§Approximation Algorithms





Up to now, the best algorithm for solving an NP-complete problem requires exponential time in the worst case. It is too time-consuming.





To reduce the time required for solving a problem, we can relax the problem, and obtain a feasible solution �close� to an optimal solution.





An approximation algorithm for convex hulls





A convex hull of n points in the plane can be computed in O(nlogn) time in the worst case.





An approximation algorithm:





Step1:Find the leftmost and rightmost points.
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Fig. 9-1 An Example for an Approximation Algorithm for Convex Hulls


�
Step2:Divide the points into K strips. Find the highest and lowest points in each strip.
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Fig. 9-2 Dividing Points into Strips





Step3:Apply the Graham scan to those highest and lowest points to construct an approximate convex hull. (The highest and lowest points are already sorted by their x-coordinates.)
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Fig. 9-3 An Approximation Convex Hull


�
Algorithm 9-1 An approximation Algorithm for Convex Hull.


Input:	A set of n points.


Output:An approximate convex hull of S.


Step 1:	Find the leftmost and right most points of S, denoted as A1 and A2, respectively. (with minimum and maximum x-coordinates respectively).


Step 2:	Divide the area bounded by A1 and A2 into k equally spaced strips and for each strip, select the points with the minimum and maximum y-coordinates. Denote the set of points selected in this step together with A1 and A2 as set P.


Step 3:	Construct the convex hull of P and use that as the approximate convex hull of S.





time complexity: O(n+k)


Step 1: O(n)


Step 2: O(n)


Step 3: O(k)





How far away the points outside are from the approximate convex hull?			L/K.


L: the distances between the leftmost and rightmost points.
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Fig. 9-4 The Calculation of Error Caused by the Approximation


An approximation algorithm for Euclidean traveling salesperson problem (ETSP).





The ETSP is to find a shortest closed path through a set S of n points in the plane.





The ETSP is NP-hard.





Algorithm 9-2 An Approximation Algorithm for ETSP


Input:	A set S of n points in the plane.


Output:An approximate traveling salesperson tour of S.


Step 1:	Find a minimal spanning tree T of S.


Step 2:	Find a minimal Euclidean weighted matching M on the set of vertices of odd degrees in T. Let G=M∪T.


Step 3:	Find an Eulerian cycle of G and then traverse it to find a Hamiltonian cycle as an approximate tour of ETSP by bypassing all previously visited vertices.


g.


Step1:
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Fig. 9-6 A Minimal Spanning Tree of Eight Points


�
Step2:The number of points with odd degrees must be even. � EMBED Equation.2  ��� , even
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Fig. 9-7 A Minimal Weighted Matching of Six Vertices.





Step3:
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Fig 9-8. An Eulerian Cycle and the Resulting Approximate Tour


�
time complexity: O(n3)


Step 1: O(nlogn)


Step 2: O(n3)


Step 3: O(n)





How close the approximate solution to an optimal solution?





The approximate tour is within 3/2 of an optimal one.


Reasoning:


L: optimal tour


j1…i1j2…i2j3…i2m


{i1,i2,…,i2m}: the set of odd degree vertices in T. 


2 matchings: M1={[i1,i2],[i3,i4],…,[i2m-1,i2m]}


M2={[i2,i3],[i4,i5],…,[i2m,i1]}


length(L) ( length(M1) + length(M2)


(triangular inequality)


�( 2 length(M )


(length(M) ( 1/2 length(L )


G = T∪M





(length(G)=length(T) + length(M)


( length(L) + 1/2 length(L)


= 3/2 length(L)


�
An approximation algorithm for the bottleneck traveling salesperson problem


minimize the longest edge of a tour.


This is a mini-max problem.


This problem is NP-complete.


The input data for this problem fulfill the following assumptions:


(i)	The graph is a complete graph.


All edges obey the triangular inequality rule.





An algorithm for finding an optimal solution:


Step1: Sort all edges in G = (V,E) into a nondecresing sequence |e1|(|e2|(…(|em|. Let G(ei) denote the subgraph obtained from G by denoting all edges longer than ei.


Step2:  i←1


Step3:  If there exists a Hamiltonian cycle in G(ei), then this cycle is the solution and stop.


Step4:  i←i+1 . Go to Step 3.


�
e.g.
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Fig. 9-9 A Complete Graph


e.g.
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Fig. 9-10 G(AC) of the Graph in Fig 9-9
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Fig. 9-11 G(BD) of Graph in Fig 9-9


There is a Hamiltonian cycle, A-B-D-C-E-F-G-A, in G(BD).


The optimal solution is 13.


Def: The t-th power of G=(V,E), denoted as Gt=(V,Et), is a graph that an edge (u,v)(Et if there is a path from u to v with at most t edges in G.


If a graph G is bi-connected, then G2 has a Hamiltonian cycle.


�
e.g.
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not bi-connected          bi-connected


g.
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Fig. 9-13 A Bi-Connected Graph


e.g.


���� EMBED PBrush  ���


Fig. 9-14 G2 of the Graph in Fig 9-13.





Algorithm 9-3 An Approximation Algorithm to Solve the Special Bottleneck Traveling Salesperson Problem.


Input:	A complete graph G=(V,E) where all edges satisfy triangular inequality.


Output:A tour in G whose longest edges is not greater than twice of the value of an optimal solution to the special bottleneck traveling salesperson problem of G.


Step 1:	Sort the edges into |e1|(|e2|(…(|em|.


Step 2:	i := 1.


Step 3:	If G(ei) is bi-connected, construct G(ei)2, find a Hamiltonian cycle in G(ei)2 and return this as the output, otherwise, go to Step 4.


Step 4:	i := i + 1. Go to Step 3.
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Fig. 9-15 G(FE) of the Graph in Fig 9-9
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Fig. 9-16 G(FG) of the Graph in Fig 9-9
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Fig. 9-17 G(FG)2


A Hamiltonian cycle: A-G-F-E-D-C-B-A.


the longest edge: 16





time complexity:


polynomial time





The approximate solution is bounded by two times an optimal solution.





Reasoning:


A Hamiltonian cycle is bi-connected.


eop: the longest edge of an optimal solution


G(ei): the first bi-connected graph 


|ei|(|eop|


The length of the longest edge in G(ei)2(2|ei|


(triangular inequality) 					(2|eop|





�
If there is a polynomial approximation algorithm which produces a bound less than two, then NP=P.


(The Hamiltonian cycle decision problem reduces to this problem.)


Proof:


For an arbitrary graph G=(V,E), we expand G to a complete Gc:


Cij = 1 if (i,j) ( E


Cij = 2 if otherwise


(The definition of Cij satisfies the triangular inequality.)


Let V* denote the value of an optimal solution of the bottleneck TSP of Gc.


V* = 1 ( G has a Hamiltonian cycle





Because there are only two kinds of edges, 1 and 2 in Gc, if we can produce an approximate solution whose value is less than 2V*, then we can also solve the Hamiltonian cycle decision problem.


�
An approximation algorithm for the bin packing problem





n items a1, a2, …, an, 	0( ai ( 1, 1 ( i ( n


to determine the minimum number of bins of unit capacity to accomodate all n items.





g. n = 5, {0.3, 0.5, 0.8, 0.2 0.4}
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Fig. 9-27 An Example of the Bin-Packing Problem





The bin packing problem is NP-hard.


�
An approximation algorithm: (first-fit)


place ai into the lowest-indexed bin which can accommodate ai.





S(ai):		the size of ai


OPT(I):	the size of an optimal solution of an instance I


FF(I):	the size of bins in the first-fit algorithm


C(Bi):	the sum of the sizes of aj�s packed in bin Bi in the first-fit algorithm





OPT(I) ( � EMBED Equation.2  ���


C(Bi) + C(Bi+1) ( 1


m nonempty bins:


C(B1)+C(B2)+…+C(Bm) ( m/2


( FF(I) = m < 2� EMBED Equation.2  ��� = 2� EMBED Equation.2  ��� ( 2 OPT(I) FF(I) < 2 OPT(I)


�
An approximation algorithm for the rectilinear m-center problem





The sides of a rectilinear square are parallel or perpendicular to the x-axis of the Euclidean plane.


The problem is to find m rectilinear squares covering all of the n given points such that the maximum side length of these squares is minimized.


�� EMBED PI3.Image  ���


Fig. 9-28 A Rectilinear 5-center Problem Instance





This problem is NP-complete.


This problem for the solution with error ratio < 2 is also NP-complete.


�
input: P={P1, P2, …, Pn}


The size of an an optimal solution must be equal to one of the � EMBED Equation.2  ���(Pi,Pj), 1 ( i < j ( n, where � EMBED Equation.2  ���((x1,y1),(x2,y2)) = max{|x1-x2|,|y1-y2|}.





Algorithm 9-5 Approximation Algorithm Rectilinear Center


Input:	A set P of n points, number of centers: m


Output:SQ[1], …, SQ[m]: A feasible solution of the rectilinear m-center problem with size less than or equal to twice of the size of an optimal solution.


Step 1:	Compute rectilinear distances of all pairs of two points and sort them together with 0 into an ascending sequence D[0]=0, D[1], …, D[n(n-1)/2].


Step 2:	LEFT := -1, RIGHT := n(n-1)/2.


Step 3:	i := ((LEFT + RIGHT)/2(.


Step 4:	If Test(m, P, D[i]) is not �failure� then


RIGHT := i


else


LEFT := i


Step 5:	If RIGHT = LEFT + 1 then


return Test(m, P, D[RIGHT])


else


go to Step 3.


�
Algorithm 9-6 Algorithm Test(m, P, r):


Input:	point set: P, number of centers: m, size: r.


Output:	�failure�, or SQ[1], …, SQ[m] m squares of size 2r covering P.


Step 1:	PS := P


Step 2:	For i := 1 to m do


If PS ( ( then


p := the point is PS with the smallest x-value


SQ[i] := the square of size 2r with center at p


PS := PS - {points covered by SQ[i]}


else


SQ[i] := SQ[i-1].


Step 3:	IF PS = ( then


return SQ[1], …, SQ[m]


else


return �failure�.
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Fig. 9-29 The First Application of the Relaxed Test Subroutine.
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Fig. 9-30 The Second Application of the Test Subroutine.
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�Fig. 9-31 A Feasible Solution of the Rectilinear 5-center Problem


time complexity: O(n2logn)


Step 1: O(n)


Step 2: O(1)


Step 3: 


     ∫		  O(logn)* O(mn) = O(n2logn)


Step 5: 


�
The approximation algorithm is of error ratio 2.


If r is feasible, then Test(m, P, r) returns a feasible solution of size 2r.
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Fig. 9-32 The Explanation of Si ( Si�
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A Hamiltonian cycle





A-B-C-D-E-F-G-A











