
2019 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)

Build and Conquer: Solving N Queens Problem
using Iterative Compression

1st Ahmed Alhassan
University of Khartoum Electric and electronic Engineering dept. (student)

Khartoum, Sudan
a.mo.a.alhassan@gmail.com

Abstract—The N queens problem is a very hot topic for
research use. Nonetheless all previous algorithms that solved the
N queens problem treat each order of it as if they are separate
problems with no connection among them. The main idea of
this paper is to connect the dots among various orders of the N
queens problem and demonstrate that all orders of the N-queens
problem are connected with each other. And then we propose an
algorithm using iterative compression to solve the problem i.e.
beginning from the solution of the least order of the problem
and then by using the relation among different orders we add a
queen in every iteration until we have the N queens residing in
the NxN board.

Index Terms—N–Queens Problem, iterative compression,
nonattacked corners, pseudo-solution.

I. INTRODUCTION

The N queens problem is about trying to put N chess queens
in an NxN chessboard without letting any queen attack any
other queen i.e. placing queens so that:

1) There are no queen sharing the same row with any other
queen.

2) There are no queen sharing the same column with any
other queen.

3) There are no queen sharing the same diagonal with any
other queen.

Fig. 1: How queen attacks.

This problem has at least one solution for all positive integer
values of N except for N = 2 and N = 3

A. Background

The algorithms of solving N queens problem progressed
from brute force algorithm which is very computationally
expensive O

(
NxN
N

)
to placing every queen in different row

then checking the solution and moving queens until finding
a solution. This algorithm has an O(NN) complexity. And
the algorithm got better with using permutations and checking
for diagonal attacks which made the complexity O(N !). The
algorithm has became even better by using backtracking but
still had an exponential complexity. The complexity of finding
all solutions is more complex than the #P class as stated
by Hsiang, Hsu and Shieh [1]. A lot of researches used
neural networks to get a solution for this problem [2]. But
surprisingly only one paper has addressed the problem of
finding a relation among various orders of N queens problem
and show how they are related to each other. But it did not
include any general relation that connects these orders. In this
paper we :

• We prove that the various orders of N queens problem
are indeed have a relation among them and discuss a
technique to solve higher orders using lower ones.

• We discuss how some placements produced by this tech-
nique are not solutions to their respective orders but they
are essential to solve higher orders.

• We propose a new iterative compression algorithm using
this technique to solve the N queen problem.

B. Applications

The N queens problem is often used to test how good search
algorithms can be. The same goes with genetic algorithms [3]
and heuristics but is also used in various applications [4] such
as :

• VLSI testing and Traffic control [5].
• Parallel memory storage schemes that was proposed by

Ebras, Tanik, and Nair by using solutions of N queens
problem [6] [7].

• Deadlock prevention. Tanik proves that the solution of N
queens problem can be used to make a set of paths free
of deadlocks [8].

• Neural network and constraint satisfaction problems [9].
• Studying the re-configurable meshes with buses (RMB)

[10].
• Analyzing the statistical secondary structure of nucleic

acids [11].

C. Terminology

Iterative compression : The type of algorithms that solves
the problem by adding a parameter at each iteration to build

978-1-7281-1006-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on April 14,2025 at 06:34:05 UTC from IEEE Xplore. Restrictions apply.

the final solution.
Order : The number of the queens ’N’ required to be on the

chessboard in order to complete the solution.
Distinct solutions: the set of all possible solution for a

specific order with no solution mirrored or rotated (90, 180,
or 270 degrees) from another solution.

Breadth First Search (BFS): An algorithm for searching
trees that searches starting from the root then to its closest
elements in the same depth then move to the element with the
next level of depth and so on.

Depth First Search (DFS): An algorithm for searching trees
that searches starting from the root then goes as far as possible
into each branch and then backtracking when reaching the
deepest level in the branch.

II. RELATED WORK

While finding a general relation that governs the interaction
between various orders of N queens problem, there are some
relations easier to spot. In the paper written by Kersi and
Pattnaik [12] which describes a special relation among specific
solutions for N queen problem. They used that relation to
solve higher orders. ”Fig. 2” shows an example of using this
algorithm to get one of the solutions of the 5th order using the
solution of the 4th order.

(a) A solution for 5 queens
problem.

(b) The only distinct solution
for 4 queens problem.

Fig. 2

The relation they noticed is that some higher order solutions
are the same with lower ones with the only difference being
that we add a column and a row at the sides and place a queen
in the corner. This technique solves a decent number of higher
orders but do not find all distinct solutions for every order.
Since you have to add a column, a row, and a queen in order
to get higher order solution how can we decide the places
where we can add them? And how can we find all distinct
solutions using only previous order solution? To answer these
question we introduce a technique that helps us decide where
to place them.

III. METHODOLOGY

A. Nonattacked Corners

This technique is used to get the position where the new
queen should be placed. As the name suggests we look for the
nonattacked corners. However we can not find them directly.
Instead we first mark all attacked corners by all queens then

all the unmarked are the nonattacked ones. Those nonattacked
corners specifies the place to add the row, the column, and
the queen to get a higher order solution. This algorithm has a
complexity of O(N2). See ”Fig. 3” and ”Fig. 4”

(a) An example for finding at-
tacked corners of a single queen

(b) Applying this method on the
4th order solution then mark-
ing the nonattacked with green
squares

Fig. 3: Applying the corner attack technique to determine the
places ”green squares” to add the new queen to.

(a) The solution after adding a
row, column, and queen in the
place of the top left nonattacked
corner in.

(b) The only distinct solution
for 4 queens problem.

Fig. 4

B. Pseudo-solution

When applying the nonattacked corners method sometimes
we generate a configuration which is not a valid solution for
its own order for example ”Fig. 5” . The fact that this config-
uration is not solution does not disregard its value of getting
solutions of higher orders which can only be generated by
pseudo-solutions.For example their role is crucial in generating
several solutions from the 7th order and on which can not be
generated using lower orders solutions. See ”Fig. 6”

IV. BUILD AND CONQUER

As we discussed the technique to level-up from order to
order the remaining questions are : how should this technique
be applied to get all solutions for a certain order? and if
we will use an iterative compression algorithm as an answer
for the first question, where should we begin as the root of
all solutions? It may be apparent that choosing the 4th order
solution as the root is perfect. Because it is the only distinct
solution for its order and the lower orders mainly both the

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on April 14,2025 at 06:34:05 UTC from IEEE Xplore. Restrictions apply.

(a)
(b) One of the pseudo-solutions
generated from a 5th order solu-
tion

Fig. 5: How pseudo-solution are generated

(a) (b)

Fig. 6

2nd and the 3rd order has no solutions and the 1st order which
putting the lone queen in a single cell has no nonattacked
corners. However this is not the case since it is obvious that we
do not get all solutions starting from the 8th order. As a result
the only solution of the 4th order is not suitable to be the root
chosen for an iterative compression algorithm that generates
all the available solutions of the N queens problem. Instead we
must use a lower order solution that produces the only distinct
solution of the 4th order. But there is no lower order solution
that has nonattacked corners. Instead of a solution we use a
pseudo-solution.

The pseudo-solution we are looking for must be of an order
lower than the 4th and must produce all of the solutions that
the 4th order solution produces including itself. In order to
get that pseudo-solution we take the solution of the 4th order
and remove one of its queens along with the queen’s column
and row. And since the solution is symmetric with any kind
of rotation made to it, removing any of the queens will end
up with the same pseudo-solution. Then this pseudo-solution
is used as the root of the iterative compression algorithm to
generate the solutions.

To put the finishing touches to the work. We have to define
the way which iterative compression will work on every suc-
cession. With the non-attacked corners technique to get both of
the next solutions and pseudo-solutions and the root we have
found previously we can define the algorithm. This algorithm
can use either depth first search (DFS) or breadth first search
(BFS) in order to iterate through all possible solutions. There

Fig. 7: The Root (pseudo-solution) made from removing one
of the queens of the 4th order solution.

is a trade off between mapping the whole solution tree and
using resources when executing the search using depth first
or breadth first. Using depth first search is better when trying
to obtain a better understanding to the origins of the solutions
and producing the solution tree. But consumes more resources
due to some solutions are produced by more than one lower
order solution or pseudo-solution. However breadth first search
is more efficient in using resources but may hide the relation
among the solutions.

V. RESULTS

Although the nonattacked corners method take a complexity
of O(N2), the total complexity of the iterative compression
algorithm is pseudo-linear. Because the complexity of this
algorithm also depends on the number of the configurations
we search whether the configuration is a solution or pseudo-
solution. Making the complexity of generating all the solutions
of an order approximately O(C ∗(N2)) where C represents the
number of configurations we search in order to generate the
solutions.

We used the algorithm described in this paper with the
breadth first search because counting the number of config-
urations will be easier that way. Then we cleared out all the
mirrored and rotated instances of these configurations. Then
classified them into solutions and pseudo-solutions. When we
applied the algorithm to get the solutions of all orders up to
the 10th order with using the pseudo-solution in ”Fig. 7” as
the root of the algorithm we got the results in ”Table. I”. We
found all the distinct solutions of every order up to the 10th.

TABLE I: Number of distinct configurations generated for
each order up to the 10th

Order(# of queens) # of configurations # of solutions # of pseudo-solutions
4 2 1 1
5 4 2 2
6 20 1 19
7 125 6 119
8 957 12 945
9 8690 46 8644
10 90768 92 90676

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on April 14,2025 at 06:34:05 UTC from IEEE Xplore. Restrictions apply.

VI. FURTHER WORK

So far the iterative compression algorithm with both imple-
mentations of the breadth first and depth first works well in
getting the solutions of the N queens problem. However there
still that trade off resources and better understanding of the
relations among the solutions. In order to get a better we may
adjust the implementation by using a hybrid search algorithm
between depth first search and breadth first search to get a
better balance of this trade off which results in more efficient
algorithm than breadth first that gives us better understanding
to the relations among solutions than depth first search.

I only applied this work on 2D n-queens problem. It would
be interesting to try and apply it to multi-dimensional n-queens
problem [13]. This problem can put the nonattacked corners
to a great test.

This work may contribute in reducing the complexity of
the N queens completion problem which is a NP complete
problem. The problem states given any initial placement of
some queens where should the other queens be placed in
order to complete the solution [14]. With some adjustment to
the nonattacked corners technique and the use of an iterative
compression algorithms it may prove to be one of the best
algorithms that solves this problem.

ACKNOWLEDGMENT

I want to thank my family specially my mom for being
patient during the time I was writing this paper. My thanks
also goes to both my seniors Ahmed Osman and Ahmed Sharfi
whom I learnt about the 8 queens problem from and without
them this paper would not be a reality. I thank Mohammed
Osman for encouraging me to put this work into a paper and
Akram Izzeldin who peer reviewed this paper and giving me
some constructive critics. I thank everyone who gave any kind
of motivation or support.

APPENDIX

input : An array Queens of size N .
output: An array Nonattacked represents the

nonattacked corners available where we can
add new queens.

corners ← ZeroMatrix(N + 1, N + 1);
foreach element q of queens do

if corner is attacked then
corners [x][y] ←1

end
end
nonattacked ← []
for i← 1 to N + 1 do

for j ← 1 to N + 1 do
if corners [i][j] == 0 then

nonattacked.append ([i,j])
end

end
end

return nonattacked
Algorithm 1: Nonattacked corners

input : An array Queens of order O, the final order
intended to get all of its solutions N .

output: An array of all Solutions to all order of
N-queens problem from order O to N .

root ← Queens
solutions ← []
boards ← [root] // Contains all

solutions and pseudo-solutions of
the current order.

for i← 3 to N − 1 do
tmp ← []

foreach element b of boards do
newQueens ← getNonattackedCorners

(root)

foreach element q of newQueens do
tmpBoard ← addQueen (q, b)

tmp.append (tmpBoard)

if tmpBoard is a valid solution &&
tmpBoard is not in solutions then

solutions.append (tmpBoard)
end

end
end

boards ← tmp
end

return solutions
Algorithm 2: Generating solutions using BFS

input : An array Queens of order O, the final order
intended to get all of its solutions N .

output: A tree of arrays of all Solutions to all order
of N-queens problem from order O to N .

root ← Queens
newQueens ← getNonattackedCorners (root)
if length (root) == N or newQueens is empty then

return root
else

foreach element q of newQueens do
tmpBoard ← addQueen (q, b)
root.addChild (DFS (tmpBoard, N))

end
return root

end
Algorithm 3: Generating solutions using DFS

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on April 14,2025 at 06:34:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Hsiang, D.F. Hsu, and Y.-P. Shieh. On the hardness of counting
problems of complete mappings. Discrete Mathematics, 277:87–100,
2004.

[2] Mańdziuk, Jacek. (2002). Neural networks for the N-Queens Problem:
a review. Control and Cybernetics. 31.

[3] S.Sathyapriya, R.Stephen, and V.S.Joe Irudayaraj. Survey on N-Queen
Problem with Genetic Algorithm. International Journal of Computer
Sciences and Engineering, Volume-6, Special Issue-2, March 2018.

[4] J. Bell and B. Stevens. A survey of known results and research areas
for nqueens. Discrete Mathematics, 309:1–31, 2009.

[5] C. Erbas, M.M. Tanik, and Z. Aliyazicioglu. Linear congruence equa-
tions for the solutions of the n-queens problem. Information Processing
Letters, 41:301–306, 1992.

[6] C. Erbas and M.M. Tanik. Storage schemes for parallel memory systems
and the n-queens problem. In Proceedings of the 15th Anniversary of the
ASME ETCE Conference, Computer Applications Symposium, volume
43, pages 115–120, 1992.

[7] C. Erbas, M.M. Tanik, and V.S.S. Nair. A circulant matrix based ap-
proach to storage schemes for parallel memory systems. In Proceedings
of the Fifth IEEE Symposium on Parallel and Distributed Processing,
pages 92–99. IEEE, 1993.

[8] M.M. Tanik. A Graph Model for Deadlock Prevention. PhD thesis, Texas
A&M University, 1978.

[9] C. Erbas, S. Sarkeshik, and M. M. Tanik, Different perspectives of the
n-queens problem. In CSC 92: Proceedings of the 1992 ACM Annual
Conference on Communications, pages 99–108, 1992.

[10] M. Kunde and K. Gurtzig. Effcient sorting and routing on re-
configurable meshes using restricted bus length. In Proceedings of the
11th International Parallel Processing Symposium (IPPS1997), pages
713–720. IEEE Computer Society, 1997.

[11] K. Yamamoto, Y. Kitamura, and H. Yoshikura. Computation of sta-
tistical secondary structure of nucleic acids. Nucleic Acids Research,
12:335–346, 1984.

[12] Vishal Kesri, Vaibhav Kesri, and Prasant Ku. Pattnaik. An Unique
Solution for N queen Problem International Journal of Computer Ap-
plications (0975 – 8887) Volume 43– No.12, April 2012.

[13] J. Barr, S. Rao, The n-queens problem in higher dimensions, Elem.
Math. 61 (4) (2006) 133–137.

[14] Ian P.Gent, Christopher Jefferson, and Peter Nightingale. Complexity of
n-Queens Completion. Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI-18)

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on April 14,2025 at 06:34:05 UTC from IEEE Xplore. Restrictions apply.

