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Abstract 
Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when 
processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely 
used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar 
performance, and their use depends on time-consuming parameter adjustments. To address these limitations, in this article, we propose 
a reference-free, lossless sequence compressor called GraSS (Grammatical, Statistical, and Substitution Rule-Based). GraSS compresses 
sequences more effectively by taking advantage of certain characteristics seen in DNA and RNA sequences. It supports various formats, 
including raw, FASTA, and multi-FASTA, commonly found in GenBank DNA and RNA files. We evaluate GraSS’s performance using ten 
benchmark DNA sequences with reduced number of repeats, two highly repetitive RNA sequences, and fifteen raw DNA sequences. 
Test results indicate that the weighted average compression ratios (WACR) for DNA and RNA sequences are 4.5 and 19.6, respectively. 
Additionally, the entire DNA sequence corpus has a total compression time (TCT) of 246.8 seconds (s). These results demonstrate that 
the proposed compression method performs better than several advanced algorithms specifically designed to handle various levels of 
sequence redundancy. The decompression times, memory usage, and CPU usage are also very competitive. Contact: anirban@klyuniv. 
ac.in 

Keywords: Reference-free Lossless Compression; DNA and RNA Sequence Compression; FASTA; Grammar Rules; Statistical Rules; 
Substitution Rules 

Introduction 
The ongoing advancements in Next Generation Sequencing 
(NGS) technology [1] have resulted in the rapid accumulation 
of sequences from new species [2, 3]. This necessitates the 
development of a reference-free compression method with 
high compression ratios, speed, and memory efficiency [4, 5]. 
The concept of reference-free sequence compression was first 
proposed in 1986 [6], and the first practical method, biocompress, 
was developed in 1993 [4]. However, considering its 31-year 
lifespan, it is evident that a more effective compressor is needed 
as sequencing costs continue to decrease, despite Moore’s Law 
being broken [3]. The exponential rise of genomic sequences over 
time has raised the expense of storage and the burdens associated 
with transmission [7–9]. 

Several benchmark lossless text compression algorithms are 
widely used in practice. These include Zstd [10], Gzip [11], Bzip2 
[12], and 7-zip [13]. These algorithms have proven their effec-
tiveness in various applications and are commonly employed 
for compressing text-based data, including genome sequences. 
The benchmark lossless text compression algorithms excel in 
languages with a wide alphabet, like English. However, when 
it comes to biological sequences such as deoxyribonucleic acid 

(DNA), these algorithms may not perform optimally. This is due to 
the fact that DNA sequences usually contain the specific letters 
adenine (A), cytosine (C), guanine (G), and thymine (T), as well as 
other special characters, and they have unique biological char-
acteristics, including repeats, palindromes, and minuscule alpha-
bets [14]. However, utilizing the training mode with a dictionary in 
the Zstd [10] compressor significantly enhances the compression 
ratio attainable on small datasets. 

In the field of sequence compression, specialized algorithms 
can be categorized into two main groups: reference-free and 
reference-based algorithms [15], and implementations in two 
other groups: sequential and random-access [16, 17]. Reference-
free algorithms [18] leverage the intrinsic characteristics of the 
sequences to be compressed, while reference-based algorithms 
[19] rely on a reference sequence for compression. Reference-
free compression methods analyze the target sequence ahead of 
time to find patterns such as exact or nearly exact duplicates, 
palindromes, and other recurring structures. They then use these 
patterns in algorithmic changes, for example, by using indices to 
encode the sequence, enabling efficient compression. In contrast, 
reference-based techniques compare the target sequence with a 
reference sequence [20]. They encode the differences between the
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two sequences, achieving high compression ratios. Reference-free 
compression may yield advantageous compression ratios (CR) for 
novel species that may lack adequate references [21, 22]. They 
speed up processing more than reference-based compression 
since they do not require reference sequence preprocessing [22]. 
However, even in the absence of a proper reference sequence, 
reference-free compression can still be effective. Choosing the 
appropriate reference sequence for a new species can be a 
time-consuming task. However, once a suitable reference is 
established, reference-based compression techniques can be 
employed, offering potentially higher compression ratios. 

Compression algorithms can be classified into two categories 
based on their ability to preserve information: lossy and loss-
less compression. Lossy compression is commonly applied to 
images, audio, and video files where the removal of redundant 
or insignificant data has minimal impact on their quality [23]. 
On the other hand, lossless techniques ensure complete data 
recovery after decompression, making them vital for preserving 
the integrity of the compressed data. In the context of genome 
compression, lossless techniques are particularly important since 
they ensure that no data is lost during the compression pro-
cess. For proper data preservation utilizing DNA media, sequence 
analysis [24, 25], and interpretation, this is essential. Any loss of 
information in this domain could potentially lead to erroneous 
conclusions. 

In the field of bioinformatics [26], there are various compres-
sion techniques, algorithms, and software tools available [27]. 
Despite ongoing research and development, many databases still 
rely heavily on the general-purpose lossless compression tech-
niques Zstd and Gzip. Although specialized compression algo-
rithms have been created in an effort to replace Zstd or Gzip 
throughout the years, there is still opportunity for development in 
this area in terms of higher compression ratios, quicker processing 
times, and more effective CPU and memory usage. 

The majority of the specialists experience one or more of the 
following deficiencies [27]: (i) Choices made regarding parame-
ters, i.e., varying levels and/or threads, have a significant impact 
on the effectiveness of the majority of practical benchmark-
ing procedures. (ii) As the size of the data goes beyond (>10 
MB), certain benchmark methods experience significant slow-
downs. When the data size exceeds 245 MB, certain algorithms 
are unable to handle them effectively. (iii) Some algorithms only 
accept [ACGTN], while they classify all other characters as ‘N’ 
or ‘.’. Certain algorithms do not accommodate identifiers, all 
IUPAC codes, lowercase letters, special characters, line length, 
and block length. Hence, there is a requirement for specialized 
algorithms that can more effectively manage these biological 
sequences. 

The aim of our research is to devise a technique for com-
pressing DNA and RNA sequences in commonly utilized forms, 
such as FASTA and raw formats, without requiring reference 
data. Because of its simplicity and ease of interpretation for 
researchers, the FASTA format is frequently used in GenBank. 
Owing to the significance of FASTA, an encryption tool [28] is  
provided. Sequences with less repetition and sequences with 
different degrees of intra-sequence similarity perform equally 
well using GraSS. GraSS utilizes a two-phase technique to 
achieve lossless sequence compression. The first phase separates 
raw sequences, including N, from auxiliary data. The second 
phase involves the actual compression process, which leverages 
grammatical, statistical, and substitution rules. The fact that 
GraSS is unaffected by the parameter configuration is one of its 
noteworthy advantages. This characteristic makes it remarkably 

user-friendly and straightforward to use. GraSS is versatile in its 
applicability, accommodating both low-repetitive and high-
repetitive sequences across a wide range of sizes. 

The CR of the proposed technique varies between 4.07 and 
4.63, with a WACR of 4.5 when applied to ten benchmark DNA 
sequences that have fewer repetitions. The WACR for fifteen raw 
DNA sequences is 4.33, with a range of 3.78 to 4.5. The com-
pression ratio for highly repeated RNA sequences ranges from 
17.33 to 25.72, with a WACR of 19.6, surpassing most benchmark 
compression techniques. 

The remainder of the article is organized in the following sec-
tions: Section 2 describes the background literature. Section 3 dis-
cusses the proposed approach in detail. In Section 4, we  describe  
the data sets and machine configuration. Section 5, presents the 
results and findings, followed by a discussion on them. Finally, 
Section 6 concludes the article. 

Related works 
In the field of genomic sequence compression, as of 2024, there 
were many specialized raw and FASTA/Q-structured sequence 
compressors in use. We have selected thirteen state-of-the-
art compressors from the available options. The other eleven 
compressors are specifically made to compress DNA sequences, 
whereas Gzip and Zstd are common general-purpose compressors 
that data centers may use to compress genetic material. 

The industry standard compressor, Gzip, is a flexible, cross-
platform compressor that frequently compresses a variety of data 
types, including DNA patterns, to make them easier to access. It 
uses the Lempel-Ziv method and Huffman compression. Higher 
compression rates are what the Zstd algorithm tries to achieve. 
The time it takes to decompress is very short. It has a very fast 
entropy step, thanks to Huff0 and the Finite State Entropy (FSE) 
package. Even though Zstd cannot compress files as quickly, it can 
offer better compression ratios. It has better compression ratios 
for sequences that repeat a lot, but not for sequences that repeat 
a little. 

The FASTA compressor DNA-COMPACT (DCom) [29] employs  a  
two-pass lossless methodology that integrates contextual model-
ing with pattern recognition. It can function as either a reference-
based or reference-free algorithm. The integration of complemen-
tary contextual models is emphasized to enhance compression 
performance. The speed significantly decreases when data sizes 
exceed 10 MB. The Unstable Huffman Tree (UHT) [30] algorithm 
was formulated using a greedy Huffman tree methodology, lead-
ing to substantial enhancements in compression relative to Bzip2 
and Gzip. However, it fails for files sized 245 MB or above. The 
extension of UHT is referred to as the unstable Huffman tree 
without greed (NUHT) [31]. However, the inherent constraints 
of the NUHT compressor require a significant amount of RAM, 
making it unsuitable for compressing large genomes like the 13.4 
GB Picea abies plant genome. 

Making use of FASTQ compressors with FASTA data is simple. 
FQZComp [32] breaks FASTQ data; it encodes each stream sep-
arately and simultaneously, using context models and an arith-
metic coder. The FASTQ must have ACGTN in it. A ‘N’ or ‘.’ 
stands for anything else. To run on multiple threads, DSRC 2 [33] 
uses Boost tools. A single thread reads the incoming FASTQ file 
in blocks, creating an output queue. Next, the blocks undergo 
multithreading, resulting in the creation of another output queue. 
In the final step, a single thread writes the compressed block to 
a file. A preprocessing method first compresses each stream in 
LFQC [34]. Then, a regular data compressor further compresses
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the stream. Minicom [22] shrinks FASTQ files using two main 
ideas: indexing reads with minimizers and overlapping suffixes 
and prefixes between two contigs. Large k-minimizers are used to 
index reads and divide them into smaller groups. 

While Jarvis [35] is only relevant for reference-free, the GeCo 
[36], GeCo2 [37], and GeCo3 [38] algorithms are applicable to 
both referential and reference-free. Their high compression ratio 
makes them ideal for long-term storage and analysis [39–41]. Dur-
ing the computation process, the BIND algorithm [42] segregates 
and saves identifiers, small cases (a, c, g, t), other characters, and 
lengths for multi-FASTA files. The BIND method simplifies the 
sequences to ACGT symbols. 

Despite the development of specific compression algorithms, 
there is still room for improvement in terms of achieving greater 
compression ratios, faster processing times, more efficient mem-
ory management, and CPU usage in this field. The parameter 
choices have a substantial impact on the effectiveness of most 
practical benchmarking processes. The technique is complex and 
requires a significant amount of time because of the parameter 
configuration. As the data size approaches the gigabyte (GB) 
region, several benchmark methods experience significant slow-
downs or become incapable of handling the data. Consequently, 
there is a constant requirement for specialized algorithms capa-
ble of managing a diverse range of sequence sizes. 

Methodology 
The GraSS compression algorithm is based on statistical, substi-
tutional, and grammatical principles. It comprises six major steps 
divided into two separate phases. Phase one involves sequence 
extraction; Phase two involves utilizing a general-purpose com-
pressor (BSC), grammar rules 1 and 2, statistical, and the substi-
tution rule. All IUPAC codes found in the input data, including A, C, 
G, T, U, R, Y, S, W, K, M, B, D, H, V, and N, are supported. The symbols 
can be written in both lower- and upper-case, although upper-
case is used before compression sequences. In the first phase, the 
sequence identifier, the lower-case tuple (position, length), special 
character tuple (position, character), line length (for FASTA/multi-
FASTA), and block length (for multi-FASTA) are extracted from the 
genomic sequence. Since the other special characters are rare, 
the statistical model examines the frequency of the letters A, 
C, G, T/U, and N in the sequence. Genome datasets are taken 
into account in all of the examples, figures, and algorithms. For 
RNA sequences, the same process applies. The grammar rule 
reduces the character set from “A, C, G, T, N” to “A, C, Z”, “A, G, 
Z”, “A, T, Z”, “C, G, Z”, “C, T, Z”, or “G, T, Z”, effectively reducing it 
from 5 to 3 characters. In the substitution rule, three characters 
are replaced with 0, 1, and 2, respectively. The second grammar 
rule further reduces the character set by half. GraSS supports 
both the genomic raw sequence format and FASTA/multi-FASTA 
data. Figure 1 illustrates the basic flow of GraSS using a block 
diagram. Any general-purpose encoder can be used in the last 
stage. However, we used a BSC [43] compressor, as it is parameter-
independent. The following subsections provide a detailed work-
flow for each stage. The decompression process of GraSS is briefly 
introduced in Section 3.3. 

First phase 
The initial stage involves preprocessing the given input sequence. 
This process includes retrieving the sequence identification and 
determining the line length and block length for FASTA/multi-
FASTA data. The line length is encoded using run-length encoding 

Figure 1. Overview of the GraSS algorithm. Sequence pretreatment and 
the encoding phase are its two phases. The first stage involves saving 
the identifier, line length, block length, lowercase bases being changed 
to uppercase, recording lowercases as (position, length), and recording 
special characters as (position, character), respectively. The first three less 
frequent characters are calculated during the encoding step. It then 
applies three coding rules after that. The BSC encoder is used to create 
the compressed file in its final form. 

(RLE). The resulting data is then saved in a separate file named 
F2, along with the identification. Before storing the data in file 
F1, lowercase characters are converted to uppercase characters. 
The position and length tuples are stored in the same file, 
F2. Using static entropy encoding and delta coding, special 
characters and locations are encoded and saved in the same 
file, F2, respectively. Static entropy coding is utilized in order 
to encode the length. Additionally, a modified delta encoding 
technique is used to encode the position values. In the case 
of sequence blocks, their lengths are encoded and stored in F2 
using modified delta coding. Assume that the lengths of the 
sequence (without the identifier) and other special characters are 
denoted as nseq, nspl, and the preprocessed sequence is denoted 
as ntar, accordingly. The relationship described below is valid as a 
result. 

ntar = nseq − nspl 

Algorithm 1 is used to describe the specifics of this stage. Example 1 
showed the results for a sample to-be-compressed sequence from 
this step. 

Example 1. seq1.fa 
>chr 
ATTGCATGTcgatggATGGggaAAA 
ATCGataggatAGATTTTTAAAACC 
CNNNNYYY 
The following are included in the preprocessed output 
from file seq1.fa: 
Sequence identifier (F2): >chr; 
Lower case tuple (F2): (9, 6), (4, 3), and (7, 7); 
Special character tuple (F2): (55, 24), (1, 24), and (1, 24); 
Line length (F2): 25; 
Block length (F2): 58; 
Sequence (F1): 
ATTGCATGTCGATGGATGGGGAAAAATCGATAGGA 
TAGATTTTTAAAACCCNNNN
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Algorithm 1 Extraction and retention of auxiliary information 
Input a to-be-compressed sequence Tar. 

1: Set line = first line of Tar. 
2: Set count = 0. 
3: Set blockLen = 0. 
4: while line �= null do 
5: Set lineLen = line.length(). 
6: if line(0) = ‘>’ then 
7: if count = 0 then 
8: Save the line and lineLen in the F2 file. 
9: Set blockLen = 0. 

10: else 
11: Save the line, lineLen, and  blockLen in the F2 file. 
12: Update count = 1. 
13: end if 
14: else 
15: Update blockLen = blockLen + lineLen. 
16: for i = 0 to  lineLen do 
17: ch = line.charAt(i). 
18: if ch = lowerCase() then 
19: In F2, save as a tuple (position, length). 
20: else if ch = R ∨ Y ∨ S ∨ W ∨ K ∨ M ∨ B ∨ D ∨ H ∨ V 

then 
21: In F2, save as a tuple (position, character). 
22: else if ch = A ∨ C ∨ G ∨ T ∨ N then 
23: Save ch to the file F1. 
24: end if 
25: end for 
26: end if 
27: Update line = next line of Tar. 
28: end while 
Output auxiliary information and preprocessed sequence. 

Second phase 
The second phase of the process involves working with the raw 
sequence obtained from the first phase. The specific methodology 
used in this phase is described in Example 2. To effectively model 
the statistics of the sequence, it is necessary to determine the 
frequencies of the nucleotides A, C, G, T, and N in file F1. In order 
to reduce the character set from 5 to 3, the phase identifies the 
characters with the smallest to third-smallest frequencies in file 
F1. A flag character, Z, is introduced to facilitate the application of 
first-level grammar rules such as N → ZZ, G → ZT, C → ZA. These 
three selected characters are then encoded using a replacement 
method, representing them as 0, 1, and 2. As a result, the sequence 
will consist of 0s, 1s, and 2s. The substitution rule requires little 
time and physical memory in exchange for providing a unique 
second grammatical rule. Applying the second-level grammar 
rule, the sequence is halved in length compared to its original size. 
This grammar utilizes the following rules: 00 → P, 01 → Q, 10 → R, 
02 → S, 20 → U, 11 → V, 12 → W, 21 → X, 22 → Y. Files F2 and F3 are  
encoded using the block-sorting encoder technique, often known 
as BSC, after the nine-character stream file has been stored in file 
F3. Algorithm 2 explains the specifics of Steps 1 and 2. The details 
of Steps 3 through 7 are described in detail in Algorithm 3. 

Let l, sl, and  tl represent the frequencies of the three characters 
with the lowest frequencies. The two remaining characters have 
a combined frequency of ol. As a result, the relationship ntar = 
l+sl+tl+ol is true. The first grammar and substitution model gives 
the number of characters as ñtar = 2 × (l + sl + tl) + ol. The second 
grammar model calculates character count as n̂tar = ñtar ÷ 9. 

Algorithm 2 Statistical Rule 
Input the target sequence S following processing. 

1: Set line = first line of S. 
2: Set freqA = freqC = freqG = freqT = freqN = 0. 
3: while line �= null do 
4: Set lineLen = line.length(). 
5: for i = 0 to  lineLen do 
6: if line(i) = ‘A’ then 
7: freqA = freqA + 1. 
8: else if line(i) = ‘C’ then 
9: freqC = freqC + 1. 

10: else if line(i) = ‘G’ then 
11: freqG = freqG + 1. 
12: else if line(i) = ‘T’ then 
13: freqT = freqT + 1. 
14: else 
15: freqN = freqN + 1. 
16: end if 
17: end for 
18: Update line = next line of S. 
19: end while 
20: Find l, sl, tl frequency character. 
Output The l, sl, tl frequency characters 

Algorithm 3 Rules for Grammar and Substitution 
Input the preprocessed target sequence S that needs to be com-
pressed together with frequency data and auxiliary information. 

1: Set line = first line of S. 
2: while line �= null do 
3: Use grammar rule {N → ZZ }. 
4: if sl = freqA ∧ tl = freqC then 
5: Use grammar rule {A → ZT, C → ZG }. 
6: else if sl = freqC ∧ tl = freqG then 
7: Use grammar rule {C  → ZA, G → ZT }. 
8: else if sl = freqG ∧ tl = freqT then 
9: Use grammar rule {G → ZC, T → ZA }. 

10: else if sl = freqA ∧ tl = freqG then 
11: Use grammar rule {A → ZC, G → ZT }. 
12: else if sl = freqA ∧ tl = freqT then 
13: Use grammar rule {A → ZC, T → ZG }. 
14: else if sl = freqC ∧ tl = freqT then 
15: Use grammar rule {C  → ZA, T → ZG }. 
16: end if 
17: Use substitution rule { Z → 2, slChar → 0, tlChar → 1 }.  
18: Use grammar rule {0 → 00 → P ; 1  → 01 , 10 → Q ,  R ; 2  → 

02 , 20 , 11 → S ,  U ,  V ; 3 → 12 , 21 → W ,  X ; 4 → 22 → Y}. 
19: Update line = next line of S. 
20: end while 
21: Finally, use the BSC encoder. 
Output compressed target genome Tar. 

Example 2. S = ATTGCATGTCGATGGATGGGGAAAAATC 
GATAGG ATAGATTTTTAAAACCCNNNN 
For a certain target genome FASTA/multi-FASTA file, the 
detailed steps for second phase encoding is as follows: 

Step 1: Calculating the frequency of appearance of the letters A, 
C, G, T, and N in the previously stated sequence S: 
Freq(A) = 50  
Freq(C) = 14  
Freq(G) = 10  

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/doi/10.1093/bfgp/elae050/7945366 by guest on 21 M

arch 2025



A compression algorithm leveraging the grass rules | 5

Freq(T) = 80 
Freq(N) = 4 

Step 2: Determining the first three letters that appear the least 
frequently: Small(Freq) =  Freq(N) = 4 SndSmall(Freq) =  
Freq(G) = 10 TrdSmall(Freq) =  Freq(C) = 14  

Step 3: The least frequent character is changed to “ZZ”, the 
next least frequent character is changed to the highest 
frequency symbol (HFS), and the third least frequent 
character is changed to the second HFS preceded 
with the letter Z. The first grammatical principle is 
as follows: Rule 1 = {N → ZZ, G → ZT, C → ZA} 
Following replacement, the sequence becomes, ATTZTZA-
ATZTTZAZTATZTZTATZTZTZTZTAAAAATZAZTATAAT 
AZTATTTTTAAAAZAZAZAZZZZZZZZ . . .  
The additional characters introduced in this stage total 28, 
increasing the overall character count from 158 to 186. 

Step 4: Substituting 0, 1, and 2 for the next three characters. The 
substitution guideline is as follows: 
Rule 2 = {T → 0, A → 1, Z → 2} 
Now, the pattern of the sequence becomes 1002021102002 
120102020102020202011111021201011012010000011 1112 
1212122222222. . .  

Step 5: To replace two consecutive integers, use the language 
shown below. The following is the second grammatical 
principle: 
Rule 3 = {0 → 00 → P ; 1  → 01, 10 → Q, R ; 2 → 02, 20, 11 
→ S, U, V ; 3 → 12, 21 → W, X ; 4 → 22 → Y} 
The sequence will be as follows after applying the afore-
mentioned rules: RSSVSPXURUURUUUUVVRXURVQURP-
PVVW WWYYYY. . .  

Step 6: The last phase uses block-sorting encoding (BSC) to 
encode the intermediate data. 

Decompression 
During the decoding process, the inverse operations of encod-
ing are performed. The compressed file is first processed and 
decompressed by the BSC decompressor. Then, in reverse order, 
the second grammar rule, the substitution rule, and the first 
grammar rule are applied to reconstruct the original sequence. 
The sequence identifications (IDs) are restored in their original 
form and recorded in the decompressed file. Next, the block 
length is decoded using modified delta coding, while the line 
length is decoded using reverse RLE. Using delta coding and static 
entropy coding, the special character locations and the individual 
characters are decoded. Subsequently, the positions of lowercase 
letters are decoded using modified delta coding, and the lengths 
of lowercase segments are decoded using static entropy encoding. 
Finally, the lowercase letters are converted back to uppercase, 
completing the decoding process. 

Data Sets and Configuration of the Machine 
Data formats 
Genome sequence data is available in a variety of formats [21]. 
We adopted raw sequence [44], FASTA, and multi-FASTA formats 
in this work because they are well-known in Gen-Bank and easy 
for researchers to read and analyze. FASTA format is widely 
used in many databases, including diverse projects [27, 45, 46], 
and has become the norm in genomic investigations. Given its 
widespread adoption, the FASTA format will continue to play a 

crucial role in storing and exchanging genetic data in the field of 
genomics. 

Used data sets 
In order to assess the performance of GraSS, we have employed 
three distinct categories of datasets. Initially, we conducted 
studies on 10 standard DNA sequences with lengths ranging 
from 50 KB to 984246 KB and a lower degree of repetitiveness. 
These datasets contain the genetic information of many 
organisms, such as algae, mammals, bacteria, fungus, protists, 
and viruses [47, 48]. They provide a comprehensive analysis 
of genetic information that is less repetitive. We utilized 
extremely repetitive RNA sequences called “SILVA_132_LSURef” 
and “SILVA_132_SSURef_Nr99” [49], which had sizes of 595993 KB 
and 1083003 KB, respectively. Ultimately, we have employed a DNA 
corpus (509 MB) that exhibits minimal inter-similarity [39, 44, 50]. 
We have included sources to provide additional supporting data 
in the reference [50, 51]. The benchmark data is fully described in 
Supplementary File S1 

Computing machine 
All trials were conducted on an Amazon AWS cloud computer, 
which operated on Ubuntu 18.04.1 LTS (64-bit). The computer was 
equipped with two powerful Intel Xeon CPUs (E5-2643 v3 @ 3.4 
GHz, 6 cores) and 128 GB of RAM. To compile and execute the 
program, JDK 18 was utilized. 

Results and discussion 
In order to compress specified DNA and RNA that are less and 
more repetitive, we propose a customized compression approach 
that is lossless and does not require a reference, resulting in 
efficient compression. In our study, we assessed the performance 
of GraSS in comparison to 13 state-of-the-art methods: Gzip, Zstd, 
DCom [29], FQZComp [32], DSRC 2 [33], LFQC [34], UHT [30], 
NUHT [31], Minicom [22], GeCo [36], Jarvis [35], GeCo2 [37], and 
GeCo3 [38]. We operate each compressor using the best possible 
parameter configuration to achieve the highest compression ratio, 
as specified in the original articles. Supplementary Files 2, 3, and  
4 contain the specific information. 

The compressed file sizes produced by GraSS and nine state-
of-the-art algorithms (Gzip, Zstd, DCom, FQZComp, DSRC 2, LFQC, 
UHT, NUHT, and Minicom) on 10 DNA sequences with reasonably 
low repetition can be found in Supplementary File S2. Among  
the ten datasets, our proposed technique performs better than all 
others in one case and ranks second in six cases. The performance 
of the remaining three datasets is highly competitive with that 
of the top-performing LFQC. The compressed size of two highly 
repetitive RNA sequences can be seen in Supplementary File S3. 
Moreover, it has been observed that the proposed approach sur-
passes Gzip, FQZComp, DSRC 2, UHT, NUHT, and Minicom in terms 
of compression performance. GraSS’s distinctive design, which 
does not rely on exact or approximate repeats, palindromes, or 
other repeating structures within a sequence, resulted in a higher 
compressed file size compared to the proposed technique when 
utilizing Zstd. The Supplementary File S4 includes a compressed 
list generated by the GraSS method, as well as six other advanced 
algorithms: Gzip, Zstd, GeCo, Jarvis, GeCo2, and GeCo3. These 
algorithms were applied to a DNA sequence corpus consisting of 
fifteen raw sequences. The compression efficiency exceeds that 
of Gzip and Zstd. However, GeCo, Jarvis, GeCo2, and GeCo3 sur-
pass GraSS. The rationale is that the proposed method is largely 
tailored for the FASTA format, although it can also accommodate
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raw data. However, the compression efficiency will not match that 
of the FASTA format. This exemplifies the efficacy of our approach 
in producing optimal compressed file sizes for diverse datasets. 

GeCo, GeCo2, Jarvis, and GeCo3 were originally developed for 
the long-term storage of the genome primary domain [ACGT]. 
They demonstrate outstanding WACR, as shown in Table 2. We  
have assessed the proposed approach against these four com-
pressors, as outlined in Table 2, employing portions of the same 
dataset utilized in their original studies. To apply them to FASTA/Q 
files, a conversion to the raw data is required [27, 38]. Therefore, 
we have not tested them against the sequences in the FASTA data 
presented in Table 1 of the revised manuscript. The compressors 
DSRC 2, LFQC, FQZComp, and Minicomare are compatible with 
FASTQ format, whereas DCom, UHT, and NUHT are appropriate 
for FASTA. To apply them to the raw data of Table 2, the researcher 
must convert them to the appropriate format [27]. Therefore, we 
have omitted them from the sequences of raw files in Table 2. 
However, as Gzip and Zstd are general-purpose compressors, we 
have evaluated their performance across several data formats. 

We compute the following metrics in the subsequent sections: 

(1) The CR = size of the original file ÷ size of the compressed file 
(2) The WACR = total size of the original file ÷ total size of the 

compressed file 
(3) The compression ratio improvement percentage (CRIP) = 

[(GraSS WACR ÷ comparable algorithm WACR) -1] × 100% 
(4) Total (de)compression time (TCT/DCT) (s) required in a spe-

cific dataset. 
(5) The maximum memory (MB) used during the compression 

and decompression processes. 
(6) The percentage of a computer’s central processing unit (CPU) 

used by the state-of-the-art compressor. 

Performance comparison of compression ratio 
The proposed method consistently performs better than the 
state-of-the-art Gzip and Zstd algorithms, except for one dataset 
(GCA_002205965.2), as indicated in Table 1. As demonstrated in 
Table 1, GraSS performs better than the customized state-of-the-
art FQZComp in eight instances, surpasses DRSC 2 in all instances, 
outshines LFQC in three instances, and exceeds Minicom in six 
instances. With a WACR of 4.5 (Table 1), GraSS performs better 
than six composers among nine examined compressors. Utilizing 
the compressors (FQZComp and Minicom) listed in Table 1, the  
decompressed file frequently fails to completely correspond 
with the original file throughout the majority of data sets, 
notwithstanding the accurate size. While the LFQC compression 
ratio (4.88) surpasses that of GraSS, GraSS operates at a speed 
nearly three times faster than LFQC (Table 1). Compared to the 
state-of-the-art Gzip, Zstd, DCom, DSRC 2, UHT, and NUHT, GraSS 
achieved CRIP values of 30.43%, 2.51%, 6.38%, 6.89%, 21.95%, and 
13.35%, respectively. 

The proposed algorithm achieves a WACR value of 19.6 for the 
two highly repetitive RNA sequences (Table 1). It surpasses the 
results achieved by Gzip, FQZComp, DSRC 2, LFQC, NUHT, and 
Minicom, which are 5.65, 17.56, 6.63, 18.23, 3.98, and 18.48, respec-
tively (Table 1). The CRIP values for GraSS are 246.9%, 11.62%, 
195.63%, 7.52%, 392.46% and 6.06%, respectively. The Zstd algo-
rithm achieves a WACR value of 24.22 for extremely repetitive 
sequences due to its design, surpassing that of GraSS. 

The GraSS WACR value of 4.33 for the DNA raw sequence cor-
pus is suboptimal, as it is mainly designed for FASTA, as illustrated 
in Table 2. However, the WACR values of GeCo, Jarvis, GeCo2, and Ta
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Table 2. The CR, WACR, CT (s), and TCT (s), utilizing the proposed method plus six additional compressors on 15 DNA sequences 

ID Gzip Zstd GeCo Jarvis GeCo2 GeCo3 GraSS 

BuEb 3.25 0.009 3.92 0.012 3.97 6.05 4.04 0.092 4.04 0.129 4.03 0.1042 3.78 0.174 
AgPh 3.37 0.037 3.96 0.026 4.04 6.12 4.09 0.138 4.11 0.05 4.09 0.11 3.93 0.169 
YeMi 3.59 0.094 4.12 0.049 4.29 6.29 4.37 0.142 4.39 0.259 4.37 0.175 4.22 0.256 
AeCa 3.58 2.1 3.97 1.19 4.13 13.28 4.18 1.19 4.19 1.37 4.2 4.4 4.1 1.1 
HePy 3.67 2.21 4.02 1.38 4.37 13.36 4.46 1.34 4.44 1.28 4.45 7.02 4.24 1.13 
HaHi 3.63 5.27 3.99 2.368 4.29 24.01 4.32 3.38 4.31 2.51 4.33 15.82 4.19 2.356 
EsCo 3.57 5.38 4.03 2.94 4.18 26.77 4.24 5.78 4.23 2.93 4.24 19.24 4.07 2.91 
PIFa 3.77 13.85 4.28 6.49 4.62 43.96 4.67 13.18 4.67 21.45 4.71 76.08 4.35 4.785 
ScPo 3.57 13.29 3.78 8.13 4.2 54.01 4.23 15.48 4.23 25.234 4.24 72.24 4.08 5.958 
EnIn 3.61 35.14 4.48 25.04 5.08 92.78 5.19 58.54 5.11 71.02 5.19 159.64 4.24 14.112 
DrMe 3.6 36.76 4.08 31.29 4.29 103.89 4.3 39.09 4.3 79.52 4.35 230.88 4.11 18.17 
OrSa 3.66 47.73 4.42 45.18 4.99 121.49 5.12 108.87 5 99.34 5.12 298.68 4.24 19.695 
DaRe 3.77 77.1 4.81 68.71 5.43 145.92 5.6 127.1 5.45 114.29 5.57 420.35 4.5 26.593 
GaGa 3.66 190.3 3.92 189.1 4.38 268.92 4.41 220.87 4.38 229.53 4.43 866.76 4.2 66.855 
HoSa 3.73 243.2 4.37 250.5 4.88 373.63 4.91 352.58 4.88 292.04 4.99 1251.48 4.48 82.543 
WACR & TCT (s) 3.69 672.5 4.25 632.4 4.73 1294.4 4.78 947.7 4.74 940.8 4.82 3422.9 4.33 246.6 

The bold font signifies the best result in the row, while the italic font denotes the second-best result. The first column of each compressor is CR, and the 
second column is CT. The WACR is the weighted average compression ratio, and TCT (s) is the total compression time. 

GeCo3 are higher than GraSS, with values of 4.73, 4.78, 4.74, and 
4.82, respectively. These approaches are effective for long-term 
storage due to their higher compression ratio, but at the expense 
of computing resources. 

Performance comparison of time complexity and 
execution time 
Performance assessment also makes use of complexity and exe-
cution time. The following is a discussion and comparison of 
GraSS’s complexity analysis and execution time with the afore-
mentioned state-of-the-art. Preprocessing and encoding take a 
linear amount of time. The statistical model’s time complexity is 
always O(ntar). The time complexity is O(ñtar) for both the substi-
tution model and the first grammar. The time complexity for the 
second grammar rule is O(n̂tar). The variable ntar represents the 
count of characters in the preprocessed sequence. Similarly, ñtar 

denotes the count of characters after applying the first grammar 
or substitution rule, while n̂tar represents the count of characters 
after applying the second grammar rule. 

The results of three executions on the same data sets were aver-
aged to determine the compression and decompression times. 
Table 1 presents a time-related comparison between GraSS and 
the nine state-of-the-art methods. The DSRC 2 method is the 
fastest, and the LFQC method is the slowest of all the methods 
listed. The design of the Zstd method causes the compression time 
to increase proportionally with the size of the input file. Despite 
multi-step processing, GraSS is 1.47 times faster than Gzip, 2.94 
times faster than Zstd, 1.3 times faster than DCom, 2.93 times 
faster than LFQC, 1.87 times faster than NUHT, and 1.35 times 
faster than Minicom. 

The proposed and seven state-of-the-art methods took 479.3 
s, 837.3 s, 1464.6 s, 70.3 s, 17.3 s, 1256.9 s, 1167.3 s, and 6610.6 
s, respectively, to encode two RNA sequences (Table 1). Minicom 
is the slowest technique due to hash table construction during 
compression, whereas DSRC 2 is the fastest. GraSS performs bet-
ter than Gzip by 1.75 times, Zstd by 3.06 times, LFQC by 2.62 times, 
NUHT by 2.44 times, and Minicom by 13.79 times. In comparison 
to DSRC2 and FQZComp, the proposed method is much slower 
because of its multi-step processing. 

GraSS execution time (Table 2) surpasses Gzip by a factor of 
2.72, Zstd by a factor of 2.56, GeCo by a factor of 5.27, Jarvis by a 
factor of 3.84, GeCo2 by a factor of 3.81, and GeCo3 by a factor of 

13.87, respectively. The advanced GeCo, Jarvis, GeCo2, and GeCo3 
exhibit exceptional efficiency for prolonged storage applications. 
Nevertheless, GraSS is the fastest compressor for this dataset, 
making it highly efficient for frequent access as well. 

The scatter plots (Fig. 2) illustrate the trade-off between WACR 
and TCT for 10 less-repetitive DNA sequences, two highly-
repetitive RNA sequences, and 15 raw DNA sequences. 

Supplementary File S5 contains a list of GraSS decompression 
timings, as well as those for the ten previously described state-
of-the-art methods. The decompression time of the proposed 
approach is significantly greater than that of the two general-
purpose algorithms, Gzip and Zstd. Because they are reversible 
processes, specialized algorithms take longer to complete than 
general-purpose algorithms. The proposed technique performs 
better than DCom, LFQC, and NUHT and the most advanced GeCo, 
Jarvis, GeCo2, and GeCo3 in terms of decomposition time. This 
further demonstrates the benefits of GraSS for decompression, 
offering rapid file reconstruction and competitive performance. 

Comparison of memory and CPU usage 
performance 
The proposed method employs a multi-step processing strategy 
followed by the BSC (Fig. 1) to achieve a higher compression ratio. 
This results in increased physical memory usage compared to the 
benchmark algorithms Gzip and Zstd. Among these, Zstd is the 
second-most efficient performer, while Gzip is the most efficient 
in terms of memory usage (Fig. 3). General-purpose algorithms 
consistently consume less memory compared to specialized algo-
rithms because they do not exploit the unique characteristics of 
genetic sequences. Grammar rule 1 receives the most physical 
memory allocation in the proposed method, then the replace-
ment model, the BSC compressor, grammar rule 2, sequence 
extraction, and sequence base frequency computation, in that 
order. To calculate memory usage, we subtract the amount of free 
memory from the total memory at the start and end of a spe-
cific compressor’s execution. We then calculate the differences 
between them to derive the outcome. 

Figure 3 displays the peak memory consumption of GraSS 
and nine state-of-the-art methods for ten less-repetitive DNA 
sequences. For the longest DNA sequence (GCF_000002235.4), 
Minicom’s peak compression memory is around 3625 MB, which 
is much larger than its decompression memory of about 990
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Figure 2. The scatter plots (a) for DNA sequences in Table 1, (b) for RNA sequences in Table 1, and (c) for sequences in Table 2 (For visual clarity, we 
write FQZComp as FQZC, GeCo2 as G, and Jarvis as J) demonstrate the trade-off between WACR and TCT (s). 

Figure 3. The peak memory use (in MB) of GraSS and (a) nine other state-of-the-art methods was measured for the biggest DNA sequence 
(GCF_000002235.4) in FASTA format and (b) six other state-of-the-art methods was measured for the largest raw DNA corpus sequence (HoSa). 

MB due to the development of a hash table during compression. 
Using Gzip, the peak compression memory is only approximately 
0.22 MB, surpassing other state-of-the-art compression methods. 
Zstd necessitates approximately 1774 MB, DCom wants around 
173 MB, FQZComp utilizes approximately 2136 MB, DSRC 2 
consumes about 2316 MB, LFQC occupies roughly 2939 MB, NUHT 
demands about 29604 MB, and GraSS takes approximately 9904 
MB. The memory consumption for the two highly-repetitive 
RNA sequences can be found in Supplementary File S6. Figure 3 
illustrates the maximum memory usage by GraSS and four other 
advanced algorithms on fifteen raw DNA corpus sequences. 
When Jarvis processes HoSa, the longest raw sequence in 
the DNA corpus, it needs a maximum of about 7092 MB of 
memory. GeCo consumes around 4213 MB of memory; GeCo2 and 
GeCo3 use approximately the same memory, 3451 MB and 3399 
MB, respectively. In contrast, the proposed technique requires 
approximately 3223 MB of memory. 

The initial grammar principle of GraSS may lead to a rise in 
the number of characters. The compression memory could poten-
tially surpass the peak decompression memory. This occurred 
with the less repetitive DNA sequence selected, resulting in a 
compression memory requirement of approximately 9904 MB, 
which is larger than the decompression memory of around 7539 
MB. Supplementary Files S6 and S7 contain detailed information 
on memory utilization during compression and decompression 
processes. 

The extracted DNA sequences do not contain any special char-
acters [47, 48], while the RNA sequences do not contain any 
lowercase characters [49]. By adhering to these constraints during 
the coding process, it is possible to further reduce memory usage. 

After each stage, we calculated the CPU utilization of GraSS 
and other cutting-edge technologies. We derive the final value by 
averaging three distinct runs. The proposed approach has a lower 

CPU consumption compared to the advanced GeCo, Jarvis, GeCo2, 
and GeCo3. During the compression and decompression process, 
GraSS uses (˜75% and ˜68%), GeCo uses (˜82% and ˜80%), Jarvis 
uses (˜84% and ̃ 83%), GeCo2 uses (˜79% and ̃ 77%), and GeCo3 uses 
(˜81% and ̃ 79%), in that order. It may be noted that CPU utilization 
can exceed 100% because of the multi-core system. 

Conclusion 
In this work, we propose a customized reference-free, lossless 
genome sequence compression method called GraSS. It consists 
of two distinct phases split into six main steps. In the first phase, 
it extracts and stores the auxiliary data from a DNA or RNA 
sequence in raw, FASTA, or multi-FASTA format. Using grammar 
rules 1 and 2, substitution, and statistical principles followed by a 
BSC encoder, the raw sequence is compressed in the second phase. 

Irrespective of degree of repetitiveness, the proposed algorithm’s 
performance is very competitive with the state-of-the-art 
compressors (Tables 1 and 2). For less repetitive DNA sequences, 
GraSS performs better than the well-known, cutting-edge 
compressors Gzip, Zstd, DCom, DSRC 2, UHT and NUHT. The 
proposed approach achieves a WACR of 4.5, outperforming state-
of-the-art compressors such as Gzip (3.45), Zstd (4.39), DCom 
(4.23), DSRC2 (4.21), UHT (3.69), and NUHT (3.97) (Table 1). Even a 
small improvement over the highly efficient Zstd is noteworthy. 
Although the LFQC compression ratio (4.88) exceeds that of 
GraSS, GraSS functions at a speed roughly threefold that of LFQC 
(Table 1). For highly repetitive RNA sequences, GraSS achieves 
a WACR of 19.6, which is superior to Gzip (5.65), FQZComp 
(17.56), DSRC2 (6.63), LFQC (18.23), NUHT (3.98), and Minicom 
(18.45) (shown in Table 1). This substantial margin demonstrates 
GraSS’s value in this scenario as well. The WACR of 4.33 for a 
DNA corpus consisting of fifteen raw sequences is lower than
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the compression ratios of the most modern and cutting-edge 
compression algorithms, namely GeCo (4.73), Jarvis (4.78), GeCo2 
(4.74), and GeCo3 (4.82), but higher than Gzip (3.69) and Zstd 
(4.25) (Table 2). The justification is that the proposed approach 
is primarily designed for the FASTA format, while it can also 
support raw data. However, these algorithms (GeCo 1, 2, 3, and 
Jarvis) achieve this at the cost of computational resources. 

GraSS performs better than the state-of-the-art compression 
algorithms Gzip, Zstd, DCom, LFQC, UHT, NUHT, Minicom, Geco, 
Jarvis, GeCo2, and GeCo3 in terms of compression time, as demon-
strated in Tables 1 and 2. Supplementary File S5 provides a record 
of the duration it took for the decompression process. Undoubt-
edly, the local execution of GraSS will result in faster performance 
compared to its remote execution on a cloud server. 

The maximal memory use of GraSS (˜3223 MB) is less than that 
of the most advanced, highly effective algorithms for long-term 
storage of the DNA corpus, such as GeCo (˜4213 MB), Jarvis (˜7092 
MB), GeCo2 (˜3451 MB), and GeCo3 (˜3399 MB). The maximum 
memory required for the less-repetitive DNA sequence is approx-
imately 172 MB for DCom, 1420 MB for UHT, 29604 MB for NUHT, 
and 3625 MB for Minicom. About the same amount of memory 
was needed for FQZComp (˜2136 MB), DSRC 2 (˜2339 MB), and LFQC 
(˜2909 MB) during compression and decompression. According to 
SCB [27], Gzip is the most efficient memory performer among 
functional reference-free compressors. Zstd uses about 1774 MB, 
which is the second-best usage. For more information, one may 
refer to Supplementary Files S6 and S7. GraSS uses the least 
amount of CPU power (˜75%), while the other four (GeCo1, 2, 3 and 
Jarvis) use around the same amount (˜80%). 

GraSS differentiates itself from current genomic sequence 
compression techniques by eliminating the need for parameter 
adjustment during operation [27]. It is capable of processing 
all IUPAC symbols, lowercase letters, identifiers, and line/block 
lengths. The results (Tables 1 and 2) indicate that GraSS is 
advantageous for both highly repeated and less repetitive 
sequences. Moreover, irrespective of the database size, its 
performance remains consistent. The proposed algorithm’s 
limitation is that it functions solely as a reference-free method, 
utilizes a single backend compressor (BSC), and is implemented 
in Java; however, a C/C++ implementation could enhance the 
algorithm’s performance to a degree. 

There is still significant room for improvement. Palindromes, 
other repeating structures within a sequence, and precise 
or approximate repeats can all contribute to increasing the 
compression ratio of highly repetitive genomic sequences. 
Additionally, applying disk write optimization techniques to 
support frequent access can significantly reduce decompression 
time. Finally, GraSS can be employed with other formats (such 
as FASTQ files) and datasets (such as protein datasets). Any 
sequence analysis approach that works with raw data can also be 
used with compressed data, typically at the expense of accuracy. 

Key Points 
• The article discusses a lossless compression method for 

genomic sequences without references using grammar, 
statistics, and substitution (GraSS) rules. 

• The article proposes an algorithm, GraSS, comprising six 
major steps divided into two phases, implemented using 
Java on the Amazon Web Services (AWS) Linux platform. 

• The article showcases the compression method for wide-
scale, less-repetitive, or highly-repetitive sequences, and 
all IUPAC codes enable compression in the raw, FASTA-
ALL (FASTA), or Multi-FASTA formats. 

• The article considers identifiers, line and block lengths, 
and small cases that may arise in a sequence. 

• The article highlights that the proposed method does 
not depend on parameter settings because an algo-
rithm involving parameter settings becomes complex 
and time-consuming. 
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