§The Searching Strategies

e.g. satisfiability problem

x1�x2�x3��F�F�F��F�F�T��F�T�F��F�T�T��T�F�F��T�F�T��T�T�F��T�T�T��

� EMBED PI3.Image ���

Fig. 6-1 Tree Representation of Eight Assignments.

If there are n variables x1, x2, �,xn, then there are 2n possible assignments.

�an instance:

-x1��..���(1)

 x1�����.(2)

 x2 v x5���.(3)

 x3�����.(4)

-x2��.���.(5)

� EMBED PI3.Image ���

Fig. 6-2 A Partial Tree to Determine the Satisfiability Problem.

We may not need to examine all possible assignments.

g. the Hamiltonian circuit problem

� EMBED PI3.Image ���

Fig. 6-6 A Graph Containing a Hamiltonian Circuit

� EMBED PI3.Image ���

Fig. 6-8 The Tree Representation of Whether There Exists a Hamiltonian Circuit of the Graph in Fig. 6-6

�The breadth-first search

e.g. 8-puzzle problem

� EMBED PI3.Image ���Fig. 6-10 A Search Tree Produced by a Breadth-First Search

The breadth-first search uses a queue to holds all

expanded nodes.

�The depth-first search

e.g. sum of subset problem

S={7, 5, 1, 2, 10}

(S� (S (sum of S� = 9 ?

� EMBED PI3.Image ���

Fig. 6-11 A Sum of Subset Problem Solved by Depth-First Search.

A stack can be used to guide the depth-first search.

�

Hill climbing

a variant of depth-first search

The method selects the locally optimal node to

expand.

e.g. 8-puzzle problem

evaluation function f(n) = d(n) + w(n)

where d(n) is the depth of node n

w(n) is # of misplaced tiles in node n.

� EMBED PI3.Image ���

Fig. 6-15 An 8-Puzzle Problem Solved by a Hill

Climbing Method

Best-first search strategy

Combing depth-first search and breadth-first

search

Selecting the node with the best estimated cost

among all nodes.

This method has a global view.

� EMBED PI3.Image ��� Goal Node

Fig. 6-16 An 8-Puzzle Problem Solved by a Best-First Search Scheme

�Best-First Search Scheme

Step1:Form a one-element list consisting of the root node.

Step2:Remove the first element from the list. Expand the first element. If one of the descendants of the first element is a goal node, then stop; otherwise, add the descendants into the list.

Step3:Sort the entire list by the values of some estimation function.

Step4:If the list is empty, then failure. Otherwise, go to Step 2.

The branch-and-bound strategy

This strategy can be used to solve optimization problems. (DFS, BFS, hill climbing and best-first search can not be used to solve optimization problems.)

e.g.

� EMBED PI3.Image ���

Fig. 6-17 A Multi-Stage Graph Searching Problem.

�Solved by branch-and-bound:

� EMBED PI3.Image ���

�The personnel assignment problem

a linearly ordered set of persons P={P1, P2, �, Pn} where P1<P2<�<Pn

a partially ordered set of jobs J={J1, J2, �, Jn}

Suppose that Pi and Pj are assigned to jobs f(Pi) and f(Pj) respectively. If f(Pi) (f(Pj), then Pi (Pj. Cost Cij is the cost of assigning Pi to Jj. We want to find a feasible assignment with the min. cost. i.e.

Xij = 1 if Pi is assigned to Jj and Xij = 0 otherwise.

Minimize (i,j CijXij

e.g.

J1��J2��↓�↘�↓��J3��J4��Fig. 6-21 A Partial Ordering of Jobs

After topological sorting, one of the following topologically sorted sequences will be generated:

J1,�J2,�J3,�J4��J1,�J2,�J4,�J3��J1,�J3,�J2,�J4��J2,�J1,�J3,�J4��J2,�J1,�J4�J3��

one of feasible assignments:

P1→J1, P2→J2, P3→J3, P4→J4

cost matrix:

Jobs

Persons�1�2�3�4��1�29�19�17�12��2�32�30�26�28��3�3�21�7�9��4�18�13�10�15��Table 6-1 A Cost Matrix for a Personnel Assignment Problem

reduced cost matrix:

subtract a constant from each row and each column respectively such that each row and each column contains at least one zero.

Jobs

Persons�1�2�3�4���1�17�4�5�0�(-12)��2�6�1�0�2�(-26)��3�0�15�4�6�(-3)��4�8�0�0�5�(-10)����(-3)�����Table 6-2 A Reduced Cost Matrix

total cost subtracted: 12+26+3+10+3 = 54

This is a lower bound of our solution.

�Enumeration tree:

� EMBED PI3.Image ���

bounding of subsolutions:

� EMBED PI3.Image ���

�The traveling salesperson optimization problem

It is NP-complete

e.g. cost matrix:

j

i�1�2�3�4�5�6�7��1�∞�3�93�13�33�9�57��2�4�∞�77�42�21�16�34��3�45�17�∞�36�16�28�25��4�39�90�80�∞�56�7�91��5�28�46�88�33�∞�25�57��6�3�88�18�46�92�∞�7��7�44�26�33�27�84�39�∞��Table 6-3 A Cost Matrix for a Traveling Salesperson Problem.

Reduced cost matrix:

j

i�1�2�3�4�5�6�7���1�∞�0�90�10�30�6�54�(-3)��2�0�∞�73�38�17�12�30�(-4)��3�29�1�∞�20�0�12�9�(-16)��4�32�83�73�∞�49�0�84�(-7)��5�3�21�63�8�∞�0�32�(-25)��6�0�85�15�43�89�∞�4�(-3)��7�18�0�7�1�58�13�∞�(-26)���������reduced:84��Table 6-4 A Reduced Cost Matrix.

j

i�1�2�3�4�5�6�7��1�∞�0�83�9�30�6�50��2�0�∞�66�37�17�12�26��3�29�1�∞�19�0�12�5��4�32�83�66�∞�49�0�80��5�3�21�56�7�∞�0�28��6�0�85�8�42�89�∞�0��7�18�0�0�0�58�13�∞�����(-7)�(-1)���(-4)��Table 6-5 Another Reduced Cost Matrix.

total cost reduced: 84+7+1+4 = 96 (lower bound)

decision tree:

� EMBED PI3.Image ���

Fig. 6-25 The Highest Level of a Decision Tree.

If we use arc 3-5 to split, the difference on the lower bounds is 17+1 = 18.

�

�j

i�1�2�3�4�5�7��1�∞�0�83�9�30�50��2�0�∞�66�37�17�26��3�29�1�∞�19�0�5���5�3�21�56�7�∞�28��6�0�85�8�∞�89�0��7�18�0�0�0�58�∞��Table 6-6 A Reduced Cost Matrix. If Arc 4-6 is Included.

The cost matrix for all solution with arc 4-6:

��j

i�1�2�3�4�5�7���1�∞ �0�83�9�30�50���2�0�∞�66�37�17�26���3�29�1�∞�19�0�5���5�0�18�53�4�∞�25�(-3)��6�0�85�8�∞�89�0���7�18�0�0�0�58�∞���Table 6-7 A Reduced Cost Matrix for that in Table 6-6.

total cost reduced: 96+3 = 99 (new lower bound)

� EMBED PI3.Image ���Fig 6-26 A Branch-and-Bound Solution of a Traveling Salesperson Problem.

�The 0/1 knapsack problem

positive integer P1, P2, �, Pn (profit)

W1, W2, �, Wn (weight)

M (capacity)

maximize � EMBED Equation.2 ���

subject to � EMBED Equation.2 ��� Xi = 0 or 1, i =1, �, n.

The problem is modified:

minimize � EMBED Equation.2 ���

� EMBED PI3.Image ���

Fig. 6-27 The Branching Mechanism in the Branch-and-Bound Strategy to Solve 0/1 Knapsack Problem.

e.g. n = 6, M = 34

i�1�2�3�4�5�6��Pi�6�10�4�5�6�4��Wi�10�19�8�10�12�8��(Pi/Wi (Pi+1/Wi+1)��a feasible solution: X1 = 1, X2 = 1, X3 = 0, X4 = 0,

X5 = 0, X6 = 0

-(P1+P2) = -16 (upper bound)

Any solution higher than -16 can not be an optimal solution.

Relax our restriction from Xi = 0 or 1to 0 (Xi (1 (knapsack problem)

Let � EMBED Equation.2 ��� be an optimal solution for 0/1 knapsack problem and � EMBED Equation.2 ��� be an optimal solution for knapsack problem. Let Y=� EMBED Equation.2 ���,

Y� = � EMBED Equation.2 ���.

(Y� (Y

We can use the greedy method to find an optimal solution for knapsack problem:

X1 = 1, X2 =1, X3 = 5/8, X4 = 0, X5 = 0, X6 =0

-(P1+P2+5/8P3) = -18.5 (lower bound)

-18 is our lower bound. (only consider integers)

(-18 (optimal solution (-16

optimal solution: X1 = 1, X2 = 0, X3 = 0, X4 = 1, X5 = 1, X6 = 0

-(P1+P4+P5) = -17

�

� EMBED PI3.Image ���Fig. 6-28 0/1 Knapsack Problem Solved by Branch-and-Bound Strategy

�The A* algorithm

used to solve optimization problems.

using the best-first strategy.

If a feasible solution (goal node) is obtained, then it is optimal and we can stop.

cost function of node n: f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): �real� cost from node n to a goal node.

h(n) (h*(n)

(f(n) = g(n) + h(n) (g(n)+h*(n) = f*(n)

e.g.

� EMBED PI3.Image ���

Fig. 6-36 A Graph to Illustrate A* Algorithm.

�Step 1.

� EMBED PI3.Image ���

g(A)=2�h(A)=min{2,3}=2�f(A)=2+2=4��g(B)=4�h(B)=min{2}=2�f(B)=4+2=6��g(C)=3�h(C)=min{2,2}=2�f(C)= 3+2=5��

Step 2. Expand A

� EMBED PI3.Image ���

g(D)=2+2=4�h(D)=min{3,1}=1�f(A)=4+1=5��g(E)=2+3=5�h(E)=min{2,2}=2�f(B)=5+2=7���Step 3. Expand C

� EMBED PI3.Image ���

g(F)=3+2=5�h(F)=min{3,1}=1�f(F)=5+1=6��g(G) =3+2=5�h(G)=min{5}=5�f(G) =5+5=10��

Step 4. Expand D

� EMBED PI3.Image ���

g(H)=2+2+1=5�h(H)=min{5}=5�f(H)=5+5=10��g(I)=2+2+3=7�h(I)=0�f(I)=7+0=7���Step 5. Expand B

� EMBED PI3.Image ���

g(J)=4+2=6�h(J)=min{5}=5�f(J)=6+5=11��

Step 6. Expand F

� EMBED PI3.Image ���

g(K)=3+2+1=6�h(K)=min{5}=5�f(K)=6+5=11��g(L)=3+2+3=8�h(L)=0�f(L)=8+0=8��The channel routing problem

� EMBED PI3.Image ���

Fig. 6-40 A Channel Specification

illegal wirings:

� EMBED PI3.Image ���We want to find a layout which minimizes the number of tracks.

a feasible layout:

� EMBED PI3.Image ���

an optimal layout:

� EMBED PI3.Image ���

This problem is NP-complete.

horizontal constraint graph(HCG)

� EMBED PI3.Image ���

e.g. net 8 must be to the left of net 1 and net 2 if

 they are in the same track.

vertical constraint graph:

� EMBED PI3.Image ���max. cliques in HCG: {1,8}, {1,3,7}, {5,7}

Each max. clique can be assigned to a track.

� EMBED PI3.Image ���

Fig. 6-46 The First Level of a Tree to Solve a Channel Routing Problem

f(n) = g(n) + h(n),		g(n): the level of the tree

h(n): maximal local density

� EMBED PI3.Image ���

Fig 6-48 A Partial Solution Tree for the Channel Routing Problem by Using A* Algorithm.

6-� PAGE �6�

