§The Searching Strategies



e.g. satisfiability problem

x1�x2�x3��F�F�F��F�F�T��F�T�F��F�T�T��T�F�F��T�F�T��T�T�F��T�T�T��
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Fig. 6-1 Tree Representation of Eight Assignments.



If there are n variables x1, x2, �,xn, then there are 2n possible assignments.

�an instance:

-x1��..���(1)

 x1�����.(2)

 x2 v x5���.(3)

 x3�����.(4)

-x2��.���.(5)
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Fig. 6-2 A Partial Tree to Determine the Satisfiability Problem.



We may not need to examine all possible assignments.

 

g. the Hamiltonian circuit problem
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Fig. 6-6 A Graph Containing a Hamiltonian Circuit
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Fig. 6-8 The Tree Representation of Whether There Exists a Hamiltonian Circuit of the Graph in Fig. 6-6

�The breadth-first search



e.g. 8-puzzle problem

� EMBED PI3.Image  ���Fig. 6-10 A Search Tree Produced by a Breadth-First Search



The breadth-first search uses a queue to holds all

expanded nodes.

�The depth-first search



e.g. sum of subset problem

S={7, 5, 1, 2, 10}

( S� ( S ( sum of S� = 9 ? 
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Fig. 6-11 A Sum of Subset Problem Solved by Depth-First Search.



A stack can be used to guide the depth-first search.

�

Hill climbing

a variant of depth-first search

The method selects the locally optimal node to 

expand.



e.g. 8-puzzle problem

evaluation function f(n) = d(n) + w(n)

where d(n) is the depth of node n

w(n) is # of misplaced tiles in node n.
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Fig. 6-15 An 8-Puzzle Problem Solved by a Hill 

Climbing Method





Best-first search strategy

Combing depth-first search and breadth-first

search

Selecting the node with the best estimated cost

among all nodes.

This method has a global view.

� EMBED PI3.Image  ���                      Goal Node

Fig. 6-16 An 8-Puzzle Problem Solved by a Best-First Search Scheme

�Best-First Search Scheme



Step1:Form a one-element list consisting of the root node.

Step2:Remove the first element from the list. Expand the first element. If one of the descendants of the first element is a goal node, then stop; otherwise, add the descendants into the list.

Step3:Sort the entire list by the values of some estimation function.

Step4:If the list is empty, then failure. Otherwise, go to Step 2.



The branch-and-bound strategy

This strategy can be used to solve optimization problems. (DFS, BFS, hill climbing and best-first search can not be used to solve optimization problems.)



e.g.
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Fig. 6-17 A Multi-Stage Graph Searching Problem.

�Solved by branch-and-bound:
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�The personnel assignment problem

a linearly ordered set of persons P={P1, P2, �, Pn} where P1<P2<�<Pn

a partially ordered set of jobs J={J1, J2, �, Jn}

Suppose that Pi and Pj are assigned to jobs f(Pi) and f(Pj) respectively. If f(Pi) ( f(Pj), then Pi ( Pj. Cost Cij is the cost of assigning Pi to Jj. We want to find a feasible assignment with the min. cost. i.e.

Xij = 1 if Pi is assigned to Jj and Xij = 0 otherwise.

Minimize (i,j CijXij



e.g.

J1��J2��↓�↘�↓��J3��J4��Fig. 6-21 A Partial Ordering of Jobs



After topological sorting, one of the following topologically sorted sequences will be generated:



J1,�J2,�J3,�J4��J1,�J2,�J4,�J3��J1,�J3,�J2,�J4��J2,�J1,�J3,�J4��J2,�J1,�J4�J3��

one of feasible assignments:

P1→J1, P2→J2, P3→J3, P4→J4

cost matrix:

Jobs

Persons�1�2�3�4��1�29�19�17�12��2�32�30�26�28��3�3�21�7�9��4�18�13�10�15��Table 6-1 A Cost Matrix for a Personnel Assignment Problem



reduced cost matrix:

subtract a constant from each row and each column respectively such that each row and each column contains at least one zero. 

  

Jobs

Persons�1�2�3�4���1�17�4�5�0�(-12)��2�6�1�0�2�(-26)��3�0�15�4�6�(-3)��4�8�0�0�5�(-10)����(-3)�����Table 6-2 A Reduced Cost Matrix



total cost subtracted: 12+26+3+10+3 = 54

This is a lower bound of our solution.



�Enumeration tree:
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bounding of subsolutions:

� EMBED PI3.Image  ���



�The traveling salesperson optimization problem

It is NP-complete



e.g. cost matrix:

j

i�1�2�3�4�5�6�7��1�∞�3�93�13�33�9�57��2�4�∞�77�42�21�16�34��3�45�17�∞�36�16�28�25��4�39�90�80�∞�56�7�91��5�28�46�88�33�∞�25�57��6�3�88�18�46�92�∞�7��7�44�26�33�27�84�39�∞��Table 6-3 A Cost Matrix for a Traveling Salesperson Problem.



Reduced cost matrix:

j

i�1�2�3�4�5�6�7���1�∞�0�90�10�30�6�54�(-3)��2�0�∞�73�38�17�12�30�(-4)��3�29�1�∞�20�0�12�9�(-16)��4�32�83�73�∞�49�0�84�(-7)��5�3�21�63�8�∞�0�32�(-25)��6�0�85�15�43�89�∞�4�(-3)��7�18�0�7�1�58�13�∞�(-26)���������reduced:84��Table 6-4 A Reduced Cost Matrix.

j

i�1�2�3�4�5�6�7��1�∞�0�83�9�30�6�50��2�0�∞�66�37�17�12�26��3�29�1�∞�19�0�12�5��4�32�83�66�∞�49�0�80��5�3�21�56�7�∞�0�28��6�0�85�8�42�89�∞�0��7�18�0�0�0�58�13�∞�����(-7)�(-1)���(-4)��Table 6-5 Another Reduced Cost Matrix.



total cost reduced: 84+7+1+4 = 96 (lower bound)



decision tree:
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Fig. 6-25 The Highest Level of a Decision Tree.



If we use arc 3-5 to split, the difference on the lower bounds is 17+1 = 18.

�

�j

i�1�2�3�4�5�7��1�∞�0�83�9�30�50��2�0�∞�66�37�17�26��3�29�1�∞�19�0�5���5�3�21�56�7�∞�28��6�0�85�8�∞�89�0��7�18�0�0�0�58�∞��Table 6-6 A Reduced Cost Matrix. If Arc 4-6 is Included.



The cost matrix for all solution with arc 4-6:

��j

i�1�2�3�4�5�7���1�∞ �0�83�9�30�50���2�0�∞�66�37�17�26���3�29�1�∞�19�0�5���5�0�18�53�4�∞�25�(-3)��6�0�85�8�∞�89�0���7�18�0�0�0�58�∞���Table 6-7 A Reduced Cost Matrix for that in Table 6-6.



total cost reduced: 96+3 = 99 (new lower bound)

� EMBED PI3.Image  ���Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson Problem.

�The 0/1 knapsack problem

positive integer P1, P2, �, Pn (profit)

W1, W2, �, Wn (weight)

M (capacity)

maximize � EMBED Equation.2  ��� 

subject to � EMBED Equation.2  ��� Xi = 0 or 1, i =1, �, n.

The problem is modified:

minimize � EMBED Equation.2  ���
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Fig. 6-27 The Branching Mechanism in the Branch-and-Bound Strategy to Solve 0/1 Knapsack Problem.

e.g. n = 6, M = 34

i�1�2�3�4�5�6��Pi�6�10�4�5�6�4��Wi�10�19�8�10�12�8��(Pi/Wi ( Pi+1/Wi+1)��a feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0, 

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

Relax our restriction from Xi = 0 or 1to 0 ( Xi ( 1 (knapsack problem)



Let � EMBED Equation.2  ��� be an optimal solution for 0/1 knapsack problem and � EMBED Equation.2  ��� be an optimal solution for knapsack problem. Let Y=� EMBED Equation.2  ���,

Y� =  � EMBED Equation.2  ���.

( Y� ( Y



We can use the greedy method to find an optimal solution for knapsack problem:



X1 = 1, X2 =1, X3 = 5/8, X4 = 0, X5 = 0, X6 =0

-(P1+P2+5/8P3) = -18.5 (lower bound)

-18 is our lower bound. (only consider integers)



( -18 ( optimal solution ( -16

optimal solution: X1 = 1, X2 = 0, X3 = 0, X4 = 1, X5 = 1, X6 = 0

-(P1+P4+P5) = -17

�

� EMBED PI3.Image  ���Fig. 6-28 0/1 Knapsack Problem Solved by Branch-and-Bound Strategy



�The A* algorithm

used to solve optimization problems.

using the best-first strategy.

If a feasible solution (goal node) is obtained, then it is optimal and we can stop.



cost function of node n: f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): �real� cost from node n to a goal node.



h(n) ( h*(n)



( f(n) = g(n) + h(n) ( g(n)+h*(n) = f*(n)



e.g.
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Fig. 6-36 A Graph to Illustrate A* Algorithm.

�Step 1.
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g(A)=2�h(A)=min{2,3}=2�f(A)=2+2=4��g(B)=4�h(B)=min{2}=2�f(B)=4+2=6��g(C)=3�h(C)=min{2,2}=2�f(C)= 3+2=5��

Step 2. Expand A
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g(D)=2+2=4�h(D)=min{3,1}=1�f(A)=4+1=5��g(E)=2+3=5�h(E)=min{2,2}=2�f(B)=5+2=7���Step 3. Expand C
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g(F)=3+2=5�h(F)=min{3,1}=1�f(F)=5+1=6��g(G) =3+2=5�h(G)=min{5}=5�f(G) =5+5=10��

Step 4. Expand D
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g(H)=2+2+1=5�h(H)=min{5}=5�f(H)=5+5=10��g(I)=2+2+3=7�h(I)=0�f(I)=7+0=7���Step 5. Expand B
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g(J)=4+2=6�h(J)=min{5}=5�f(J)=6+5=11��

Step 6. Expand F
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g(K)=3+2+1=6�h(K)=min{5}=5�f(K)=6+5=11��g(L)=3+2+3=8�h(L)=0�f(L)=8+0=8��The channel routing problem
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Fig. 6-40 A Channel Specification



illegal wirings:

� EMBED PI3.Image  ���We want to find a layout which minimizes the number of tracks.

a feasible layout:
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an optimal layout:
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This problem is NP-complete.



horizontal constraint graph(HCG)
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e.g. net 8 must be to the left of net 1 and net 2 if

     they are in the same track.

vertical constraint graph:

� EMBED PI3.Image  ���max. cliques in HCG: {1,8}, {1,3,7}, {5,7}

Each max. clique can be assigned to a track.
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Fig. 6-46 The First Level of a Tree to Solve a Channel Routing Problem



f(n) = g(n) + h(n),		g(n): the level of the tree

h(n): maximal local density
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Fig 6-48 A Partial Solution Tree for the Channel Routing Problem by Using A* Algorithm.
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