Communication-Efficient Sorting Algorithms on Reconfigurable Array of Processor With Slotted Optical Buses
Mounir Hamdi, Chunming Qiao, Yi Pan, and J. Tong

Journal of Parallel and Distributed Computing Vol.57

1999,p166-187

Abstract

Our parallel sorting algorithms on the 1D RASOB is based on an efficient divide-and-conquer scheme. It sorts N processors in O(k) communication cycles. Sorts N data items on a 2D RASOB of size N in O(k) communication cycles.

1. Introduction

2. Procedure Sort

During iteration I (I= 1 to k):

1. Each processor p(i) broadcasts the data item it holds to p(STARTi),

p(STARTi+1), ...,p(ENDi), including itself, if the Ith most significant bit of its data item is equal to 0. After this step, the RASOB processors will contain a variable number of data items in their respective receiving buffers.
2. Each processor p(i) checks its receiving buffer if it contains an (i - STARTi + I)th data item. If so , it marks the data down and does a type I replacement which is described in step 5 of the algorithm. Moreover, it clears its receiving buffer. The value of (i - STARTi + 1) represents the position of p(i) in its subgroup, starting from left to right. Processor p(i) gets the (i – STARTi + 1)th data item in order to let the processors on its left get data items of smaller values since the Ith significant bit is 0. As a result, the processors on its left side can form their own subgroup later.

3. This is analogous to Step 1 above. Each processor p(i) broadcasts the data

item it is holding to p(STARTi), p(STARTi + 1), ..., p(ENDi), including itself, if the Ith most significant bit of its data item is equal to 1. After this step. The RASOB processors will contain a variable number of data items in their respective receiving buffers.

4. Each processor p(i) checks its receiving buffer if it contains an (ENDi -i + I)th data item. If so, it marks the data down and does a type II replacement which is described in step 5 of the algorithm. Moreover, it clears its receiving buffer. The value of (ENDi - i+1) represents the position of p(i) in its subgroup, starting from right to left. Processor p(i) gets the (ENDi – i + l)th data item in order to let the processors on its right get data items of larger values since the Ith significant bit is 1. As a result, the processors on its right side can form their own subgroup later.

5. Each processor does a type I replacement or a type II replacement by replacing the data item it is holding with the marked data item.

6. Each processor p(i) sends a message to p(i -1) only if i -1 ≧ STARTi and sends a message to p(i + 1) only if i +1≦ ENDi to find out what type of replacement they have performed. In other words, processor p(i) finds out whether the processor on its immediate left and the processor on its immediate right belong to the same group or not since p(STARTi) has no processor on its immediate left belonging to the same group and p(ENDi) has no processor on its immediate right belonging to the same group.

7. For each processor p(i), if it has performed a type I replacement and finds that i+ 1 ≦ ENDi and p(i+1) has performed a type II replacement, then p(i) sends a message to p(STARTi), p(STARTi+1),..., p(i) informing them to change their variable END to be equal to i.

8. For each processor p(i), if it has performed a type II replacement and finds that i- 1 ≧ STARTi and p(i- 1) has performed a type I replacement, then p(i) sends a message to p(i), p(i+ 1), ..., p(ENDi) informing them to change their variable START to be equal to i.

End {Procedure SORT}
[image: image1.png]OB OROBONONONONOROND

START| 1 1 1 1 I 1 1
END 10 10 10 10 10 10 10 10 10 ’ 10
Input | 1101 [0010 | 1111 | 1000 | 0101 | 1010 | O111 | 0001 | 1001 \ 1110

FIG. a. The initial configuration. The values of START and END are given in decimals and the
values of Input are represented in binary.

ORONONORONGRONOROND

Buffer 1|0010*| 0010 | 0010 l 0010 { 0010 | 0010 | 0010 | 0010 | 0010 | 0010
Buffer 2 0101 |0101*]| 0101 | 0101 | 0101 | 0101 | 0101 { 0101 | 0101 | 010t

—r
Buﬂ‘er—il 0111 [O111 |O111*| OL11 [Of11 | 0111 |011—1-I 0111 | 0111 |0111

Buffer 4 0001 | 0001 | 0001 [0001+ | 0001 | 0001 | 0001 | 0001 | o001 Lounl

+

Buffer 5 i _J ‘

FIG. b. After step 1 of the algorithm. This iteration deals with the first bit of each input number;
*signifies the data itern that is doing the replacement.

VOOOOEOOEOOO®

Buffer 1| 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 [1101*
Buffer 2| 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 '_1111 1H11*| 1111
Buffer 31 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |1000*| 1000 | 1000
Buffer 4| 1010 | 1010 | 1010 | 1010 | 1010 | 1010 l(—)—IF 1010 | 1010 | 1010
Buffer 5— 1001 } 1001 | 1001 | 1001 ! 1001 |1001* | 1001 | 1001 | 1001 | 1001
Buffer 6| 1110 | 1110 | 1110 | 1110 |1110*| 1110 | 1110 | 1110 | 1110 | 1110

Buffer 7

.

FIG. ¢. The state of the processors’ receiving buffers after step 3 of the algorithm,

ODOOOOO®OE®O®

START RN ERERE |
Evp | 4 |4 [s | 4 J10 1wl]l
Input_| 0010 | 0101 | 0111 loom | 1110 [1001 | 1010 [1000 | 1111 | 1101

FIG. d. The placement of the data elements after step 8 of the algorithm, and the associated values
for START and END.

[image: image2.png]@@@@@@@0@.

Buffer 10010

*

oomj 0010 | 0010

1001*

1001 1001

1001

Buffer 2

0001

0001*] 0001 | 0001

1010

-+
1010*

1010 | 1010 | 1010

1010

Buffer 3

1000

L1000

1000* | 1000 r}OOO

-

1000

L

Buffer 4

]
T

FIG. e. The state of the processors’ receiving buffers after step | of the second iteration whi

with the second bit of each input number.

ich deals

ONONORONONONONONORD

Buffer 1| 0101 | 0101 | 0101 [0101*| 1110 | 1110 | 1110 | 1110 llllO 1110*
-
Buffer 2| 0111 | 0111 |o111*{ 0111 | 1111 | 1111 | 1111 | 1111 |1111* 1111
1
Buffer 3| — — — — j 1101 | 1101 | 1101 |1]01* 1101 j 1101
—1
Buffer 4 | I

FIG. f. The state of the processors’ receiving buffers afier step 3 of the second iteration.

@@@@@@@@.

START| 1 3005 | 5 s | s
ENENE

END | 2 | 2 4| al 7] 71} 7 10

Tnput | 0010 [(0001 [o111 | olot [1001 | 1010 | 1000 | 1101 |_1111 1110

FIG. g The placement of the data elements after step 8 of the second iteration of the algorithm, and ~
the associated values for START and END.

ONONONONONONONONOND

Buffer 1]0001* | 0001 |0101%| 0101 |1001*] 1001 | 1001 {1101#{ 1101 | 1101
Bater 2l — | — 1 — | — l1o00 t000%] 1000 — | — | —
Buffer 3 l

FIG. h. The state of the processors’ receiving buffers right after step | of the third iteration of the

algorithm.

[image: image3.png]OB OB ONONONGEONOROND

Buffer 1| 0010 |0010* | 0111 {O111* | 1010 | 1010 |1010*| 1111 | 1111 |1111*

Buffer 2 1110 }1110*] 1110
Buffer 3

FIG. i. The state of the processors’ receiving bulfers right after step 3 of the third iteration of the
algorithm.

START

OB OB ONONGEONOGRORORD,

END 1 2 3 4 6 6 7 8 10 10
T
Input | 0001 | 0010 | 0101 | 0111 | 1001 | 1000 | 1010 | 1101 | 1110 | 1111

FIG. j. The placement of the data elements after step 8 of the third iteration of the algorithm and
the associated values for START and END.

OO ONORONORONORONT)

Buffer 1| — |oo10%] — | — |1600*|1000 1010*[_1 1110*
Buffer 2 | | | J |

1110

FIG. k. The state of the processors’ receiving buffers right after step 1 of the fourth iteration of the
algorithm.

OJONONONOGNGRONONOND

Buffer 1] 0001 | — o101 0111*)‘1001 1001+ — ,110:_‘1111 11

Buffer 2 ‘
FIG. 1. The state of the processors’ receiving buffers right afier step 3 of the fourth iteration of the
algorithm.

ONONONONONOCNO
START1|2345’67

END 1 2 3 4 5 ‘ 6 7 } 8 9 10
Input | 0001 | 0010 | 0101 | OL11 1000|1001 1010|1101 110 | 1111

® ® O
8 9 | 10

FIG. m. The placement of the data elements after step 8 of the fourth iteration of the algorithm, and
the associated values for START and END. This is the end of the algorithm.

3. Rotatesort

Macro BALANCE applies to a subarray of size u x v and consists of three

steps:

a. Sort all columns downward.

b. Rotate each row i rightward by (i mod v) positions.

c. Sort alt columns downward.

Macro UNBLOCK, distributes the data elements of each block among all

columns. It consists of two steps:

a. Rotate each row i rightward by (iS1/2 mod S) positions.

b. Sort all columns downward.

Macro SHEAR: equivalent to performing one iteration of the shear-sort

algorithm [1]. It consists of two steps:
a. Sort all even-numbered rows rightward and all odd-numbered rows

leftward.

b. Sort all columns downward.
The Rotatesort algorithm can be described in terms of these macros as

PROCEDURE Rotatesort.

(1) Perform BALANCE on each vertical slice.

(2) Perform UNBLOCK on the entire array.

(3) Perform BALANCE on each horizontal slice.

(4) Perform UNBLOCK on the entire array.

(5) Perform three iterations of SHEAR on the array.

(6) Sort all rows rightward.
4. Conclusion

Created by : Kuen-Feng Huang

Date : Dec. 23, 1999
