Capturing Causality in Distributed Systems

Michel Raynal, Mukesh Singhal

IEEE Computer, pp. 49-56, February 1996

Abstract

This article presents a general framework of a system of logical clocks in distributed systems and discuss three methods—scalar, vector, and matrix—for implementing logical time in these systems. And it also presents three efficient implementations.

Introduction

A MODEL OF DISTRUBUTED EXECUTIONS

[image: image1.png]L

®
4
b

s

\

v

[]
[

P3

v

Figure 1. The time diagram of a distributed
execution.

CONSISTENT:

· clock consistency:

e1 (e2 (C(e1) < C(e2)

· strongly consistent:

e1 (e2 (C(e1) < C(e2)
Implementing logical clocks

· SCALAR TIME

[image: image2.png]567

Figure 2. Evolution of scalar time in distributed
execution.

Rules R1 and R2 update the clocks as follows.

R1. Before executing an event (send, receive, or internal), pi executes the following:

Ci := Ci + d (d > 0)

R2. Each message piggybacks the clock value of its sender at sending time. When pi receives a message with the timestamp Cmsg, it executes the following actions:

1. Ci := max(Ci , Cmsg)

2. Execute R1.

3. Deliver the message.

However, the system of scalar clocks is not strongly consistent.

· VECTOR TIME

[image: image3.png]1
0
9

2
10
Q

:

fin T
Nl/ :

»
»
3

3
2

3
4

Figure 3. Evolution of vector time in distributed sys-
tems.

The process pi use the following R1 and R2 to update its clock.

R1. Before executing an event, pi updates its local logical time as follows:

vti[i] := vti[i] + d (d > 0)

R2. Each sender process piggybacks a message m with its vector clock value at sending time. Upon receiving such a message (m, vt), pi executes the following sequence of actions:

1. Update its logical global time as follows:

1 (k (n: vti[k] := max(vti[k], vt[k])

2. Execute R1.

3. Deliver the message m.

The system of vector clocks is strongly consistent.

· MATRIX TIME
[image: image4.png]A

4 >
me,[k, j] € Yy e
p; . .

Figure 4. Evolution of matrix time in distributed
systems.

[image: image5.png][000]

Mo

P

—_,o o
oo
oo

(m2 : b)

Process pi use the following R1 and R2 to update its clock.

R1. Before executing an event, pi updates its local logical time as follows:

mti[i, i] := mti[i, i] + d (d > 0)
R2. Each message m is piggybacked with the matrix time mt. When pi receives such a message (m, mt) from pi, pi executes the following sequence of actions:

1. Update its logical global time as follows:

1 (k (n: mti[i, k] := max(mti[i,k], mt[j, k])

1 (k, l (n: mti[k, l] := max(mti[k, l], mt[k, l])

2. Execute R1.

4. Deliver message m.

EFFICIENT IMPLEMENTATIONS

· Singhal-Kshemkalyani’s differential technique
[image: image6.png]P <«

AN,
0 1
0 0
0 10

O =00

ko)
&
<
—
—ooco
¢
—_
=
e
il
=
=
Y
 /

Pa ¢

Figure 5. The Singhal-Kshemkalyani technique for
vector clocks.

· Fowler-Zwaenepoel’s direct-dependency technique
[image: image7.png]P

— <t T O

—_—
— M A O

~— N — O
—

—
— — O Q
——

{1}

— O OC

o
P

L

{4

O O T ~—
OO m— ¢

{2}

»
>

{1

P3

o OO~

Pa

Figure 6. The Fowler-Zwaenepoel technique for vec-

tor clocks.

· Jard-Jourdan’s adaptive technique
[image: image8.png]v.pt, = {(1,0) v.pt = {01, 1)
Py >
Oy pt,
v.pty = (2,0} {1,0),2,0)}
P2 >
{(1,0),(2,0% i}
v.pt;={3,0) vpty={(3,1) DBUE 21 32,1 B30
p . * -——p
: el_pt; = {(3,0)} e2_pt;={(1,0) e3.pt;=
{(2,0),(3,1)} {(3.2).(4,1)}
v.p VPt =
| pte= (4.0) @oren @1 @ _
4 >
el.pt,= {(4,0 5,1}
phaz {0
{(5. 1)}
R L) vpts=(62)
° v.pts={(51)} v.pts= e2.pts=
el_pts = {(5,0)} {(4,1).(5,1)} {(4.1).(5,1)}

Figure 7. The Jard-Jourdan technique for vector clocks.

Conclusion

We have presented a general framework of logical clocks in distribution systems and have discussed three systems of logical clocks: scalar, vector, and matrix. We also discussed three efficient implementations of vector clocks; similar techniques can be used to efficiently implement matrix clocks.

_957032985.doc
[image: image1.png][000]

Mo

P

—_,o o
oo
oo

(m2 : b)

