
The CFS and ED Data Distribution Schemes for Sparse Arrays on
Distributed Memory Multicomputers1

Chun-Yuan Lin, Yeh-Ching Chung2, and Jen-Shiuh Liu
Department of Information Engineering

Feng Chia University, Taichung, Taiwan 407, ROC
Tel: 886-4-24517250 x3765

Fax: 886-4-24516101
Email: {cylin, ychung, liuj}@iecs.fcu.edu.tw

Abstract

A data distribution scheme of sparse arrays on a
distributed memory multicomputer, in general, is
composed of three phases, data partition, data
distribution, and data compression. In the data
partition phase, a global sparse array is partitioned
into some local sparse arrays. In the data
distribution phase, these local sparse arrays are
distributed to processors. In the data compression
phase, a local sparse array is compressed by some
data compression methods in order to obtain better
performance for sparse array operations. To
implement the data distribution scheme, methods
proposed in the literature first perform the data
partition phase, then the data distribution phase,
followed by the data compression phase. We called
this scheme as Send Followed Compress (SFC)
scheme. In this paper, we propose two other data
distribution schemes, Compress Followed Send (CFS)
and Encoding-Decoding (ED), for sparse array
distribution. In the CFS scheme, the data
compression phase is performed before the data
distribution phase. In the ED scheme, the data
compression phase can be divided into two steps,
encoding and decoding. The encoding step and the
decoding step are performed before and after the
data distribution phase, respectively. To evaluate
the CFS and the ED schemes, we compare them with
the SFC scheme. In theoretical analysis, we analyze
the SFC, the CFS, and the ED schemes in terms of
the data distribution time and the data compression
time. In experimental test, for all test cases, we
implemented these schemes on an IBM SP2 parallel
machine. From the experimental results, the CFS
and the ED schemes outperform the SFC scheme for
all test cases. For the CFS and the ED schemes, the
ED scheme outperforms the CFS scheme.

Index Terms － Data distribution schemes, Data
compression methods, Partition methods, Sparse ratio,
Distributed memory multicomputers

1. The work of this paper was partially supported by NSC under
contract NSC90-2213-E-035-019

2. The corresponding author.

1. Introduction

Array operations are useful in a large number of
important scientific codes, such as molecular
dynamics [16], finite-element methods [23], climate
modeling [40], etc. A data distribution scheme of
sparse arrays on a distributed memory multicomputer,
in general, is composed of three phases, data partition,
data distribution, and data compression. In the data
partition phase, a global sparse array is partitioned
into some local sparse arrays. In the data
distribution phase, these local sparse arrays are
distributed to processors. In the data compression
phase, a local sparse array is compressed by some
data compression methods in order to obtain better
performance for sparse array operations.

To implement the data distribution scheme,
many methods have been proposed in the literature [2,
10-14, 37-42, 45]. Among them, the Multiple
Recursive Decomposition (MRD) scheme [2, 42]
have been popularly used to solve other important
issues for sparse array problems [2-7, 10-14, 19-22,
37-42, 45]. In the data partition phase, the MRD
scheme uses a 2D mesh partition with load-balancing
method that is similar to (Block, Block) data
distribution schemes used in Fortran 90 [1]. In the
data distribution phase, both methods send local
sparse arrays to processors. In the data compression
phase, both methods use either the Compressed
Column Storage (CCS) scheme [8] or the
Compressed Row Storage (CRS) scheme [8] to
compress the local sparse array in each processor.

For methods mentioned above, the three phases
of the data distribution scheme are performed in the
following order, the data partition phase, then the
data distribution phase, followed by the data
compression phase. A data distribution scheme with
this order is called the Send Followed Compress
(SFC) scheme. In this paper, we propose two data
distribution schemes, Compress Followed Send (CFS)
and Encoding-Decoding (ED), for sparse array
distribution. In the CFS scheme, the data
compression phase is performed before the data
distribution phase. The three phases in the CFS
scheme are performed in the following order, the data
partition phase, then data compression phase,
followed by the data distribution phase. The ED is a

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

199

novel concept in which the data compression phase
can be divided into two steps, encoding and decoding.
The encoding step and the decoding step are
performed before and after the data distribution phase,
respectively. In encoding step, we encode
information of nonzero array elements into a special
buffer for each local sparse array. In decoding step,
the special buffer is decoded into a compressed local
sparse array. For the ED scheme, the data partition
phase is performed first, then the encoding step,
followed by the data distribution phase and the
decoding step.

To evaluate the CFS and the ED schemes, we
compare them with the SFC scheme. In the data
partition phase, the 2D mesh partition with
load-balancing method is used for these three
schemes. In the data distribution phase, local sparse
arrays, whether compressed or not, are sent to
processors in sequence. In the compression phase,
the CRS/CCS methods are used to compress sparse
local arrays for the SFC and the CFS schemes while
the encoding/decoding step is used for the ED
scheme. Based on the methods used in the three
phases, both theoretical analysis and experimental
test were conducted. In theoretical analysis, we
analyze the SFC, the CFS, and the ED schemes in
terms of the data distribution time and the data
compression time. Here, we do not consider the
data partition time since the comparisons of the data
distribution time and the data compression time of
these three schemes are based on the same partition
methods. In experimental test, we implemented the
SFC, the CFS, and the ED schemes on an IBM SP2
parallel machine. From the experimental results, for
all test cases, the CFS and the ED schemes
outperform the SFC scheme. The reason is that we
do not send entire local sparse arrays to processors in
the CFS and the ED schemes. The data distribution
time can be reduced. For the CFS and the ED
schemes, the ED scheme outperforms the CFS
scheme for all test cases. The reason is that, for the
ED scheme, the data distribution time is less than that
of the CFS scheme.

This paper is organized as follows. In Section
2, a brief survey of related work will be presented.
Section 3 will describe the SFC, the CFS, and the ED
schemes in detail. Section 4 will analyze the
theoretical performance for the SFC, the CFS, and
the ED schemes based on the 2D mesh partition with
load-balancing method. The experimental results of
these three schemes will be given in Section 5.

2. Related Work

Many methods have been proposed in the
literature to implement the data distribution scheme
[2, 10-14, 37-42, 45]. Zapata et al. [2, 42] have
proposed a distribution scheme, MRD, for
two-dimensional sparse arrays. Based on the MRD
scheme, they solve other important problems based

on sparse arrays [2-4, 6-7, 37-42, 44]. The MRD
scheme can be considered as a generalization of the
Binary Recursive Decomposition [9], a well-known
data distribution scheme. For the MRD scheme,
each processor has the same number of nonzero array
elements, yet each processor has different size of
local sparse array. The data compression time is
determined by a processor, which has largest size of
local sparse array. The data compression time for
the MRD scheme will be large when nonzero array
elements were in a part of a global sparse array. The
reason is that, for the MRD scheme, there exists at
least one processor whose local sparse array has the
size similar to that of the global sparse array.
Therefore, the data compression time for the MRD
will be large in this situation.

Ziantz et al. [45] proposed a run-time
optimization technique that was applied to sparse
arrays compressed by the CRS/CCS methods for
array distribution and off-processor data fetching to
reduce both the communication and computation
time. They used the block data distribution scheme
with a bin-packing algorithm. The block data
distribution scheme with a bin-packing algorithm
belongs to the SFC scheme.

Lee et al. [10-14] presented an efficient library
for parallel sparse computations with Fortran 90 array
intrinsic operations. They provide a new data
compression method, which is based on the CRS/CCS
methods for two-dimensional sparse arrays, for
multi-dimensional sparse arrays. Based on the
MRD scheme, they also provide a new data
distribution scheme for multi-dimensional sparse
arrays. Their scheme is similar to (*, …, Block,
Block) data distribution scheme used in Fortran 90.
Their approach is promising in speeding up sparse
array computations using array intrinsic functions on
both sequential and distributed memory
environments.

3. The SFC, CFS and ED Schemes

In the following, we describe the SFC, the CFS,
and the ED schemes in detail. We assume that a
two-dimensional global sparse array is given.

3.1 The SFC Scheme
The SFC is an intuitive data distribution scheme.

In the SFC scheme, the data partition phase is
performed first, then the data distribution phase,
followed by the data compression phase.

In the data partition phase, a global sparse array
is partitioned into local sparse arrays by some
partition methods. In this paper, the 2D mesh
partition with load-balancing method is used to
partition a global sparse array. The 2D mesh
partition with load-balancing method tries to partition
a global sparse array into some local sparse arrays
such that each local sparse array has the same number
of nonzero array elements. The details can be found

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

200

in [2, 42]. Assume that an 8×10 sparse array A with
16 nonzero array elements (Figure 1) and four
processors are given. The partition result for the
sparse array A by using the 2D mesh partition with
load-balancing method is shown in Figure 2. For
the 2D mesh partition with load-balancing method,
the four processors are treated as a 2×2 processor
array.

In the data distribution phase, local sparse arrays
are packed and sent to processors in sequence.
Figure 3 shows the corresponding local sparse arrays
received by each processor for the partition result
shown in Figure 2.







































01600150014
00013012110

100090000
08000000
00070000
00006000
00500000
40000003
02000000
00000010

Sparse array A
Figure 1: An 8×10 sparse array A with 16 nonzero array
elements.











































01600150014
00013012110

100090000

08000000
00070000
00006000
00500000
40000003
02000000
00000010

Figure 2: The partition result for the sparse array A by
using the 2D mesh partition with load-balancing method.

P0,0

P1,0

P0,1

P1,1





























00000
70000
06000
00000
00003
00000
00010





























080
000
000
005
400
020
000

















150014
012110
0000

















01600
00013

10009

Figure 3: The corresponding local sparse arrays received by
each processor for the partition result shown in Figure 2.

In the data compression phase, a local sparse
array in each processor is compressed by a data
compression method. In this paper, the CRS and the
CCS methods are used to compress sparse local
arrays for the SFC and CFS schemes. The CRS

(CCS) method uses two one-dimensional integer
arrays, RO and CO, and one one-dimensional
floating-point array, VL, to compress all of nonzero
array elements along the rows (columns for CCS) of
the sparse array. Array RO stores information of
nonzero array elements of each row (column for
CCS). The number of nonzero array elements in the
ith row (jth column for CCS) can be obtained by
subtracting the value of RO[i] from RO[i+1]. Array
CO stores the column (row for CCS) indices of
nonzero array elements of each row (column for
CCS). Array VL stores the values of nonzero array
elements of the sparse array. The base of these three
arrays is 0. Figure 4 show the compressed results
by using the CRS method for the received local
sparse arrays shown in Figure 3.

1 22 3 3 4 5 5RO

CO

VL

1 0 3 4
1 3 6 7

1 21 3 4 4 4 5RO

CO

VL

1 2 0 1
2 4 5 8

1 43 5RO

CO

VL

0 3 0 2
9 10 13 16

P0, 0

P0, 1
P1, 1

1 31 5RO

CO

VL

1 2 0 3
11 12 14 15

P1, 0

Figure 4: The compressed results by using the CRS method
for the received local sparse arrays shown in Figure 3.

3.2 The CFS Scheme
The CFS scheme is similar to the SFC scheme

except that the data compression phase is performed
before the data distribution phase. In the data
partition phase, the 2D mesh partition with
load-balancing method mentioned in the SFC scheme
is used to partition a global sparse array. In the data
compression phase, the CRS/CCS methods are used
to compress local sparse arrays. In the compression,
the values stored in CO are global array indices. In
the data distribution phase, RO, CO, and VL for each
local sparse array are packed and sent to its
corresponding processor. After received the
corresponding packed buffer, each processor unpacks
the buffer to the corresponding RO, CO, and VL.
Since the values stored in CO are global array indices
in the compression phase, when unpack the received
buffer, the values stored in CO may need to be
converted to local array indices. We have the
following case.

Case 3.2.1: When the 2D mesh partition with
load-balancing method and the CRS (CCS) method is
used in the data partition phase and the data
compression phase, respectively, each processor Pi,j

converts the values stored in CO of the received
buffer to the corresponding local array indices by
subtracting M from each value stored in CO of the
received buffer, where M is the total number of
columns (rows for CCS) in Pi,0, Pi,1, …, Pi,j-1 (P0,j,
P1,j, …, Pi-1,j for CCS).

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

201











































01600150014
00013012110

100090000

08000000
00070000
00006000
00500000
40000003
02000000
00000010

(a) The data partition phase (b) The data compression phase

1 32 3RO

CO

VL

2 0 4
3 1 6

5
7

4 5

1 42 5RO

1 32 4RO

CO

VL

5

9 8 8
14 11 12

9
15

1 33 4 5

7 8 9
9 13 16

7
10

RO

CO

VL

CO

VL

3 1 6
5 2 8

2
4

Compression result for first local sparse array

Compression result for second local sparse array

Compression result for third local sparse array

Compression result for fourth local sparse array

Buffer

RO CO VL

unpack

(c) The data distribution phase

PackBuffer

send/receive

P 1,0

RO CO VL

81 2 3 4 5 9 9 148 11 12 15

1 32 4RO

CO

VL

5

9 8 8
14 11 12

9
15

Compression result for third local sparse array

81 2 3 4 5 9 9 148 11 12 15

1 32 4RO

CO

VL

5

2 1 1
14 11 12

2
15

Figure 5: An example of the CFS scheme.

An example of the CFS scheme is given in
Figure 5 in which the 2D mesh partition with
load-balancing method is used in the data partition
phase and the CCS method is used in the data
compression phase.

Figure 5(a) shows the partition result for the
sparse array A (Figure 1) by using the 2D mesh
partition with load-balancing method. Figure 5(b)
shows the compressed results by using the CCS
method for local sparse arrays shown in Figure 5(a).
In Figure 5(b), the values stored in CO are global
indices of global sparse array A, not local indices of a
local sparse array. Figure 5(c) only shows the data
distribution phase for P1,0. In Figure 5(c), RO, CO,
and VL for the first local sparse array are packed into
a buffer and sent to P1,0. After receiving the buffer,
P1,0 unpacks the received buffer to the corresponding
RO, CO, and VL. According to Case 3.2.1
described above, P1,0 converts the values stored in
CO of the received buffer to the corresponding local
array indices by subtracting 7 from each value stored
in CO of the received buffer. For P0,0, P0,1, and P1,1,
the packing, send/receive, and unpacking procedures
are similar to that of P1,0.

3.3 The ED Scheme
The ED is a novel concept in which the data

compression phase can be divided into two steps,
encoding and decoding. The encoding step and the
decoding step are performed before and after the data
distribution phase, respectively. In the ED scheme,
the data partition phase is performed first, then the
encoding step, followed by the data distribution
phase and the decoding step.

In the data partition phase, the 2D mesh
partition with load-balancing method mentioned in
the SFC scheme is used to partition a global sparse
array. In the encoding step, each local sparse array
is encoded into a special buffer B. Figure 6 shows

the formats of the special buffer B for the CRS/CCS
methods. In Figure 6, for the CRS (CCS) method,
the Ri is used to store the number of nonzero array
elements in a row (column for CCS) i. The Ci,j and
Vi,j are used to store the column (row for CCS) index
and the value of the jth nonzero array element in a
row (column for CCS) i, respectively. The Ci,j and
Vi,j are alternately stored in the buffer B and each Ci,j

is a global index of the global sparse array.

R0 C0,1 V0,1 C0,j V0,jRi Ci,1 Vi,1..... Ci,j Vi,j

i : the row index
Ri : the number of non-zero array elements in row i

j : the jth non-zero array element in row i

Ci,j : the column index of jth non-zero array elements in row i
Vi,j : the value of jth non-zero array elements in row i

(a) for CRS method

R0 C0,1 V0,1 C0,j V0,jRi Ci,1 Vi,1..... Ci,j Vi,j

i : the column index
Ri : the number of non-zero array elements in column i

j : the jth non-zero array element in column i

Ci,j : the row index of jth non-zero array elements in column i
Vi,j : the value of jth non-zero array elements in column i

(b) for CCS method

Figure 6: The formats of the special buffer B.

In the data distribution phase, these special
buffers are sent to processors in sequence. In the
decoding step, the special buffer B is decoded to get
RO, CO, and VL in each processor. To get RO, in
each processor, RO[0] is first initialized to 1. Then
other values of RO are computed according to the
formula iRiROiRO ][]1[, where i = 0, 1, …, n
and n is the number of rows in a local sparse array.
To get CO, in each processor, we move C0,0, C0,1 , …,
C0,j, C1,0, C1,1, …, C1,j, …, Ci,0, Ci,1, …, Ci,j stored in
the special buffer to CO, where i = 0, 1, …, n, j = 0,
1, …,m, n is the number of rows of the local sparse
array of a processor, and m is the number of nonzero
array elements in row i. To get VL, we move all Vi,j

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

202

to VL in a similar manner as that of getting CO.
Since each Ci,j is a global array index in the encoding
step, to decode the received special buffer in the
decoding step, each Ci,j may need to be converted to a
local array index. We have the following case.

Case 3.3.1: When the 2D mesh partition with
load-balancing method and the CRS (CCS) method
are used in the data partition phase and the data
compression phase, respectively, each processor Pi,j

converts each Ci,j of the received special buffer to the
corresponding local array index by subtracting M
from each Ci,j of the received special buffer, where M
is the total number of columns (rows for CCS) in Pi,0,
Pi,1, …, Pi,j-1 (P0,j, P1,j, …, Pi-1,j for CCS).

An example of the ED scheme is given in Figure
7 in which the 2D mesh partition with load-balancing
method is used in the data partition phase and the
local sparse arrays are in CCS format. Figure 7(a)
shows the partition result for the sparse array A
(Figure 1) by using the 2D mesh partition with
load-balancing method. Figure 7(b) shows the
special buffers for local sparse arrays shown in
Figure 7(a). In Figure 7(b), each Ci,j is a global
index of global sparse array A. Figure 7(c) shows
the special buffers received by each processor.
Figure 7(d) only shows the decoding step for P1,0.
After receiving the special buffer, to get RO, RO[0] is
first set to 1. Then other values of RO are computed
according to the formula iRiROiRO ][]1[,
where i = 0, 1, and 2. To get CO, we move C0,0, C1,0,
C2,0, and C3,0 stored in the special buffer to CO.
According to Case 3.3.1 described above, P1,0

subtracts 7 from C0,0, C1,0, C2,0,and C3,0 of the
received special buffer to convert them to the desired
local array indices. To get VL, we move V0,0, V1,0,
V2,0, and V3,0 stored in the special buffer to VL. For
P0,0, P0,1, and P1,1, the decoding step is similar to that
of P1,0.

4. Theoretical Analysis

In this section, we analyze the SFC, the CFS,
and the ED schemes for two-dimensional sparse
arrays in terms of the data distribution time and the
data compression time. Here, we do not consider
the data partition time since the comparisons of the
data distribution time and the data compression time
of these three schemes are based on the same
partition methods. In the data partition phase, the
2D mesh partition with load-balancing method is
used for these three schemes. In the compression
phase, the CRS/CCS methods are used to compress
sparse local arrays for the SFC and the CFS schemes
while the encoding/decoding step is used for the ED
scheme. In the following, we list the notations used
in the theoretical analysis.

 TStartup is the startup time for a
communication channel.

 TData is the transmission time for sending an

array element through a communication
channel.

 TOperation is the operation time for an array
element. In order to simplify the analysis,
we use TOperation to present any operation cost
for an array element, such as memory access,
addition or subtraction operations, etc.

 TDistribution is the data distribution time for the
data distribution phase. The data
distribution time includes the
packing/unpacking time and send/receive
time.

 TCompression is the data compression time for
the data compression phase. For the ED
scheme, the data compression time is the
sum of the encoding time and the decoding
time in the encoding and the decoding steps,
respectively.

 A is an n×n global sparse array.
 p is the number of processors.
 s is the sparse ratio of A.

}1,...1,0|{  piαα i is the set of sparse
ratios for each local sparse array. The space ratio
for a local sparse array is the size of a local sparse
array divided by the size of the global sparse array A.

The largest space ratio in is denoted as 'α . The
dimension of the largest local sparse array is r'×q' =

2'nα .

4.1 The 2D Mesh Partition with
Load-Balancing Method

Assume that A and p = r×q processors are given.
The number of nonzero array elements in A is sn2.

4.1.1 The CRS method
A. The SFC scheme

For the SFC scheme, the 2D mesh partition with
load-balancing method partition A into r×q local
sparse arrays and the number of nonzero array
elements for each local sparse array is sn2/r×q. In
the data distribution phase, local sparse arrays are
sent to processors. For a two-dimensional spare
array in the 2D mesh partition with load-balancing
method, array elements in a local sparse array are not
continuous. Therefore, local sparse arrays are sent
to processors after packing into buffers. The data
distribution time TDistribution is (r×q×TStartup + n2×TData

+ n2×TOperation) that is determined by the size of a
global sparse array. In the data compression phase,
local sparse arrays are compressed by the CRS
method. Therefore, the data compression time

TCompression is ((n2×('α+)3(qr s))×TOperation) that is

determined by the processor that has the largest size
of local sparse array.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

203











































01600150014
00013012110

100090000

08000000
00070000
00006000
00500000
40000003
02000000
00000010

(a) The data partition phase

01 2 3 1 0 1 4 6 1

(b) The encoding step

1

61 3 5 2 1 2 18

11 9 14 1 8 11 8

12 7 9 8 13 0 16 1 79

The special buffer for first local sparse array

The special buffer for second local sparse array

The special buffer for third local sparse array

The special buffer for fourth local sparse array
10

5 7

2 4

12 1 9 15
V2,0R0 R1 R2 R3C0,0 C1,0 C2,0V0,0 V1,0 C3,0 V3,0

01 2 3 1 0 1 4 6 1

(c) The data distribution phase

1

61 3 5 2 1 2 18

11 9 14 1 8 11 8

12 7 9 8 13 0 16 1 79 10

5 7

2 4

12 1 9 15
V2,0R0 R1 R2 R3C0,0 C1,0 C2,0V0,0 V1,0 C3,0 V3,0

P0,0

P0,1

P1,0

P1,1

(d) The decoding step

1

11 9 14 1 8 11 8 12 1 9 15
V2,0R0 R1 R2 R3C0,0 C1,0 C2,0V0,0 V1,0 C3,0 V3,0

P1,0

1 32 4RO

CO

VL

5

2 1 1
14 11 12

2
15

Figure 7: An example of the ED scheme.

B. The CFS scheme
In the data compression phase, local sparse

arrays are compressed by the CRS method. This
phase is similar to compress a global sparse array by
the CRS method. Therefore, the data compression
time TCompression is (n2×(s31))×TOperation that is
determined by the size of a global sparse array. In
the data distribution phase, the compressed results are
first packed into buffers. These buffers are then sent
to the corresponding processors. After receiving the
corresponding buffer, each processor unpacks the
buffer to get the desired RO, CO, and VL. The
values stored in CO need to be converted to local
sparse indices in each processor according to Case
3.2.1. The packing time is

(sqrn)3(2
 +r'+1)×TOperation, the send/receive

time is r×q×TStartup + (2n2s+qn+rq)×TData, and the
unpacking time is (2n2s+qn+rq)×TOperation.
Therefore, the data distribution time TDistribution is
r×q×TStartup + (2n2s+qn+rq)×TData +

(2n2s+ sqrn)3(2
 +r'+qn+rq+1)×TOperation. The

number of nonzero array elements of a global sparse
array determines the data distribution time.

C. The ED scheme
In the encoding step, local sparse arrays are

encoded into special buffers. The encoding time is
(n2×(s31))×TOperation that is determined by the size
of a global sparse array. In the data distribution
phase, these special buffers are sent to processors.
The data distribution time TDistribution is (r×q×TStartup +
(2n2s+qn)×TData) that is determined by the number of
nonzero array elements of a global sparse array. In

the decoding step, the special buffer B in each
processor is decoded. The Ci,j stored in the special
buffer need to be converted to local sparse indices in
each processor according Case 3.3.1. The decoding

time is (sqrn)3(2
 +r'+1)×TOperation that is

determined by the number of nonzero array element
of a local spare array. The data compression time
TCompression is (n2×(s31) +

sqrn)3(2
 +r'+1)×TOperation.

Table 1 lists the data distribution time and the
data compression time of the SFC, the CFS, and the
ED schemes using the 2D mesh partition with
load-balancing method and the CRS method.

D. Discussions
From Table 1, we can see that the data

distribution time of the ED scheme is less than that of
the CFS scheme. The data distribution time of the
ED scheme is less than that of the SFC scheme if the
sparse ratio of a global sparse array is less than 0.5.
Since the sparse ratio of a global sparse array is less
than 0.5, the data distribution time of the ED scheme
is less than that of the SFC scheme. We have the
following remark.

Remark 1. The data distribution time of the ED
scheme is less than that of the SFC and the CFS
schemes.

For the data distribution time of the CFS scheme,
it is less than that of the SFC scheme if the sparse
ratio of a global sparse array is less than 0.5. We
have the following remark.

Remark 2. The data distribution time of the
CFS scheme is less than that of the SFC scheme.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

204

Table 1: The data distribution time and the data compression time of the SFC, the CFS, and the ED schemes using the 2D
mesh partition with load-balancing method and the CRS method.

Method Complexity Cost
TDistribution r×q×TStartup + n2×TData + n2×TOperation

SFC
TCompression (n2×('α+)3(qr s))×TOperation

TDistribution r×q×TStartup + (2n2s+qn+rq)×TData + (2n2s+ sqrn)3(2
 +r'+qn+rq+1)×TOperationCFS

TCompression (n2×(s31))×TOperation

TDistribution r×q×TStartup + (2n2s+qn)×TData

ED
TCompression (n2×(s31) + sqrn)3(2

 +r'+1)×TOperation

Table 2: The data distribution time and the data compression time of the SFC, the CFS, and the ED schemes using the 2D
mesh partition with load-balancing method and the CCS method.

Method Complexity Cost
TDistribution r×q×TStartup + n2×TData + n2×TOperation

SFC
TCompression (n2×('α+)3(qr s))×TOperation

TDistribution r×q×TStartup + (2n2s+rn+rq)×TData +(2n2s+ sqrn)3(2
 +q'+rn+rq+1)×TOperationCFS

TCompression (n2×(s31))×TOperation

TDistribution r×q×TStartup + (2n2s+rn)×TData

ED
TCompression (n2×(s31) + sqrn)3(2

 +q'+1)×TOperation

For the data compression time of the SFC, the
CFS, and the ED schemes, we have the following
remark.

Remark 3. The data compression time of the
SFC scheme is less than that of the CFS scheme that
is less than that of the ED scheme.

From Table 1, for the overall performance of the
SFC, the CFS, and the ED schemes, we have two
remarks.

Remark 4. The ED scheme outperforms the
CFS scheme.

Remark 5. The ED and the CFS schemes
outperform the SFC scheme if the conditions

OperationData Ts
αsT)21

3(
'


 and

OperationData Ts
αsT)21

5(
'


 are satisfied,

respectively.

4.1.2 The CCS method
Table 2 lists the data distribution time and the

data compression time of the SFC, the CFS, and the
ED schemes using the 2D mesh partition with
load-balancing method and the CCS method. From
Table 2, for the data distribution time, the data
compression time, and the overall performance of
these three schemes, we have similar observations as
those of Remarks 1, 2, 3, 4, and 5.

5. Experimental Results

In the experimental test, we implement the SFC,
the CFS, and the ED schemes on an IBM SP2 parallel

machine. In the partition phase, the 2D mesh
partition with load-balancing method is implemented.
In the compression phase, the CRS method is
implemented. All methods are written in C + MPI
(Message Passing Interface) codes. The sparse
ratio is set to 0.1 for all two-dimensional sparse
arrays used as test samples.

5.1 The 2D Mesh Partition with
Load-Balancing Method

Table 3 shows the data distribution and the data
compression time for the SFC, the CFS, and the ED
schemes using the 2D mesh partition with
load-balancing method. From Table 3, for the data
distribution time, we have the following
observations.

1. The data distribution time of the ED scheme
is less than that of the SFC and the CFS
schemes.

2. The data distribution time of the CFS
scheme is less than that of the SFC scheme.

These results match Remarks 1 and 2. For the
data compression time, from Table 3, we have the
following observation.

1. The data compression of the SFC scheme is
less than that of CFS scheme is less than that
of the ED scheme.

This result matches Remark 3. From
experimental tests, we can estimate that

OperationData TT  2.1 . For the overall

performance, from Table 3, we have the following
observations.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

205

Table 3: The data distribution and the data compression time of the SFC, the CFS, and the ED schemes using the 2D mesh
partition with load-balancing method.

No. of
Processors

Array Sizes
Methods-Costs 120×120 240×240 480×480 960×960 1920×1920

TDistribution 11.905 48.543 167.326 259.691 905.85SFC
TCompression 0.665 2.565 9.515 34.905 136.747
TDistribution 3.538 9.82 35.644 55.252 204.104CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 1.659 4.701 16.718 25.695 100.251

2×2

ED
TCompression 4.893 19.967 75.023 124.171 515.103
TDistribution 13.219 50.372 169.201 263.424 913.466SFC
TCompression 0.421 1.492 4.224 18.452 71.559
TDistribution 4.195 10.245 37.422 58.724 210.189CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 2.621 7.174 20.277 29.854 106.109

3×3

ED
TCompression 5.245 20.542 76.542 127.254 521.524
TDistribution 14.522 52.696 173.702 266.785 918.182SFC
TCompression 0.339 0.998 3.355 10.742 38.227
TDistribution 5.803 12.298 42.391 63.154 220.962CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 3.702 9.143 23.209 32.293 110.895

4×4

ED
TCompression 6.296 21.367 78.619 131.496 528.426
TDistribution 16.656 55.321 177.226 273.247 925.524SFC
TCompression 0.267 0.737 1.938 6.724 24.254
TDistribution 6.279 14.098 47.088 70.722 229.254CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 3.927 9.593 24.100 33.733 113.724

5×5

ED
TCompression 6.667 22.459 80.426 140.741 540.141
TDistribution 18.285 60.028 183.293 285.124 938.247SFC
TCompression 0.184 0.588 1.228 4.425 19.827
TDistribution 7.155 15.895 52.006 79.752 240.841CFS
TCompression 4.573 18.295 73.183 119.348 507.399
TDistribution 4.177 10.093 25.090 34.649 115.602

6×6

ED
TCompression 7.425 23.852 85.722 148.424 551.541

Time: ms

1. The ED scheme outperforms the CFS
scheme.

2. The CFS and the ED schemes outperform
the SFC scheme since the conditions

OperationData TT)8
5( and

OperationData TT)8
3( shown in Table 1

are satisfied, respectively.
These results match Remarks 4 and 5. From

Table 3, we can see that the experimental results
match the theoretical analysis in Table 1.

From the theoretical analysis and experimental
results, for the SFC, the CFS, and the ED schemes,
we have the following conclusions.

Conclusion 1: For the data distribution phase,
the data distribution time of the ED scheme is less
than that of the SFC and the CFS schemes. The
data distribution time of the CFS scheme is less than
that of the SFC scheme.

Conclusion 2: For the data compression phase,
the data compression time of the SFC is less than that
of the CFS scheme that is less than that of the ED
scheme.

Conclusion 3: For the overall performance, the
ED scheme outperforms the CFS scheme. For most

of cases, the CFS and the ED schemes outperform the
SFC scheme.

6. Conclusions and Future Work

In this paper, we have proposed two data
distribution schemes, CFS and ED, for the
distribution of sparse arrays on distributed memory
multicomputers. To evaluate the CFS and the ED
schemes, we compare them with the SFC scheme.
In the data partition phase, the 2D mesh partition
with load-balancing method is used for these three
schemes. In the data distribution phase, local sparse
arrays, whether compressed or not, are sent to
processors in sequence. In the compression phase,
the CRS/CCS methods are used to compress sparse
local arrays for the SFC and the CFS schemes while
the decoding/encoding step is used for the ED
scheme. Based on the methods used in the three
phases, both theoretical analysis and experimental
test were conducted. In theoretical analysis, we
analyze the SFC, the CFS, and the ED schemes in
term of the data distribution time and the data
compression time. In experimental test, we
implemented the SFC, the CFS, and the ED schemes
on an IBM SP2 parallel machine. From the

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

206

experimental results, for all of test cases, the CFS and
the ED schemes outperform the SFC scheme. The
reason is that we do not send entire local sparse
arrays to processors in the CFS and the ED schemes.
The data distribution time can be reduced. For the
CFS and the ED schemes, the ED scheme
outperforms the CFS scheme for all test cases. The
reason is that, for the ED scheme, the data
distribution time is less than that for the CFS scheme.

In the future, we plan to work on the following
directions. (1) Analyze the performance of the SFC,
the CFS, and the ED schemes for multi-dimensional
sparse arrays. (2) Develop efficient data distribution
schemes for multi-dimensional sparse arrays based
on the extended Karnaugh map representation
(EKMR) scheme [30-33]. (3) Develop efficient data
partition methods for multi-dimensional sparse arrays.
We believe that these directions are of importance in
parallel sparse array operations.

References
[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T.

Martin, Brain T. Smith, and Jerrold L. Wagener.
Fortran 90 Handbook. Intertext Publications/
McGraw-Hill Inc., 1992.

[2] R. Asenjo, L.F. Romero, Manuel Ujaldon and Emilio
L. Zapata, “Sparse Block and Cyclic Data
Distributions for Matrix Computations,” In
Proceedings of High Performance Computing:
Technology, Methods and Applications Advanced
Workshop, June 1994.

[3] R. Asenjo, O. Plata, J. Tourino, R. Doallo, and Emilio
L. Zapata, “HPF-2 Support for Dynamic Sparse
Computations,” Languages and Compilers for
Parallel Computing, 1998.

[4] Gerardo Bandera and Emilio L. Zapata, “Extending
CRAFT Data-Distributions for Sparse Matrices,” 2nd.
European Cray MPP Workshop, July 1996.

[5] Gerardo Bandera, Manuel Ujaldon, M.A. Trenas and
Emilio L. Zapata, “The Sparse Cyclic Distribution
against its Dense Counterparts,” 11th International
Parallel Processing Symposium (IPPS'97), April
1997.

[6] Gerardo Bandera, Pablo P. Trabado and Emilio L.
Zapata, “Local Enumeration Techniques for Sparse
Algorithms,” In Proceedings of IEEE International
Parallel Processing Symposium (IPPS'98), Apr. 1998.

[7] Gerardo Bandera and Emilio L. Zapata, “Sparse
Matrix Block-Cyclic Redistribution,” In Proceedings
of IEEE International Parallel Processing Symposium
(IPPS'99), April 1999.

[8] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J.
Dongarra, V. Eijkhout, R. Pozo, C. Romine and H.
Van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for the Iterative Methods,
2nd Edition, SIAM, 1994.

[9] M.J. Berger and S.H. Bokhari, “A Partitioning
Strategy for Nonuniform Problems on
Multiprocessors,” IEEE Transactions on Computers,
vol. 36, no. 5, pp. 570-580, 1987.

[10] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen
Lee, “Compiler Optimization for Parallel Sparse
Programs with Array Intrinsics of Fortran 90,” In the
International Conference on Parallel Processing,

September, 1999.
[11] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen
Lee, “Parallel Sparse Supports for Array Intrinsic
Functions of Fortran 90,” accepted by Journal of
Supercomputing.

[12] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen
Lee, “Towards Automatic Support of Parallel Sparse
Computation in Java with Continuous Compilation,”
to appear in Concurrency: Practice and Experiences.

[13] Tyng-Ruey Chung, Rong-Guey Chang, and Jenq Kuen
Lee, “Sampling and Analytical Techniques for Data
Distribution of Parallel Sparse Computation,” In SIAM
Conference on Parallel Processing for Scientific
Computing, March, 1997.

[14] Tyng-Ruey Chung, Rong-Guey Chang, and Jenq Kuen
Lee, “Efficient Support of Parallel Sparse
Computation for Array Intrinsic Functions of Fortran
90,” In the 12th ACM International Conference on
Supercomputing, July, 1998.

[15] M. Cierniak and W. Li, “Unifying Data and Control
Transformations for Distributed Shared Memory
Machines,” Technical Report, November 1994.

[16] J.K. Cullum and R.A. Willoughby, “Algorithms for
Large Symmetric Eignenvalue Computations,” vol. 1
(birkhauser, Boston 1985).

[17] I. Duff, R.Grimes, and J. Lewis: Sparse matrix test
problems. ACM Transaction on Mathematical
Software, 15, 1-14, 1989.

[18] I. Duff, R.Grimes, and J. Lewis: User's Giude for the
Harwell-Boeing Sparse Matrix Collection.
CERFACS, Toulouse, France: Cedex 1992.

[19] B.B. Fraguela, R. Doallo, and Emilio L. Zapata,
“Cache Misses Prediction for High Performance
Sparse Algorithms, ” 4th International Euro-Par
Conference (Euro-Par'98), September 1998.

[20] B.B. Fraguela, R. Doallo, and Emilio L. Zapata,
“Cache Probabilistic Schemeling for Basic Sparse
Algebra Kernels Involving Matrices with a
Non-Uniform Distribution, ” 24th IEEE Euromicro
Conference, pp.345-348, August 1998.

[21] B.B. Fraguela, R. Doallo, and Emilio L. Zapata,
“Schemeling Set Associative Caches Behaviors for
Irregular Computations, ” ACM International
Conference on Measurement and Schemeling of
Computer Systems (SIGMETRICS'98), pp.192-201,
June 1998.

[22] B.B. Fraguela, R. Doallo, and Emilio L. Zapata,
“Automatic Analytical Schemeling for the Estimation
of Cache Misses, ” International Conference on
Parallel Architectures and Compilation Techniques
(PACT'99), October, 1999.

[23] G.H. Golub and C.F. Van Loan, Matrix Computations,
2nd ed. (Johns Hopkins Univ.Press, Baltimore, 1989)

[24] High Performance Fortran Forum, “High Performance
Fortran Language Specification (version 2.0),” Rice
Univ., Jan. 1997.

[25] Christoph W. Kebler, “Applicability of Automatic
Program Comprehension to Sparse Matrix
Computations,” In Proceedings of 3rd International
Euro-Par Conference, Aug 1997.

[26] Christoph W. Kebler and Craig H. Smith, “The
SPARAMAT Approach to Automatic Comprehension
of Sparse Matrix Computations,” In Proceedings of
the Seventh International Workshop on Program
Comprehension, pp. 200-207, IEEE Computer Society
Press, 1999.

[27] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill,

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

207

“Compiling Parallel Sparse Code for User-Defined
Data Structures,” In Proceedings of 8th SIAM
Conference on Parallel Processing for Scientific
Computing, March, 1997.

[28] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill,
“A Relation Approach to the Compilation of Sparse
Matrix Programs,” In Euro Par, August, 1997.

[29] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill,
“Compiling Parallel Code for Sparse Matrix
Applications,” In Proceedings of the Supercomputing
Conference, August, 1997.

[30] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung,
“Efficient Representation Scheme for
Multi-Dimensional Array Operations, ” IEEE
Transactions on Computers, Vol. 51, No. 3, pp.
327-345, March 2002.

[31] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung,
“Efficient Data Compression Methods for
Multi-Dimensional Sparse Array Operations Based on
the EKMR Scheme,” Accepted by The Eighth
Workshop on Compiler Techniques for High
Performance Computing (CTHPC), March 2002.

[32] Jen-Shiuh Liu, Jiun-Yuan Lin, and Yeh-Ching Chung,
“Efficient Representation for Multi-Dimensional
Matrix Operations,”Proceedings of Workshop on
Compiler Techniques for High Performance
Computing (CTHPC), pp. 133-142, March 2000.

[33] Jen-Shiuh Liu, Jiun-Yuan Lin, and Yeh-Ching Chung,
“Efficient Parallel Algorithms for Multi-Dimensional
Matrix Operations,” Proceedings of IEEE
International Symposium on Parallel Architectures,
Algorithms and Networks (I-SPAN), Dec. 2000.

[34] Nikolay Mateev, Keshav Pingali, Paul Stodghill, and
Vladimir Kotlyar, “Next-generation Generic
Programming and its Application to Sparse Matrix
Computations,” In Proceedings of International
Conference on Supercomputing, 2000.

[35] W. H. Press, S. A. Teukolsky, William T. Vetterling,
and Brian P. Flannery, Numerical Recipes in Fortran
90: The Art of Parallel Scientific Computing.
(Cambridge University Press, 1996)

[36] Peter D. Sulatycke and Kanad Ghose, “Caching
Efficient Multithreaded Fast Multiplication of Sparse
Matrices,” In Proceedings of the 1st Merged

International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing,
1998.

[37] Manuel Ujaldon, Emilio L. Zapata, Barbara M.
Chapman and Hans P. Zima, “New Data-Parallel
Language Features for Sparse Matrix Computations,”
9th IEEE International Parallel Processing
Symposium (IPPS'95), April 1995.

[38] Manuel Ujaldon, Shamik D. Sharma, Joel Saltz, and
Emilio L. Zapata, “Run-time techniques for
parallelizing sparse matrix problems,” Workshop on
Parallel Algorithms for Irregularly Structured
Problems, 1995

[39] Manuel Ujaldon and Emilio L. Zapata, “Efficient
Resolution of Sparse Indirections in Data-Parallel
Compiler,” 9th ACM International Conference on
Supercomputing, July 1995.

[40] M. Ujaldon, Emilio L. Zapata, Shamik D. Sharma, and
Joel Saltz, “Parallelization Techniques for Sparse
Matrix Applications,” Journal of parallel and
distribution computing, 1996.

[41] Manuel Ujaldon, Shamik D. Sharma, Emilio L. Zapata,
and Joel Saltz, “Experimental Evaluation of Efficient
Sparse Matrix Distributions,” In Proceedings of
International Conference on Supercomputing, 1996.

[42] Manuel Ujaldon, Emilio L. Zapata, Barbara M.
Chapman, and Hans P. Zima, “Vienna-Fortran/HPF
Extensions for Sparse and Irregular Problems and
Their Compilation,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no 10, October 1997.

[43] James B. White, and P. Sadayappan, “OnImproving
the Performance of Sparse Matrix-Vector
Multiplication,” International Conference on
High-Performance Computing, 1997.

[44] Emilio L. Zapata, O. Plata, R. Asenjo and G,P. Trabado,
“Data-Parallel Support for Numerical Irregular
Problems,” Journal of Supercomputing, 1999.

[45] Louis H. Ziantz, Can C. Ozturan, and Boleslaw K.
Szymanski, “Run-Time Optimization of Sparse
Matrix-Vector Multiplication on SIMD Machines,”In
Proceedings International Conference of Parallel
Architectures and Languages, Athens, July, 1994.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

208

