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Abstract
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In this paper we present an intuitive and simple 
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 processors parallel algorithm for finding a perfect matching in a planar graph, where 
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 is the order,
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 is the number of the distinct perfect matchings of the graph and 
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 is the best sequential complexity of matrix multiplication of size n. 
1. Introduction

A maximum matching is a perfect one, when every vertex of the  graph is connected to an edge of this matching.

2. Notations and preliminaries
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 denotes the number of distinct perfect matchings of 
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denotes the digraph obtained by giving an arbitrary orientation to

the edges of 
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, is defined as
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    The Pfaffian of a skew symmetric matrix 
[image: image13.wmf]k

kx

ij

b

B

2

2

)

(

=

 of even [image: image42.wmf]
[image: image43.png]PF(B) =Y sgn(p)by,



dimension 
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, denoted by ((
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where 
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 refers to all permutations 
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 of the elements 1..2k 

such that 
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 is denoted the sign of permutation 

    Note : 
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We give the graph such an orientation, that makes every term of the 

Pfaffian of a same sign (negative or positive). Such orientation is 

called a Pfaffian orientation.

A graph
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that has been given a Pfaffian orientation will be

denoted by
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The matrix
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2 and –2, respectively .Thus,

is the number of the perfect matching of
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to which the edge
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belongs.

3. The Parallel Algorithm

4.[image: image45.png]Input : A planar graph G = (V, E).
Output : A perfect matching M in G, if any exists.

Initialization M «+ 0 ;
Repeat
1. Find a Pfaffian orientation GFf of G ;
2. Calculate ¢ «+ PF(BFf) ;
3. If¢=0 then STOP; {G has no perfect matchirg }
4.- For every arc ij of GPf do in parallel
4.1. Compute P]-"(Bf;-iz);
4.2. ¢;; « PF(BL,) - PF(BFf);
enddo
5. For every edge (i,5) € E do in parallel
If ¢ij = ¢ then
5.1. M+ MU{(s))};
5.2. V(G)«V-1{ij5};
5.3. E(G) « E - {(z,9)|z € T())} = {(v,9)ly € TG)});
endif
enddo
6. If M is not perfect then
6.1. Select an edge (3, j) satisfying 0 < ¢;; < L%J;
6.2. M+~ MU{(,7)};
6.3.V(G) <V -{1,5};
6.4. E(G) + E — {(z,1)|lz € T(®)} = {(v,)ly € T(G)});
endif
until M becomes perfect.




 Time Complexity

Step1 and 2, costs
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deterministic time with
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on a CRCW PRAM.

In step 4, the Pfaffian Of
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matrices is calculated ; thus this step can 

be completed in
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deterministic time with 
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processors

Operations as edge selection, addition to
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, and deletion from
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step 5 and 6 take 
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 time.

    In the worst case, where only one edge is selected at each iteration of 

the repeat-until loop, after 
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 iterations, a graph with a unique 

perfect matching occurs and the algorithm finishes in the next loop.

5. Conclusion
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[image: image46.png]1, if the arc ij € E(G),
bz] = -1, if the arc ]Z € E(G),
0, otherwise.




[image: image47.wmf]_982430477.unknown

_982433614.unknown

_982434389.unknown

_982434667.unknown

_982434820.unknown

_982434906.unknown

_982435018.unknown

_982434744.unknown

_982434507.unknown

_982433941.unknown

_982434347.unknown

_982433704.unknown

_982432611.unknown

_982433304.unknown

_982433351.unknown

_982433380.unknown

_982433209.unknown

_982430688.unknown

_982432118.unknown

_982430539.unknown

_982427006.unknown

_982429906.unknown

_982430318.unknown

_982430354.unknown

_982430070.unknown

_982430275.doc
[image: image1.png]PF(B) =Y sgn(p)by,







_982427486.unknown

_982429747.unknown

_982429840.unknown

_982425372.unknown

_982426211.unknown

_982426401.unknown

_982426873.unknown

_982425485.unknown

_982425134.unknown

_982425320.unknown

_982425055.unknown

_982425032.unknown

