line(0) = ‘>’ then
7: if count = 0 then
8: Save the line and lineLen in the F2 file.
9: Set blockLen = 0.

10: else
11: Save the line, lineLen, and blockLen in the F2 file.
12: Update count = 1.
13: end if
14: else
15: Update blockLen = blockLen + lineLen.
16: for i = 0 to lineLen do
17: ch = line.charAt(i).
18: if ch = lowerCase() then
19: In F2, save as a tuple (position, length).
20: else if ch = R ∨ Y ∨ S ∨ W ∨ K ∨ M ∨ B ∨ D ∨ H ∨ V

then
21: In F2, save as a tuple (position, character).
22: else if ch = A ∨ C ∨ G ∨ T ∨ N then
23: Save ch to the file F1.
24: end if
25: end for
26: end if
27: Update line = next line of Tar.
28: end while
Output auxiliary information and preprocessed sequence.

Second phase
The second phase of the process involves working with the raw
sequence obtained from the first phase. The specific methodology
used in this phase is described in Example 2. To effectively model
the statistics of the sequence, it is necessary to determine the
frequencies of the nucleotides A, C, G, T, and N in file F1. In order
to reduce the character set from 5 to 3, the phase identifies the
characters with the smallest to third-smallest frequencies in file
F1. A flag character, Z, is introduced to facilitate the application of
first-level grammar rules such as N → ZZ, G → ZT, C → ZA. These
three selected characters are then encoded using a replacement
method, representing them as 0, 1, and 2. As a result, the sequence
will consist of 0s, 1s, and 2s. The substitution rule requires little
time and physical memory in exchange for providing a unique
second grammatical rule. Applying the second-level grammar
rule, the sequence is halved in length compared to its original size.
This grammar utilizes the following rules: 00 → P, 01 → Q, 10 → R,
02 → S, 20 → U, 11 → V, 12 → W, 21 → X, 22 → Y. Files F2 and F3 are
encoded using the block-sorting encoder technique, often known
as BSC, after the nine-character stream file has been stored in file
F3. Algorithm 2 explains the specifics of Steps 1 and 2. The details
of Steps 3 through 7 are described in detail in Algorithm 3.

Let l, sl, and tl represent the frequencies of the three characters
with the lowest frequencies. The two remaining characters have
a combined frequency of ol. As a result, the relationship ntar =
l+sl+tl+ol is true. The first grammar and substitution model gives
the number of characters as ñtar = 2 × (l + sl + tl) + ol. The second
grammar model calculates character count as n̂tar = ñtar ÷ 9.

Algorithm 2 Statistical Rule
Input the target sequence S following processing.

1: Set line = first line of S.
2: Set freqA = freqC = freqG = freqT = freqN = 0.
3: while line �= null do
4: Set lineLen = line.length().
5: for i = 0 to lineLen do
6: if line(i) = ‘A’ then
7: freqA = freqA + 1.
8: else if line(i) = ‘C’ then
9: freqC = freqC + 1.

10: else if line(i) = ‘G’ then
11: freqG = freqG + 1.
12: else if line(i) = ‘T’ then
13: freqT = freqT + 1.
14: else
15: freqN = freqN + 1.
16: end if
17: end for
18: Update line = next line of S.
19: end while
20: Find l, sl, tl frequency character.
Output The l, sl, tl frequency characters

Algorithm 3 Rules for Grammar and Substitution
Input the preprocessed target sequence S that needs to be com-
pressed together with frequency data and auxiliary information.

1: Set line = first line of S.
2: while line �= null do
3: Use grammar rule {N → ZZ }.
4: if sl = freqA ∧ tl = freqC then
5: Use grammar rule {A → ZT, C → ZG }.
6: else if sl = freqC ∧ tl = freqG then
7: Use grammar rule {C → ZA, G → ZT }.
8: else if sl = freqG ∧ tl = freqT then
9: Use grammar rule {G → ZC, T → ZA }.

10: else if sl = freqA ∧ tl = freqG then
11: Use grammar rule {A → ZC, G → ZT }.
12: else if sl = freqA ∧ tl = freqT then
13: Use grammar rule {A → ZC, T → ZG }.
14: else if sl = freqC ∧ tl = freqT then
15: Use grammar rule {C → ZA, T → ZG }.
16: end if
17: Use substitution rule { Z → 2, slChar → 0, tlChar → 1 }.
18: Use grammar rule {0 → 00 → P ; 1 → 01 , 10 → Q , R ; 2 →

02 , 20 , 11 → S , U , V ; 3 → 12 , 21 → W , X ; 4 → 22 → Y}.
19: Update line = next line of S.
20: end while
21: Finally, use the BSC encoder.
Output compressed target genome Tar.

Example 2. S = ATTGCATGTCGATGGATGGGGAAAAATC
GATAGG ATAGATTTTTAAAACCCNNNN
For a certain target genome FASTA/multi-FASTA file, the
detailed steps for second phase encoding is as follows:

Step 1: Calculating the frequency of appearance of the letters A,
C, G, T, and N in the previously stated sequence S:
Freq(A) = 50
Freq(C) = 14
Freq(G) = 10

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

A compression algorithm leveraging the grass rules | 5

Freq(T) = 80
Freq(N) = 4

Step 2: Determining the first three letters that appear the least
frequently: Small(Freq) = Freq(N) = 4 SndSmall(Freq) =
Freq(G) = 10 TrdSmall(Freq) = Freq(C) = 14

Step 3: The least frequent character is changed to “ZZ”, the
next least frequent character is changed to the highest
frequency symbol (HFS), and the third least frequent
character is changed to the second HFS preceded
with the letter Z. The first grammatical principle is
as follows: Rule 1 = {N → ZZ, G → ZT, C → ZA}
Following replacement, the sequence becomes, ATTZTZA-
ATZTTZAZTATZTZTATZTZTZTZTAAAAATZAZTATAAT
AZTATTTTTAAAAZAZAZAZZZZZZZZ . . .
The additional characters introduced in this stage total 28,
increasing the overall character count from 158 to 186.

Step 4: Substituting 0, 1, and 2 for the next three characters. The
substitution guideline is as follows:
Rule 2 = {T → 0, A → 1, Z → 2}
Now, the pattern of the sequence becomes 1002021102002
120102020102020202011111021201011012010000011 1112
1212122222222. . .

Step 5: To replace two consecutive integers, use the language
shown below. The following is the second grammatical
principle:
Rule 3 = {0 → 00 → P ; 1 → 01, 10 → Q, R ; 2 → 02, 20, 11
→ S, U, V ; 3 → 12, 21 → W, X ; 4 → 22 → Y}
The sequence will be as follows after applying the afore-
mentioned rules: RSSVSPXURUURUUUUVVRXURVQURP-
PVVW WWYYYY. . .

Step 6: The last phase uses block-sorting encoding (BSC) to
encode the intermediate data.

Decompression
During the decoding process, the inverse operations of encod-
ing are performed. The compressed file is first processed and
decompressed by the BSC decompressor. Then, in reverse order,
the second grammar rule, the substitution rule, and the first
grammar rule are applied to reconstruct the original sequence.
The sequence identifications (IDs) are restored in their original
form and recorded in the decompressed file. Next, the block
length is decoded using modified delta coding, while the line
length is decoded using reverse RLE. Using delta coding and static
entropy coding, the special character locations and the individual
characters are decoded. Subsequently, the positions of lowercase
letters are decoded using modified delta coding, and the lengths
of lowercase segments are decoded using static entropy encoding.
Finally, the lowercase letters are converted back to uppercase,
completing the decoding process.

Data Sets and Configuration of the Machine
Data formats
Genome sequence data is available in a variety of formats [21].
We adopted raw sequence [44], FASTA, and multi-FASTA formats
in this work because they are well-known in Gen-Bank and easy
for researchers to read and analyze. FASTA format is widely
used in many databases, including diverse projects [27, 45, 46],
and has become the norm in genomic investigations. Given its
widespread adoption, the FASTA format will continue to play a

crucial role in storing and exchanging genetic data in the field of
genomics.

Used data sets
In order to assess the performance of GraSS, we have employed
three distinct categories of datasets. Initially, we conducted
studies on 10 standard DNA sequences with lengths ranging
from 50 KB to 984246 KB and a lower degree of repetitiveness.
These datasets contain the genetic information of many
organisms, such as algae, mammals, bacteria, fungus, protists,
and viruses [47, 48]. They provide a comprehensive analysis
of genetic information that is less repetitive. We utilized
extremely repetitive RNA sequences called “SILVA_132_LSURef”
and “SILVA_132_SSURef_Nr99” [49], which had sizes of 595993 KB
and 1083003 KB, respectively. Ultimately, we have employed a DNA
corpus (509 MB) that exhibits minimal inter-similarity [39, 44, 50].
We have included sources to provide additional supporting data
in the reference [50, 51]. The benchmark data is fully described in
Supplementary File S1

Computing machine
All trials were conducted on an Amazon AWS cloud computer,
which operated on Ubuntu 18.04.1 LTS (64-bit). The computer was
equipped with two powerful Intel Xeon CPUs (E5-2643 v3 @ 3.4
GHz, 6 cores) and 128 GB of RAM. To compile and execute the
program, JDK 18 was utilized.

Results and discussion
In order to compress specified DNA and RNA that are less and
more repetitive, we propose a customized compression approach
that is lossless and does not require a reference, resulting in
efficient compression. In our study, we assessed the performance
of GraSS in comparison to 13 state-of-the-art methods: Gzip, Zstd,
DCom [29], FQZComp [32], DSRC 2 [33], LFQC [34], UHT [30],
NUHT [31], Minicom [22], GeCo [36], Jarvis [35], GeCo2 [37], and
GeCo3 [38]. We operate each compressor using the best possible
parameter configuration to achieve the highest compression ratio,
as specified in the original articles. Supplementary Files 2, 3, and
4 contain the specific information.

The compressed file sizes produced by GraSS and nine state-
of-the-art algorithms (Gzip, Zstd, DCom, FQZComp, DSRC 2, LFQC,
UHT, NUHT, and Minicom) on 10 DNA sequences with reasonably
low repetition can be found in Supplementary File S2. Among
the ten datasets, our proposed technique performs better than all
others in one case and ranks second in six cases. The performance
of the remaining three datasets is highly competitive with that
of the top-performing LFQC. The compressed size of two highly
repetitive RNA sequences can be seen in Supplementary File S3.
Moreover, it has been observed that the proposed approach sur-
passes Gzip, FQZComp, DSRC 2, UHT, NUHT, and Minicom in terms
of compression performance. GraSS’s distinctive design, which
does not rely on exact or approximate repeats, palindromes, or
other repeating structures within a sequence, resulted in a higher
compressed file size compared to the proposed technique when
utilizing Zstd. The Supplementary File S4 includes a compressed
list generated by the GraSS method, as well as six other advanced
algorithms: Gzip, Zstd, GeCo, Jarvis, GeCo2, and GeCo3. These
algorithms were applied to a DNA sequence corpus consisting of
fifteen raw sequences. The compression efficiency exceeds that
of Gzip and Zstd. However, GeCo, Jarvis, GeCo2, and GeCo3 sur-
pass GraSS. The rationale is that the proposed method is largely
tailored for the FASTA format, although it can also accommodate

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data

6 | Roy et al.

raw data. However, the compression efficiency will not match that
of the FASTA format. This exemplifies the efficacy of our approach
in producing optimal compressed file sizes for diverse datasets.

GeCo, GeCo2, Jarvis, and GeCo3 were originally developed for
the long-term storage of the genome primary domain [ACGT].
They demonstrate outstanding WACR, as shown in Table 2. We
have assessed the proposed approach against these four com-
pressors, as outlined in Table 2, employing portions of the same
dataset utilized in their original studies. To apply them to FASTA/Q
files, a conversion to the raw data is required [27, 38]. Therefore,
we have not tested them against the sequences in the FASTA data
presented in Table 1 of the revised manuscript. The compressors
DSRC 2, LFQC, FQZComp, and Minicomare are compatible with
FASTQ format, whereas DCom, UHT, and NUHT are appropriate
for FASTA. To apply them to the raw data of Table 2, the researcher
must convert them to the appropriate format [27]. Therefore, we
have omitted them from the sequences of raw files in Table 2.
However, as Gzip and Zstd are general-purpose compressors, we
have evaluated their performance across several data formats.

We compute the following metrics in the subsequent sections:

(1) The CR = size of the original file ÷ size of the compressed file
(2) The WACR = total size of the original file ÷ total size of the

compressed file
(3) The compression ratio improvement percentage (CRIP) =

[(GraSS WACR ÷ comparable algorithm WACR) -1] × 100%
(4) Total (de)compression time (TCT/DCT) (s) required in a spe-

cific dataset.
(5) The maximum memory (MB) used during the compression

and decompression processes.
(6) The percentage of a computer’s central processing unit (CPU)

used by the state-of-the-art compressor.

Performance comparison of compression ratio
The proposed method consistently performs better than the
state-of-the-art Gzip and Zstd algorithms, except for one dataset
(GCA_002205965.2), as indicated in Table 1. As demonstrated in
Table 1, GraSS performs better than the customized state-of-the-
art FQZComp in eight instances, surpasses DRSC 2 in all instances,
outshines LFQC in three instances, and exceeds Minicom in six
instances. With a WACR of 4.5 (Table 1), GraSS performs better
than six composers among nine examined compressors. Utilizing
the compressors (FQZComp and Minicom) listed in Table 1, the
decompressed file frequently fails to completely correspond
with the original file throughout the majority of data sets,
notwithstanding the accurate size. While the LFQC compression
ratio (4.88) surpasses that of GraSS, GraSS operates at a speed
nearly three times faster than LFQC (Table 1). Compared to the
state-of-the-art Gzip, Zstd, DCom, DSRC 2, UHT, and NUHT, GraSS
achieved CRIP values of 30.43%, 2.51%, 6.38%, 6.89%, 21.95%, and
13.35%, respectively.

The proposed algorithm achieves a WACR value of 19.6 for the
two highly repetitive RNA sequences (Table 1). It surpasses the
results achieved by Gzip, FQZComp, DSRC 2, LFQC, NUHT, and
Minicom, which are 5.65, 17.56, 6.63, 18.23, 3.98, and 18.48, respec-
tively (Table 1). The CRIP values for GraSS are 246.9%, 11.62%,
195.63%, 7.52%, 392.46% and 6.06%, respectively. The Zstd algo-
rithm achieves a WACR value of 24.22 for extremely repetitive
sequences due to its design, surpassing that of GraSS.

The GraSS WACR value of 4.33 for the DNA raw sequence cor-
pus is suboptimal, as it is mainly designed for FASTA, as illustrated
in Table 2. However, the WACR values of GeCo, Jarvis, GeCo2, and Ta

b
le

 1
.

T
h

e
C

R
, W

A
C

R
, C

T
 (s

),
 a

n
d

 T
C

T
 (s

),
 u

ti
li

zi
n

g
th

e
p

ro
p

os
ed

 m
et

h
od

 p
lu

s
n

in
e

ad
d

it
io

n
al

 c
om

p
re

ss
or

s
on

 te
n

 D
N

A
 s

eq
u

en
ce

s
an

d
 tw

o
R

N
A

 s
eq

u
en

ce
s

ID
G

zi
p

Z
st

d
D

C
om

FQ
Z

C
om

p
D

S
R

C
 2

LF
Q

C
U

H
T

N
U

H
T

M
in

ic
om

G
ra

S
S

G
C

F_
00

18
84

53
5.

1
3.

3
0.

15
3.

61
0.

04
4.

23
5.

1
4

1.
02

3.
89

0.
87

1
2.

46
0.

53
8

3.
86

2.
38

3.
91

1.
18

1.
63

?
5.

85
6

4.
07

0.
14

9
G

C
A

_0
00

39
86

05
.1

3.
44

0.
63

3.
64

0.
25

2
4.

34
30

.1
7

4.
13

1.
03

3.
95

0.
92

5
3.

9
2.

55
5

3.
92

4.
51

3.
98

2.
58

3.
62

?
5.

96
6

4.
21

0.
48

3
G

C
A

_0
00

21
13

55
.2

3.
49

1.
21

3.
76

0.
85

1
4.

45
69

.9
8

4.
34

?
1.

03
4.

19
1.

02
4

4.
4

6.
71

6
4.

09
9.

08
4.

16
4.

21
4.

14
?

6.
03

1
4.

45
1.

14
1

G
C

A
_0

00
98

81
65

.1
3.

22
5.

17
3.

7
3.

5
4.

02
23

9.
8

4.
12

?
1.

04
4.

06
1.

09
4.

32
28

.4
8

3.
57

23
.9

3
3.

7
7.

31
4.

1?
6.

39
7

4.
16

3.
26

1
G

C
A

_0
00

16
53

45
.1

3.
24

8.
38

3
3.

59
6.

21
4.

06
39

1.
4

4.
05

?
1.

19
3.

97
1.

19
4.

23
42

.4
3.

78
38

.4
8

3.
71

9.
83

4.
02

?
6.

64
5

4.
09

5.
34

G

C
A

_0
00

49
71

25
.1

3.
24

10
.7

6
3.

78
9.

7
∗

∗
4.

04
?

1.
67

3.
94

1.
67

4.
38

56
.0

8
3.

69
56

.1
8

3.
73

15
.6

4
4.

16
?

9.
21

6
4.

09
7.

45

G
C

A
_0

01
60

61
55

.1
3.

29
20

.8
4

3.
73

20
.7

9
∗

∗
4.

15
?

1.
65

1
4.

04
1.

65
1

4.
36

98
.2

8
3.

74
97

.8
6

3.
78

21
.2

9
4.

13
?

12
.2

26

4.
17

12
.1

3
G

C
F_

00
02

40
13

5.
3

3.
24

34
.1

3
3.

56
36

.4
9

∗
∗

3.
99

?
1.

99
7

3.
92

2.
46

4.
08

15
2.

4
3.

64
16

4.
1

3.
79

34
3.

99
?

8.
07

9
3.

99
15

.2
6

G
C

A
_0

02
20

59
65

.2
3.

22
24

0.
4

4.
4

45
8.

79

∗
∗

4.
07

?
28

.8
9

3.
98

6.
75

9
4.

65
44

2.
2

#
#

3.
78

26
8.

2
4.

63
?

12
0.

9
4.

28
12

8.
89

G

C
F_

00
00

02
23

5.
4

3.
56

50
8.

7
4.

48
11

18

∗
∗

5.
04

?
75

.7
8

4.
31

12
.9

6
4.

86
83

3.
8

#
#

4.
06

69
7.

8
4.

91
?

58
5.

4
4.

63
39

2.
7

W
A

C
R

 &
 T

C
T

 (s
)

3.
45

83
0.

4
4.

39
16

54
.6

4.

23
73

6.
5

4.
73

11
5.

3
4.

21
30

.6
4.

88
16

63
.4

3.

69
39

6.
5

3.
97

10
62

4.
78

76
6.

7
4.

5
56

6.
8

SI
LV

A
 1

32
 L

SU
R

ef
6.

25
28

0.
1

39
.0

7
37

5.
2

∗
∗

22
.7

?
30

.5
8

6.
48

6.
74

26
.4

5
49

2.
4

#
#

3.
96

42
5

26
.2

?
81

6.
6

25
.7

2
16

0.
07

SI

LV
A

 1
32

 S
SU

R
ef

 N
r9

9
5.

37
55

7.
2

20
.0

3
10

89
.4

∗

∗
15

.6
?

39
.7

6
6.

72
10

.5
9

15
.6

76
4.

5
#

#
3.

99
74

2.
3

15
.9

?
57

94
17

.3
3

31
9.

23

W
A

C
R

 &
 T

C
T

 (s
)

5.
65

83
7.

3
24

.2
2

14
64

.6

∗
∗

17
.5

6
70

.3
6.

63
17

.3
18

.2
3

12
56

.9

#
#

3.
98

11
67

.3

18
.4

8
66

10
.6

19

.6
47

9.
3

T
h

e
q

u
es

ti
on

 m
ar

k
in

d
ic

at
es

 re
su

lt
s

w
h

er
e

th
e

d
ec

om
p

re
ss

io
n

 p
ro

d
u

ce
s

d
if

fe
re

n
t r

es
u

lt
s

th
an

 th
e

in
p

u
t f

il
e.

 T
h

e
bo

ld
 fo

n
t s

ig
n

if
ie

s
th

e
be

st
 re

su
lt

 in
 th

e
ro

w
, w

h
il

e
th

e
it

al
ic

 fo
n

t d
en

ot
es

 th
e

se
co

n
d

-b
es

t r
es

u
lt

.∗
 T

h
e

se
q

u
en

ce
s

w
er

e
n

ot
 te

st
ed

 d
u

e
to

 a
 s

ig
n

if
ic

an
t i

n
cr

ea
se

 in
 ti

m
e.

 #
 T

h
e

se
q

u
en

ce
s

fa
il

 to
 c

om
p

re
ss

. T
h

e
fi

rs
t c

ol
u

m
n

 o
f e

ac
h

 c
om

p
re

ss
or

 is
 C

R
, a

n
d

 th
e

se
co

n
d

 c
ol

u
m

n
 is

 C
T.

 T
h

e
W

A
C

R
 is

 th
e

w
ei

gh
te

d
 a

ve
ra

ge

co
m

p
re

ss
io

n
 r

at
io

, a
n

d
 T

C
T

 (s
) i

s
th

e
to

ta
l c

om
p

re
ss

io
n

 ti
m

e.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

A compression algorithm leveraging the grass rules | 7

Table 2. The CR, WACR, CT (s), and TCT (s), utilizing the proposed method plus six additional compressors on 15 DNA sequences

ID Gzip Zstd GeCo Jarvis GeCo2 GeCo3 GraSS

BuEb 3.25 0.009 3.92 0.012 3.97 6.05 4.04 0.092 4.04 0.129 4.03 0.1042 3.78 0.174
AgPh 3.37 0.037 3.96 0.026 4.04 6.12 4.09 0.138 4.11 0.05 4.09 0.11 3.93 0.169
YeMi 3.59 0.094 4.12 0.049 4.29 6.29 4.37 0.142 4.39 0.259 4.37 0.175 4.22 0.256
AeCa 3.58 2.1 3.97 1.19 4.13 13.28 4.18 1.19 4.19 1.37 4.2 4.4 4.1 1.1
HePy 3.67 2.21 4.02 1.38 4.37 13.36 4.46 1.34 4.44 1.28 4.45 7.02 4.24 1.13
HaHi 3.63 5.27 3.99 2.368 4.29 24.01 4.32 3.38 4.31 2.51 4.33 15.82 4.19 2.356
EsCo 3.57 5.38 4.03 2.94 4.18 26.77 4.24 5.78 4.23 2.93 4.24 19.24 4.07 2.91
PIFa 3.77 13.85 4.28 6.49 4.62 43.96 4.67 13.18 4.67 21.45 4.71 76.08 4.35 4.785
ScPo 3.57 13.29 3.78 8.13 4.2 54.01 4.23 15.48 4.23 25.234 4.24 72.24 4.08 5.958
EnIn 3.61 35.14 4.48 25.04 5.08 92.78 5.19 58.54 5.11 71.02 5.19 159.64 4.24 14.112
DrMe 3.6 36.76 4.08 31.29 4.29 103.89 4.3 39.09 4.3 79.52 4.35 230.88 4.11 18.17
OrSa 3.66 47.73 4.42 45.18 4.99 121.49 5.12 108.87 5 99.34 5.12 298.68 4.24 19.695
DaRe 3.77 77.1 4.81 68.71 5.43 145.92 5.6 127.1 5.45 114.29 5.57 420.35 4.5 26.593
GaGa 3.66 190.3 3.92 189.1 4.38 268.92 4.41 220.87 4.38 229.53 4.43 866.76 4.2 66.855
HoSa 3.73 243.2 4.37 250.5 4.88 373.63 4.91 352.58 4.88 292.04 4.99 1251.48 4.48 82.543
WACR & TCT (s) 3.69 672.5 4.25 632.4 4.73 1294.4 4.78 947.7 4.74 940.8 4.82 3422.9 4.33 246.6

The bold font signifies the best result in the row, while the italic font denotes the second-best result. The first column of each compressor is CR, and the
second column is CT. The WACR is the weighted average compression ratio, and TCT (s) is the total compression time.

GeCo3 are higher than GraSS, with values of 4.73, 4.78, 4.74, and
4.82, respectively. These approaches are effective for long-term
storage due to their higher compression ratio, but at the expense
of computing resources.

Performance comparison of time complexity and
execution time
Performance assessment also makes use of complexity and exe-
cution time. The following is a discussion and comparison of
GraSS’s complexity analysis and execution time with the afore-
mentioned state-of-the-art. Preprocessing and encoding take a
linear amount of time. The statistical model’s time complexity is
always O(ntar). The time complexity is O(ñtar) for both the substi-
tution model and the first grammar. The time complexity for the
second grammar rule is O(n̂tar). The variable ntar represents the
count of characters in the preprocessed sequence. Similarly, ñtar

denotes the count of characters after applying the first grammar
or substitution rule, while n̂tar represents the count of characters
after applying the second grammar rule.

The results of three executions on the same data sets were aver-
aged to determine the compression and decompression times.
Table 1 presents a time-related comparison between GraSS and
the nine state-of-the-art methods. The DSRC 2 method is the
fastest, and the LFQC method is the slowest of all the methods
listed. The design of the Zstd method causes the compression time
to increase proportionally with the size of the input file. Despite
multi-step processing, GraSS is 1.47 times faster than Gzip, 2.94
times faster than Zstd, 1.3 times faster than DCom, 2.93 times
faster than LFQC, 1.87 times faster than NUHT, and 1.35 times
faster than Minicom.

The proposed and seven state-of-the-art methods took 479.3
s, 837.3 s, 1464.6 s, 70.3 s, 17.3 s, 1256.9 s, 1167.3 s, and 6610.6
s, respectively, to encode two RNA sequences (Table 1). Minicom
is the slowest technique due to hash table construction during
compression, whereas DSRC 2 is the fastest. GraSS performs bet-
ter than Gzip by 1.75 times, Zstd by 3.06 times, LFQC by 2.62 times,
NUHT by 2.44 times, and Minicom by 13.79 times. In comparison
to DSRC2 and FQZComp, the proposed method is much slower
because of its multi-step processing.

GraSS execution time (Table 2) surpasses Gzip by a factor of
2.72, Zstd by a factor of 2.56, GeCo by a factor of 5.27, Jarvis by a
factor of 3.84, GeCo2 by a factor of 3.81, and GeCo3 by a factor of

13.87, respectively. The advanced GeCo, Jarvis, GeCo2, and GeCo3
exhibit exceptional efficiency for prolonged storage applications.
Nevertheless, GraSS is the fastest compressor for this dataset,
making it highly efficient for frequent access as well.

The scatter plots (Fig. 2) illustrate the trade-off between WACR
and TCT for 10 less-repetitive DNA sequences, two highly-
repetitive RNA sequences, and 15 raw DNA sequences.

Supplementary File S5 contains a list of GraSS decompression
timings, as well as those for the ten previously described state-
of-the-art methods. The decompression time of the proposed
approach is significantly greater than that of the two general-
purpose algorithms, Gzip and Zstd. Because they are reversible
processes, specialized algorithms take longer to complete than
general-purpose algorithms. The proposed technique performs
better than DCom, LFQC, and NUHT and the most advanced GeCo,
Jarvis, GeCo2, and GeCo3 in terms of decomposition time. This
further demonstrates the benefits of GraSS for decompression,
offering rapid file reconstruction and competitive performance.

Comparison of memory and CPU usage
performance
The proposed method employs a multi-step processing strategy
followed by the BSC (Fig. 1) to achieve a higher compression ratio.
This results in increased physical memory usage compared to the
benchmark algorithms Gzip and Zstd. Among these, Zstd is the
second-most efficient performer, while Gzip is the most efficient
in terms of memory usage (Fig. 3). General-purpose algorithms
consistently consume less memory compared to specialized algo-
rithms because they do not exploit the unique characteristics of
genetic sequences. Grammar rule 1 receives the most physical
memory allocation in the proposed method, then the replace-
ment model, the BSC compressor, grammar rule 2, sequence
extraction, and sequence base frequency computation, in that
order. To calculate memory usage, we subtract the amount of free
memory from the total memory at the start and end of a spe-
cific compressor’s execution. We then calculate the differences
between them to derive the outcome.

Figure 3 displays the peak memory consumption of GraSS
and nine state-of-the-art methods for ten less-repetitive DNA
sequences. For the longest DNA sequence (GCF_000002235.4),
Minicom’s peak compression memory is around 3625 MB, which
is much larger than its decompression memory of about 990

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data

8 | Roy et al.

Figure 2. The scatter plots (a) for DNA sequences in Table 1, (b) for RNA sequences in Table 1, and (c) for sequences in Table 2 (For visual clarity, we
write FQZComp as FQZC, GeCo2 as G, and Jarvis as J) demonstrate the trade-off between WACR and TCT (s).

Figure 3. The peak memory use (in MB) of GraSS and (a) nine other state-of-the-art methods was measured for the biggest DNA sequence
(GCF_000002235.4) in FASTA format and (b) six other state-of-the-art methods was measured for the largest raw DNA corpus sequence (HoSa).

MB due to the development of a hash table during compression.
Using Gzip, the peak compression memory is only approximately
0.22 MB, surpassing other state-of-the-art compression methods.
Zstd necessitates approximately 1774 MB, DCom wants around
173 MB, FQZComp utilizes approximately 2136 MB, DSRC 2
consumes about 2316 MB, LFQC occupies roughly 2939 MB, NUHT
demands about 29604 MB, and GraSS takes approximately 9904
MB. The memory consumption for the two highly-repetitive
RNA sequences can be found in Supplementary File S6. Figure 3
illustrates the maximum memory usage by GraSS and four other
advanced algorithms on fifteen raw DNA corpus sequences.
When Jarvis processes HoSa, the longest raw sequence in
the DNA corpus, it needs a maximum of about 7092 MB of
memory. GeCo consumes around 4213 MB of memory; GeCo2 and
GeCo3 use approximately the same memory, 3451 MB and 3399
MB, respectively. In contrast, the proposed technique requires
approximately 3223 MB of memory.

The initial grammar principle of GraSS may lead to a rise in
the number of characters. The compression memory could poten-
tially surpass the peak decompression memory. This occurred
with the less repetitive DNA sequence selected, resulting in a
compression memory requirement of approximately 9904 MB,
which is larger than the decompression memory of around 7539
MB. Supplementary Files S6 and S7 contain detailed information
on memory utilization during compression and decompression
processes.

The extracted DNA sequences do not contain any special char-
acters [47, 48], while the RNA sequences do not contain any
lowercase characters [49]. By adhering to these constraints during
the coding process, it is possible to further reduce memory usage.

After each stage, we calculated the CPU utilization of GraSS
and other cutting-edge technologies. We derive the final value by
averaging three distinct runs. The proposed approach has a lower

CPU consumption compared to the advanced GeCo, Jarvis, GeCo2,
and GeCo3. During the compression and decompression process,
GraSS uses (˜75% and ˜68%), GeCo uses (˜82% and ˜80%), Jarvis
uses (˜84% and ̃ 83%), GeCo2 uses (˜79% and ̃ 77%), and GeCo3 uses
(˜81% and ̃ 79%), in that order. It may be noted that CPU utilization
can exceed 100% because of the multi-core system.

Conclusion
In this work, we propose a customized reference-free, lossless
genome sequence compression method called GraSS. It consists
of two distinct phases split into six main steps. In the first phase,
it extracts and stores the auxiliary data from a DNA or RNA
sequence in raw, FASTA, or multi-FASTA format. Using grammar
rules 1 and 2, substitution, and statistical principles followed by a
BSC encoder, the raw sequence is compressed in the second phase.

Irrespective of degree of repetitiveness, the proposed algorithm’s
performance is very competitive with the state-of-the-art
compressors (Tables 1 and 2). For less repetitive DNA sequences,
GraSS performs better than the well-known, cutting-edge
compressors Gzip, Zstd, DCom, DSRC 2, UHT and NUHT. The
proposed approach achieves a WACR of 4.5, outperforming state-
of-the-art compressors such as Gzip (3.45), Zstd (4.39), DCom
(4.23), DSRC2 (4.21), UHT (3.69), and NUHT (3.97) (Table 1). Even a
small improvement over the highly efficient Zstd is noteworthy.
Although the LFQC compression ratio (4.88) exceeds that of
GraSS, GraSS functions at a speed roughly threefold that of LFQC
(Table 1). For highly repetitive RNA sequences, GraSS achieves
a WACR of 19.6, which is superior to Gzip (5.65), FQZComp
(17.56), DSRC2 (6.63), LFQC (18.23), NUHT (3.98), and Minicom
(18.45) (shown in Table 1). This substantial margin demonstrates
GraSS’s value in this scenario as well. The WACR of 4.33 for a
DNA corpus consisting of fifteen raw sequences is lower than

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data

A compression algorithm leveraging the grass rules | 9

the compression ratios of the most modern and cutting-edge
compression algorithms, namely GeCo (4.73), Jarvis (4.78), GeCo2
(4.74), and GeCo3 (4.82), but higher than Gzip (3.69) and Zstd
(4.25) (Table 2). The justification is that the proposed approach
is primarily designed for the FASTA format, while it can also
support raw data. However, these algorithms (GeCo 1, 2, 3, and
Jarvis) achieve this at the cost of computational resources.

GraSS performs better than the state-of-the-art compression
algorithms Gzip, Zstd, DCom, LFQC, UHT, NUHT, Minicom, Geco,
Jarvis, GeCo2, and GeCo3 in terms of compression time, as demon-
strated in Tables 1 and 2. Supplementary File S5 provides a record
of the duration it took for the decompression process. Undoubt-
edly, the local execution of GraSS will result in faster performance
compared to its remote execution on a cloud server.

The maximal memory use of GraSS (˜3223 MB) is less than that
of the most advanced, highly effective algorithms for long-term
storage of the DNA corpus, such as GeCo (˜4213 MB), Jarvis (˜7092
MB), GeCo2 (˜3451 MB), and GeCo3 (˜3399 MB). The maximum
memory required for the less-repetitive DNA sequence is approx-
imately 172 MB for DCom, 1420 MB for UHT, 29604 MB for NUHT,
and 3625 MB for Minicom. About the same amount of memory
was needed for FQZComp (˜2136 MB), DSRC 2 (˜2339 MB), and LFQC
(˜2909 MB) during compression and decompression. According to
SCB [27], Gzip is the most efficient memory performer among
functional reference-free compressors. Zstd uses about 1774 MB,
which is the second-best usage. For more information, one may
refer to Supplementary Files S6 and S7. GraSS uses the least
amount of CPU power (˜75%), while the other four (GeCo1, 2, 3 and
Jarvis) use around the same amount (˜80%).

GraSS differentiates itself from current genomic sequence
compression techniques by eliminating the need for parameter
adjustment during operation [27]. It is capable of processing
all IUPAC symbols, lowercase letters, identifiers, and line/block
lengths. The results (Tables 1 and 2) indicate that GraSS is
advantageous for both highly repeated and less repetitive
sequences. Moreover, irrespective of the database size, its
performance remains consistent. The proposed algorithm’s
limitation is that it functions solely as a reference-free method,
utilizes a single backend compressor (BSC), and is implemented
in Java; however, a C/C++ implementation could enhance the
algorithm’s performance to a degree.

There is still significant room for improvement. Palindromes,
other repeating structures within a sequence, and precise
or approximate repeats can all contribute to increasing the
compression ratio of highly repetitive genomic sequences.
Additionally, applying disk write optimization techniques to
support frequent access can significantly reduce decompression
time. Finally, GraSS can be employed with other formats (such
as FASTQ files) and datasets (such as protein datasets). Any
sequence analysis approach that works with raw data can also be
used with compressed data, typically at the expense of accuracy.

Key Points
• The article discusses a lossless compression method for

genomic sequences without references using grammar,
statistics, and substitution (GraSS) rules.

• The article proposes an algorithm, GraSS, comprising six
major steps divided into two phases, implemented using
Java on the Amazon Web Services (AWS) Linux platform.

• The article showcases the compression method for wide-
scale, less-repetitive, or highly-repetitive sequences, and
all IUPAC codes enable compression in the raw, FASTA-
ALL (FASTA), or Multi-FASTA formats.

• The article considers identifiers, line and block lengths,
and small cases that may arise in a sequence.

• The article highlights that the proposed method does
not depend on parameter settings because an algo-
rithm involving parameter settings becomes complex
and time-consuming.

Acknowledgment
A. Mukhopadhyay acknowledges support from core research grant
CRG/2022/007730 from SERB, DST, Govt. of India. We also thank
Dr. Kingshuk Chatterjee, Assistant Professor at the Government
College of Engineering and Ceramic Technology, for valuable dis-
cussions, as well as the University of Kalyani and the Academy of
Technology for their support.

Supplementary data
Supplementary data is available at Briefings in Functional Genomic
online.

Declaration of competing interest
Each author declares that there are no conflicts of interest.

Code availability
The study’s source codes, test data samples, and instructions are
all freely accessible at https://github.com/AnshuOishik/GraSS.
You can use them for free for private, non-commercial

References
1. Yuan X, Zhang J, Yang L. et al. Detection of significant copy

number variations from multiple samples in next-generation
sequencing data. IEEE Trans Nanobioscience 2018 ISSN 1536-1241,
1558-2639;17:12–20. https://doi.org/10.1109/TNB.2017.2783910;
https://ieeexplore.ieee.org/document/8214259/.

2. Low L, Tammi MT. Introduction to next generation sequenc-
ing technologies. Practical Bioinformatics for Beginners: From Raw
Sequence Analysis to Machine Learning Applications. World Scien-
tific, 2017. 1–21.

3. Wetterstrand KA. Dna sequencing costs: Data from the NHGRI
Genome Sequencing Program (GSP), (Accessed 30 December 2022).
Genome.gov 2022. https://www.genome.gov/sequencingcosts
data.

4. Grumbach S, Tahi F. Compression of dna sequences. In: [Pro-
ceedings] DCC93: Data Compression Conference, pp. 340–350. IEEE,
Snowbird, UT, USA, 1993.

5. Greenfield D, Wittorff V, Hultner M. The importance of data
compression in the field of genomics. IEEE Pulse 2019 ISSN 2154-
2287, 2154-2317;10:20–3. https://doi.org/10.1109/MPULS.2019.
2899747; https://ieeexplore.ieee.org/document/8695216/.

6. Richard Walker J, Willett P. Compression of nucleic acid and
protein sequence data. Bioinformatics 1986;2:89–93. https://doi.
org/10.1093/bioinformatics/2.2.89.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://academic.oup.com/bfg/article-lookup/doi/10.1093/bfgp/elae050#supplementary-data
https://github.com/AnshuOishik/GraSS
https://github.com/AnshuOishik/GraSS
https://github.com/AnshuOishik/GraSS
https://github.com/AnshuOishik/GraSS
https://github.com/AnshuOishik/GraSS
https://doi.org/10.1109/TNB.2017.2783910
https://doi.org/10.1109/TNB.2017.2783910
https://doi.org/10.1109/TNB.2017.2783910
https://doi.org/10.1109/TNB.2017.2783910
https://ieeexplore.ieee.org/document/8214259/
https://ieeexplore.ieee.org/document/8214259/
https://ieeexplore.ieee.org/document/8214259/
https://ieeexplore.ieee.org/document/8214259/
https://ieeexplore.ieee.org/document/8214259/
Genome.gov
Genome.gov
https://www.genome.gov/sequencingcostsdata
https://doi.org/10.1109/MPULS.2019.2899747
https://ieeexplore.ieee.org/document/8695216/
https://ieeexplore.ieee.org/document/8695216/
https://ieeexplore.ieee.org/document/8695216/
https://ieeexplore.ieee.org/document/8695216/
https://ieeexplore.ieee.org/document/8695216/
https://doi.org/10.1093/bioinformatics/2.2.89
https://doi.org/10.1093/bioinformatics/2.2.89
https://doi.org/10.1093/bioinformatics/2.2.89
https://doi.org/10.1093/bioinformatics/2.2.89

10 | Roy et al.

7. Stephens ZD, Skylar Y. et al. Lee. Big data: astronomical or
genomical? PLoS Biol 2015;13:e1002195. https://doi.org/10.1371/
journal.pbio.1002195.

8. Cao B, Zhang X, Jieqiong W. et al. Minimum free energy cod-
ing for DNA storage. IEEE Trans Nanobioscience 2021 ISSN 1536-
1241, 1558-2639; 20:212–22. https://doi.org/10.1109/TNB.2021.
3056351 https://ieeexplore.ieee.org/document/9345786/.

9. Tang T, Hutvagner G, Wang W. et al. Simultaneous compres-
sion of multiple error-corrected short-read sets for faster data
transmission and better de novo assemblies. Brief Funct Genomics
2022;21:387–98. https://doi.org/10.1093/bfgp/elac016.

10. zstd, (Accessed 30 December 2022). https://github.com/
facebook/zstd/.

11. gzip, (Accessed 10 November 2022). http://www.gnu.org/
software/gzip/.

12. bzip2, (Accessed 17 November 2021). https://sourceforge.net/
projects/bzip2/.

13. 7-Zip, (Accessed 17 November 2022). http://www.7-zip.org/.
14. Pinho AJ, Garcia SP, Pratas D. et al. Dna sequences at a

glance. PloS One 2013;8:e79922. https://doi.org/10.1371/journal.
pone.0079922.

15. Tang T, Li J. Comparative studies on the high-performance
compression of sars-cov-2 genome collections. Brief
Funct Genomics 2022;21:103–12. https://doi.org/10.1093/bfgp/
elab041.

16. Hoogstrate Y, Jenster GW, van de Werken HJG. Fastafs: file
system virtualisation of random access compressed fasta files.
BMC bioinformatics 2021;22:1–12.

17. Delehelle F, Crollius HR. Fusta: leveraging fuse for manip-
ulation of multifasta files at scale. Bioinformatics. Advances
2022;2:vbac091.

18. Pinho AJ, Pratas D. Mfcompress: a compression tool for fasta
and multi-fasta data. Bioinformatics 2014;30:117–8. https://doi.
org/10.1093/bioinformatics/btt594.

19. Roy S, Mukhopadhyay A. A randomized optimal k-mer
indexing approach for efficient parallel genome sequence
compression. Gene 2024;907:148235. https://doi.org/10.1016/j.
gene.2024.148235.

20. Roy S, Mukhopadhyay A. A comparative study on the eval-
uation of k-mer indexing in genome sequence compression.
In: Dasgupta K, Mukhopadhyay S, Mandal JK, Dutta P. (eds)
Computational Intelligence in Communications and Business Ana-
lytics, pp. 28–42. Springer, Kalyani, India, 2023. https://doi.
org/10.1007/978-3-031-48876-4_3.

21. Hosseini M, Pratas D, Pinho AJ. A survey on data compression
methods for biological sequences. Information 2016;7:56. https://
doi.org/10.3390/info7040056.

22. Liu Y, Zuguo Y, Dinger ME. et al. Index suffix–prefix overlaps
by (w, k)-minimizer to generate long contigs for reads compres-
sion. Bioinformatics 2019;35:2066–74. https://doi.org/10.1093/
bioinformatics/bty936.

23. Struski Ł, Tabor J, Spurek P. Lossy compression approach
to subspace clustering. Inform Sci 2018 ISSN 0020-0255; 435:
161–83. https://doi.org/10.1016/j.ins.2017.12.056; https://www.
sciencedirect.com/science/article/pii/S0020025516311628.

24. Finotello F, Di Camillo B. Measuring differential gene expres-
sion with rna-seq: challenges and strategies for data analy-
sis. Brief Funct Genomics 2015;14:130–42. https://doi.org/10.1093/
bfgp/elu035.

25. Li X, Xue T, Ding W. et al. Comparison of scrna-seq data anal-
ysis method combinations. Brief Funct Genomics 2022;21:433–40.
https://doi.org/10.1093/bfgp/elac027.

26. Larson NB, Oberg AL, Adjei AA. et al. A clinician’s guide to bioin-
formatics for next-generation sequencing. J Thorac Oncol 2023

ISSN 1556-0864; 18:143–57. https://doi.org/10.1016/j.jtho.2022.
11.006; https://www.sciencedirect.com/science/article/pii/S155
6086422019086.

27. Kryukov K, Ueda MT, Nakagawa S. et al. Sequence compres-
sion benchmark (scb) database—a comprehensive evaluation
of reference-free compressors for fasta-formatted sequences.
GigaScience 2020;9:giaa072. https://doi.org/10.1093/gigascience/
giaa072.

28. Hosseini M, Pratas D, Pinho AJ. Cryfa: a secure encryption
tool for genomic data. Bioinformatics 2019;35:146–8. https://doi.
org/10.1093/bioinformatics/bty645.

29. Li P, Wang S, Kim J. et al. Dna-compact: Dna com pression based
on a p attern-a ware c ontextual modeling t echnique. PloS One
2013;8:e80377. https://doi.org/10.1371/journal.pone.0080377.

30. Al-Okaily A, Almarri B, Al Yami S. et al. Toward a better com-
pression for dna sequences using huffman encoding. J Comput
Biol 2017;24:280–8. https://doi.org/10.1089/cmb.2016.0151.

31. Alyami S, Huang C-H. Nongreedy unbalanced huffman tree
compressor for single and multifasta files. J Comput Biol 2020;27:
868–76. https://doi.org/10.1089/cmb.2019.0249.

32. Bonfield JK, Mahoney MV. Compression of fastq and sam
format sequencing data. PloS One 2013;8:e59190. https://doi.
org/10.1371/journal.pone.0059190.

33. Roguski Ł, Deorowicz S. Dsrc 2—industry-oriented compres-
sion of fastq files. Bioinformatics 2014;30:2213–5. https://doi.
org/10.1093/bioinformatics/btu208.

34. Nicolae M, Pathak S, Rajasekaran S. Lfqc: a lossless compression
algorithm for fastq files. Bioinformatics 2015;31:3276–81. https://
doi.org/10.1093/bioinformatics/btv384.

35. Pratas D, Hosseini M, Silva JM. et al. A reference-free loss-
less compression algorithm for dna sequences using a com-
petitive prediction of two classes of weighted models. Entropy
2019;21:1074. https://doi.org/10.3390/e21111074.

36. Pratas D, Pinho AJ, Ferreira PJSG. Efficient compression of
genomic sequences. In: 2016 Data compression conference (DCC),
pp. 231–240. IEEE, Snowbird, UT, USA, 2016.

37. Pratas D, Hosseini M, Pinho AJ. Geco2: An optimized tool for
lossless compression and analysis of dna sequences. In: Fdez-
Riverola F, Rocha M, Mohamad M, Zaki N, Castellanos-Garzón
J. (eds) Practical Applications of Computational Biology and Bioinfor-
matics, 13th International Conference, pp. 137–145. Springer, Ávila,
Spain, 2020a. https://doi.org/10.1007/978-3-030-23873-5_17.

38. Silva M, Pratas D, Pinho AJ. Efficient dna sequence compression
with neural networks. GigaScience 2020;9:giaa119. https://doi.
org/10.1093/gigascience/giaa119.

39. Pratas D, Pinho AJ. On the approximation of the kolmogorov
complexity for dna sequences. In: Alexandre L, Salvador
Sánchez J, Rodrigues J. (eds) Pattern Recognition and Image Analysis:
8th Iberian Conference, IbPRIA 2017, Proceedings 8, pp. 259–266.
Springer, Faro, Portugal, 2017.

40. Pratas D, Pinho AJ. Metagenomic composition analysis of sedi-
mentary ancient dna from the isle of wight. In: 2018 26th euro-
pean signal processing conference (EUSIPCO), pp. 1177–1181. IEEE,
Rome, Italy, 2018.

41. Hosseini M, Pratas D, Morgenstern B. et al. Smash++: an
alignment-free and memory-efficient tool to find genomic rear-
rangements. Gigascience 2020;9:giaa048. https://doi.org/10.1093/
gigascience/giaa048.

42. Bose T, Mohammed MH, Dutta A. et al. Bind–an algorithm
for loss-less compression of nucleotide sequence data. J Biosci
2012;37:785–9. https://doi.org/10.1007/s12038-012-9230-6.

43. Grebnov I. High performance block-sorting data compression library.
(Accessed 20 December 2022). https://github.com/IlyaGrebnov/
libbsc.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1109/TNB.2021.3056351
https://ieeexplore.ieee.org/document/9345786/
https://ieeexplore.ieee.org/document/9345786/
https://ieeexplore.ieee.org/document/9345786/
https://ieeexplore.ieee.org/document/9345786/
https://ieeexplore.ieee.org/document/9345786/
https://doi.org/10.1093/bfgp/elac016
https://doi.org/10.1093/bfgp/elac016
https://doi.org/10.1093/bfgp/elac016
https://doi.org/10.1093/bfgp/elac016
https://doi.org/10.1093/bfgp/elac016
https://github.com/facebook/zstd/
https://github.com/facebook/zstd/
https://github.com/facebook/zstd/
https://github.com/facebook/zstd/
https://github.com/facebook/zstd/
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
https://sourceforge.net/projects/bzip2/
https://sourceforge.net/projects/bzip2/
https://sourceforge.net/projects/bzip2/
https://sourceforge.net/projects/bzip2/
https://sourceforge.net/projects/bzip2/
http://www.7-zip.org/
http://www.7-zip.org/
http://www.7-zip.org/
http://www.7-zip.org/
https://doi.org/10.1371/journal.pone.0079922
https://doi.org/10.1371/journal.pone.0079922
https://doi.org/10.1371/journal.pone.0079922
https://doi.org/10.1371/journal.pone.0079922
https://doi.org/10.1371/journal.pone.0079922
https://doi.org/10.1093/bfgp/elab041
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1016/j.gene.2024.148235
https://doi.org/10.1016/j.gene.2024.148235
https://doi.org/10.1016/j.gene.2024.148235
https://doi.org/10.1016/j.gene.2024.148235
https://doi.org/10.1016/j.gene.2024.148235
https://doi.org/10.1007/978-3-031-48876-4_3
https://doi.org/10.1007/978-3-031-48876-4_3
https://doi.org/10.1007/978-3-031-48876-4_3
https://doi.org/10.3390/info7040056
https://doi.org/10.3390/info7040056
https://doi.org/10.3390/info7040056
https://doi.org/10.3390/info7040056
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1093/bioinformatics/bty936
https://doi.org/10.1016/j.ins.2017.12.056
https://doi.org/10.1016/j.ins.2017.12.056
https://doi.org/10.1016/j.ins.2017.12.056
https://doi.org/10.1016/j.ins.2017.12.056
https://doi.org/10.1016/j.ins.2017.12.056
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://www.sciencedirect.com/science/article/pii/S0020025516311628
https://doi.org/10.1093/bfgp/elu035
https://doi.org/10.1093/bfgp/elu035
https://doi.org/10.1093/bfgp/elu035
https://doi.org/10.1093/bfgp/elu035
https://doi.org/10.1093/bfgp/elu035
https://doi.org/10.1093/bfgp/elac027
https://doi.org/10.1093/bfgp/elac027
https://doi.org/10.1093/bfgp/elac027
https://doi.org/10.1093/bfgp/elac027
https://doi.org/10.1093/bfgp/elac027
https://doi.org/10.1016/j.jtho.2022.11.006
https://www.sciencedirect.com/science/article/pii/S1556086422019086
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1093/gigascience/giaa072
https://doi.org/10.1093/bioinformatics/bty645
https://doi.org/10.1093/bioinformatics/bty645
https://doi.org/10.1093/bioinformatics/bty645
https://doi.org/10.1093/bioinformatics/bty645
https://doi.org/10.1093/bioinformatics/bty645
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1371/journal.pone.0080377
https://doi.org/10.1089/cmb.2016.0151
https://doi.org/10.1089/cmb.2016.0151
https://doi.org/10.1089/cmb.2016.0151
https://doi.org/10.1089/cmb.2016.0151
https://doi.org/10.1089/cmb.2019.0249
https://doi.org/10.1089/cmb.2019.0249
https://doi.org/10.1089/cmb.2019.0249
https://doi.org/10.1089/cmb.2019.0249
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.3390/e21111074
https://doi.org/10.3390/e21111074
https://doi.org/10.3390/e21111074
https://doi.org/10.3390/e21111074
https://doi.org/10.1007/978-3-030-23873-5_17
https://doi.org/10.1007/978-3-030-23873-5_17
https://doi.org/10.1007/978-3-030-23873-5_17
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa119
https://doi.org/10.1093/gigascience/giaa048
https://doi.org/10.1093/gigascience/giaa048
https://doi.org/10.1093/gigascience/giaa048
https://doi.org/10.1093/gigascience/giaa048
https://doi.org/10.1093/gigascience/giaa048
https://doi.org/10.1007/s12038-012-9230-6
https://doi.org/10.1007/s12038-012-9230-6
https://doi.org/10.1007/s12038-012-9230-6
https://doi.org/10.1007/s12038-012-9230-6
https://github.com/IlyaGrebnov/libbsc
https://github.com/IlyaGrebnov/libbsc
https://github.com/IlyaGrebnov/libbsc
https://github.com/IlyaGrebnov/libbsc
https://github.com/IlyaGrebnov/libbsc

A compression algorithm leveraging the grass rules | 11

44. Pratas D, Pinho AJ. A dna sequence corpus for compres-
sion benchmark. In: Fdez-Riverola F, Mohamad M, Rocha
M, De Paz J, González P. (eds) Practical Applications of Com-
putational Biology and Bioinformatics, 12th International Confer-
ence, pp. 208–215. Springer, Toledo, Spain, 2019. https://doi.
org/10.1007/978-3-319-98702-6_25.

45. 1000 Genomes Project Consortium et al. An integrated map
of genetic variation from 1,092 human genomes. Nature
2012;491:56.

46. Weigel D, Mott R. The 1001 genomes project for arabidop-
sis thaliana. Genome Biol 2009;10:107–5. https://doi.org/10.1186/
gb-2009-10-5-107.

47. Clark K, Karsch-Mizrachi I, Lipman DJ. et al. David J
Lipman, James Ostell, and Eric W Sayers. Genbank Nucleic
acids research 2016;44:D67–72. https://doi.org/10.1093/nar/
gkv1276.

48. O’Leary NA, Wright MW, Rodney Brister J. et al. Reference
sequence (refseq) database at ncbi: current status, taxo-
nomic expansion, and functional annotation. Nucleic Acids Res
2016;44:D733–45. https://doi.org/10.1093/nar/gkv1189.

49. Quast C, Pruesse E, Yilmaz P. et al. The SILVA ribosomal RNA
gene database project: improved data processing and web-based
tools. Nucleic Acids Res 2012 ISSN 0305-1048, 1362-4962; 41:D590–
6. https://doi.org/10.1093/nar/gks1219; http://academic.oup.
com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-
RNA-gene-database-project.

50. Supporting data for GeCo3, (Accessed 27 September 2024).
http://gigadb.org/dataset/100808.

51. Pratas D, Toppinen M, Pyöriä L. et al. A hybrid pipeline
for reconstruction and analysis of viral genomes at multi-
organ level. GigaScience 2020b;9:giaa086. https://doi.org/10.1093/
gigascience/giaa086.

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.
Briefings in Functional Genomics, 2025, 24, elae050
https://doi.org/10.1093/bfgp/elae050
Protocol Article

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025

https://doi.org/10.1007/978-3-319-98702-6_25
https://doi.org/10.1007/978-3-319-98702-6_25
https://doi.org/10.1007/978-3-319-98702-6_25
https://doi.org/10.1186/gb-2009-10-5-107
https://doi.org/10.1186/gb-2009-10-5-107
https://doi.org/10.1186/gb-2009-10-5-107
https://doi.org/10.1186/gb-2009-10-5-107
https://doi.org/10.1093/nar/gkv1276
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://gigadb.org/dataset/100808
http://gigadb.org/dataset/100808
http://gigadb.org/dataset/100808
http://gigadb.org/dataset/100808
https://doi.org/10.1093/gigascience/giaa086
https://doi.org/10.1093/gigascience/giaa086
https://doi.org/10.1093/gigascience/giaa086
https://doi.org/10.1093/gigascience/giaa086
https://doi.org/10.1093/gigascience/giaa086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bfgp/elae050

	 A lossless reference-free sequence compression algorithm leveraging grammatical, statistical, and substitution rules
	Introduction
	Related works
	Methodology
	Data Sets and Configuration of the Machine
	Results and discussion
	Conclusion
	Key Points
	Acknowledgment
	Supplementary data
	Declaration of competing interest
	Code availability

