
Embedding of Tree Machines into Hypercubes

Chui-Cheng Chen
Department of Information Management

Southern Taiwan University of Technology
ccchen@mail.stut.edu.tw

Abstract

In this paper, we present that a tree machine can
be embedded into incomplete hypercube with
expansion 1, load 1, dilation 2 and congestion 2. This
result is better than the expansion
(2h+1+2h)/(2h+1+2h-2) in [14]. Then we consider how
to embed a large tree machine into a hypercube for
considering load-balance. We have shown that a tree
machine TMh (h1) can be embedded into a
hypercube Hh+1 with dilation 1, congestion 2 and
load 2, and a tree machine TMh can be embedded
into Hn (hn1) with dilaton 1, congestion 3 and
load 2h-n+1+2h-n. The load of these embeddings is well
balanced.

1 Introduction

The hypercubes [1, 2] is one of the most popular
architectures for a variety of parallel computations.
The architectural features are its low diameter, rich
bandwidth, regular structure, easy routing, fault
tolerance [3, 4] and, more importantly, many
computational structures can be simulated by the
hypercubes with only small constant factor
slowdown, such as array, binary tree and mesh of
trees [5].

One restriction of the hypercube topology is that
its size has to be an integer power of two. Hence, two
consecutive dimensional hypercubes leave a large
gap. To overcome this restriction, incomplete
hypercubes provide more flexibility in the size [6].
An incomplete hypercube can be obtained from a
complete hypercube where some nodes/links fail.
Extensive study on the incomplete hypercube has
been studied in [7-9].

The tree machine can permit efficient algorithms
for searching problems [10, 11] and for graph
problems [12]. Efe [13] has shown that a tree
machine of dimension h is a subgraph in an
(h+2)-dimensional hypercube. Öhring and Das [14]
have described how to embed a tree machine of
dimension h into an incomplete hypercube which
comprises an (h+1)-dimensional hypercube and an
h-dimensional hypercube with load 1, dilation 2 and
congestion 2.

The purpose of this paper is to present how to
embed a tree machine into an incomplete hypercube
and a hypercube. First, we discuss how to embed a
tree machine into an incomplete hypercube with load
1, dilation 2, congestion 2 and expansion 1, then
discuss how to embed a large tree machine into a
hypercube with optimal load.

The remaining sections are organized as follows.
Section 2 gives the notations and definitions of this
paper. In Section 3, we present how to embed a tree
machine into an incomplete hypercube with the same
node size (expansion 1). In Section 4, we present
how to embed a large tree machine into a hypercube.
Finally, the conclusion is given in Section 5.

2 Preliminaries

We let Hn denote the n-dimensional hypercube
which has 2n nodes. These nodes of Hn are labeled {0,
1, 2, …, 2n-1} as binary number. Let (1*

n-1) denote a
sub-hypercube with the most significant bit labeled 1,
where * is a don’t care symbol assuming 0 or 1.
There is an edge between two nodes in the hypercube
if and only if their binary numbers differ by a single
bit. The Hamming distance between two nodes is
defined as the number of their different bits. To
conveniently describe the embedding, we use two
colors, black and white, to correspond to the binary
number of each node in Hn. If a node has even
number of 1’s, we color it black. Otherwise we color
the node white. Since the hypercube has a perfect
matching, Hn has 2n-1 black nodes and 2n-1 white
nodes. Figure 1 depicts the four-dimensional
hypercube, H4. However, the size of the hypercube
has to be a power of 2, whereas it is more interesting
to design an architecture with an arbitrary number of
nodes.

A complete hypercube can be come incomplete if
it misses some certain nodes [6-9]. Let IH(n1, n2, …,
ni) denote the incomplete hypercube comprising i
complete hypercubes: Hn1, Hn2, …, Hnj, …, Hni,
nj>ni0, which can be obtained by deleting the
largest 2n1-(2n2+…+2ni) nodes (in binary
representation) and their neighboring edges from an
(n1+1)-dimensional hypercube. For example, Figure
2 depicts IH(3, 2, 1).

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

100

A double-rooted complete binary tree of height h,
denoted by DTh, is a complete binary tree of height h
with the root replaced by a path of length two [5]. We
denote leaf nodes of left-subtree of the roots of DTh

as {x1, x2, …, x2h-1} from left to right, likewise, we
denote leaf nodes of right-subtree of the roots of DTh

as {y1, y2, …, y2h-1} from left to right. For example,
Figure 3 depicts DT3. A tree machine of dimension h,
TMh, is the graph comprising two complete binary
trees of height h, connected back to back to share the
leaf nodes, The total number of TMh is 2h+1+2h-2
nodes. For example, Figure 4 depicts TM3.

The cost of an embedding of a guest graph into a
host graph is measured in terms of dilation,
congestion, load and expansion [15]. The dilation of
an edge of the guest graph is the length of embedded

path of the host graph, and the dilation of an
embedding is the maximum dilation over all edges of
the guest graph. The congestion of an edge of the
host graph is the number of edges of the guest graph
that are embedded using the same edge of the host
graph, and the congestion of an embedding is the
maximum congestion over all edges of the host
graph. The load of a node of the host graph is the
number of nodes of the guest graph that are
embedded into the same node of the host graph, and
the load of an embedding is the maximum load over
all nodes of the host graph. The expansion of an
embedding is the ratio of the number of nodes of the
host graph to the number of nodes of the guest graph.
Hence, we need to consider the tradeoff among
dilation, congestion, load and expansion of an
embedding.

0000 1000

0001 1001

0010 1010

0011 1011

0100
1100

0101 1101

0111
1111

0110 1110

Figure 1. H4.

0000 1000

0001 1001

0010 1010

0011 1011

0100
1100

0101 1101

0111

0110

Figure 2. IH(3, 2, 1).

x1 x2 x3 x4 y1 y2 y3 y4

level 0

level 1

level 2

level 3

Figure 3. DT3.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

101

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Figure 4. TM3.

3 Embedding of Tree Machines into
Incomplete Hypercubes with
Expansion 1

Öhring and Das [14] have shown that TMh can be
embedded into IH(h+1, h) with load 1, dilation 2 and
congestion 2, and TMh is not a subgraph of IH(h+1,
h). In this section, we discuss how to embed a tree
machine into an incomplete hypercube with the same
node size (expansion 1), considering the dilation and
congestion when doing the embedding. For the
embedding, we need the following lemma.

Lemma 1. In IH(h+1, h), all nodes of Hh are placed
on the outer level and all nodes of Hh+1 are placed on
the inner level. Each node of the outer level can link
to two son nodes on the inner level with dilation 2
and congestion 2

Proof. We use h+2 bits to label each node of IH(h+1,
h). IH(h+1, h) can be partitioned into three

sub-hypercube Hh’s by the leftmost two bits of the
incomplete hypercube, and the binary numbers of the
leftmost two bits of the three sub-hypercubes
correspond to 00, 01 and 10 (see Figure 5).

We place all nodes labeled 10*
h on the outer

(upper) level and all nodes labeled 0*
h+1 on the inner

(lower) level. Each node labeled 10*
h has an edge

with dilation 1 to link to one node labeled 00*
h and

an edge with dilation 2 to link to one node labeled
01*

h. The congestion of edges between
sub-hypercube 00 and 10 are 2. Therefore. The
lemma is proved. □

One example is shown as follows.

Example 1. All the nodes of H2 are placed on the
outer level and all the nodes of H3 are placed on the
inner level in IH(3, 2). Each node of the outer level
can link to two son nodes on the inner level with
dilation 2 and congestion 2 (see Figure 6).

Hh

Hh

H h

h00* h10*

h01*

Figure 5. IH(h+1, h) is partitioned into three sub-hypercube Hh’s by the leftmost two bits
of the incomplete hypercube.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

102

outer

inner a b c d e f g h

1 2 3 4

e 3

a 1

f

b

g
4

c 2

d

h
H3

H2

Figure 6. All nodes of H2 and H3 are placed on the outer level and the inner level, respectively. The
dilation of edges (1, b), (2, d), (3, f) and (4, h) are 2 between the outer level and the inner level. The
congestion of edges (1, a), (2, c), (3, e) and (4, g) are 2 in IH(3, 2).

Theorem 1. The tree machine TMh (h1) can be
embedded into the incomplete hypercube IH(h+1,
h-1, h-2, …, 3, 2, 1) with load 1, dilation 2,
congestion 2, and expansion 1.

Proof. First, H1 is partitioned into two H0’s, and the
nodes on levels 0 and 2h of TMh are embedded into
the two H0’s, respectively. Next, we partitioned Hi+1

into two sub-hypercubes Hi’s by linking respectively
to the two sub-hypercubes Hi-1’s of Hi, and the nodes
on levels i and 2h-i of TMh are embedded into the
two sub-hypercubes Hi’s, respectively, 1ih-1.
Hence, the nodes between 0 and h-1, and between
levels 2h and h+1 of TMh can be embedded into IH(h,
h-1, h-2, …, 3, 2, 1) with dilation 2 and congestion 2
by Lemma 1. Here, Hh+1 is partitioned into two Hh’s
and one of them, called front Hh, is used to embed the
nodes on levels h-1 and h+1 of TMh.

We use a similar method to embed the nodes on
level h of TMh as follows. The nodes on level h of
TMh are embedded into the other Hh, called back Hh,
The back Hh is partitioned into two Hh-1’s by linking
respectively to the two sub-hypercubes Hh-1’s of front
Hh, then the links between levels h-1 and h as well as
between levels h+1 and h of TMh are as the same as
Lemma 1, but the congestion of edges between two
sub-hypercubes Hh-1’s of back Hh are 2. Therefore,
TMh is embedded into IH(h+1, h-1, h-2, …, 3, 2, 1)
with load 1, dilation 2, congestion 2 and expansion 1.

□

One example is shown as follows.

Example 2. The tree machine TM2 can be embedded

into IH(3, 1) with load 1, dilation 2, congestion 2 and
expansion 1 (see Figure 7).

4 Embedding of Large Tree Machines
into Hypercubes

Efe [13] has shown that TMh-1 is a subgraph of
Hh+1. In this section, we discuss how to embed a large
tree machine into a hypercube, considering the load,
dilation and congestion while doing the embedding.
First, we embed TMh into Hh+1, and a lemma is thus
required as follows.

Lemma 2. Embedding DTh (h1) into Hh+1, each leaf
node xi (1i2h-1) of DTh has an edge to link to a leaf
node yi of DTh in Hh+1.

Proof. We prove the lemma by induction on h.

Hypothesis: Embedding DTh-1 into Hh, each leaf
node xi (1i2h-2) of DTh-1 has an edge to link to a
leaf node yi of DTh-1 in Hh.

Basis step: When h=1 and 2, it is trivial. Figure 8
depicts the links of embedding DT2 into H3.

Induction step: We partition Hh+1 into two Hh’s by
the most significant bit, and embed DTh-1 into Hh as
the hypothesis above describe. We can merge two
DTh-1’s to DTh as shown in Figure 9. The links
between xi (1i2h-1) and yi of DTh are the same as
the hypothesis since leaf nodes of two DTh-1’s are
also leaf nodes of DTh after merging. Therefore, the
lemma is proved. □

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

103

b

d fe

c

a

g

32

1

TM2

3

2d

f

e

g c

b a 1

partition line

back H2 front H2 H1

Figure 7. Dilation of edges (1, 3), (a, c), (2, e), (3, g), (b, d) and (c, f) is 2 in TM2. Congestion of
edges (1, 2), (a, b), (b, e), (c, g), (2, d), (3, f), (e, d) and (g, f) is 2 in IH(3, 1).

x1 x2 y1 y2

1 3

2 4
x1

2

y1

x2

3

1

y2

4

Figure 8. Leaf nodes x1 and x2 have edges to link respectively to y1 and y2 in H3.

Now, we show how to embed TMh into Hh+1.

Theorem 2. A tree machine TMh (h1) can be
embedded into Hh+1 with dilation 1, congestion 2 and
load 2.

Proof. Since DTh can be embedded into Hh+1, we let
two nodes on level 1 of DTh embed respectively into
the nodes on levels 0 and 2h of TMh. Hence, the
nodes between levels 0 and h-1 of TMh are embedded
into the left-subtree of the roots of DTh. Likewise, the
nodes between levels 2h and h+1 of TMh are
embedded into the right-subtree of the roots of DTh

(see Figure 10). Now, we discuss how to embed the
nodes on level h of TMh into Hh+1.

For two son nodes (on level h) of each node on
level h-1 of TMh, we embed one son node into its
upper parent node (on level h-1) and embed the other
son node into its lower parent node (on level h+1).
The upper parent node has an edge to link to the
lower parent node by Lemma 2. Hence, the dilation
of two edges linking the node on level h-1 and its
two son nodes on level h are respectively 0 and 1.
Similarly, the dilation of two edges linking the node
on level h+1 and its two son nodes on level h are
respectively 0 and 1. The congestion of the edges
between leaf xi (1i2h-1) and yi of DTh are 2 in Hh+1.
The load of leaf nodes of DTh are 2 in Hh+1.
Therefore, TMh is embedded into Hh+1 with dilation 1,
congestion 2 and load 2. □

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

104

*101 h-2 *100 h-2 *000 h-2 *010 h-2

h-2*110 *001 h-2

h-1

Figure 9. Construction of DTh from two DTh-1’s. The added edges are shown in solid lines.
Nodes 000*

h-2 and 100*
h-2 are the double roots of DTh.

TM h

DTh

Figure 10. Embedding of TMh into the DTh contained in Hh+1.

A tree machine TMh with 2h+1+2h-2 nodes is
embedded into Hh+1 and this embedding of Theorem
2 is load-balanceable. Next, we show how to embed
TMh into Hn (hn). First, we need three lemmas as
follows.

Lemma 3. DTh-1 (h1) can be embedded into Hh and
each leaf node of DTh-1 has an edge to link to a
certain internal node of DTh-1 [16].

Next lemma shows how to embed a double-rooted
complete binary tree of height h, DTh, into Hh with
load-balance.

Lemma 4. DTh (h1) can be embedded into Hh with
dilation 1, load 2 and congestion 2.

Proof. First, we embed DTh-1 into Hh, then we
consider how to embed 2h leaf nodes of DTh into Hh

as follows. Each leaf node of DTh has to be
embedded into different node in Hh to load-balance.
There are half leaf nodes of DTh to be embedded into
their parent nodes (leaf nodes of DTh-1) and
remaining leaf nodes of DTh are embedded to internal
nodes of DTh-1 (see Figure 11). There is no dilation
and congestion between half leaf nodes of DTh and

their parent nodes since these leaf nodes are
embedded into their parent nodes. The dilation of the
edges between remaining leaf nodes (embedded into
internal nodes of DTh-1) of DTh and their parent nodes
are 1 by Lemma 3. Hence, the load is 2 and the
dilation is 1 for such embedding DTh into Hh.

There are 2h-2 leaf nodes of DTh being embedded
into the internal nodes on level h-2 of DTh-1 for
embedding 2h leaf nodes of DTh into Hh. These leaf
nodes link to their parent nodes (on level h-1) to use
the same edges as embedding DTh-1, and the
congestion of half edges between levels h-1 and h-2
of DTh-1 are 2 in Hh. Therefore, DTh can be embedded
into Hh with dilation 1, load 2 and congestion 2.

□

By Lemma 4, we show how to embed DTh into Hh

with load-balance. Next lemma describes the links
between leaf nodes xi and yi (1i2h-1) of DTh for
embedding DTh into Hh.

Lemma 5. Embedding DTh into Hh, leaf node xi

(1i2h-1) is embedded into node Xi of Hh, and leaf
node yi is embedded into node Yi of Hh. There is an
edge to link node Xi and Yi, and this edge is unused

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

105

for embedding the edges between levels h-1 and h-2
of DTh into Hh.

Proof. We prove the lemma by induction on h.

Hypothesis: Embedding DTh-1 into Hh-1, leaf node xi

(1i2h-2) is embedded into node Xi of Hh-1, and leaf
node yi is embedded into node Yi of Hh-1. There is an
edge to link node Xi and Yi, and this edge is unused
for embedding the edges between levels h-2 and h-3
of DTh-1 into Hh-1.

Basis step: When h=1 and 2, it is trivial. DT3 is
embedded into H3 as shown in Figure 12. The figure
describes the links between leaf nodes x1, x2, x3, x4

and y1, y2, y3, y4.

Induction step: We partition Hh into two Hh-1’s by
the most significant bit. By hypothesis, leaf node xi

(1i2h-2) of DTh-1 is embedded into node Xi of Hh-1,
and leaf node yi of DTh-1 is embedded into node Yi of
Hh-1. There is an edge to link Xi and Yi, and this edge
is unused for embedding the edges between levels
h-2 and h-3 of DTh-1 into Hh-1. Hence, we can merge

two DTh-1’s into DTh as shown in Figure 13. The
links between xi (1i2h-1) and yi of DTh are the same
as the hypothesis since the three added edges in
Figure 13 are extra edges that do not affect the links
in the hypothesis. Therefore, the edge between levels
h-2 and h-3 of both DTh-1’s become to the edges
between levels h-1 and h-2 of DTh, and the lemma is
proved. □

Theorem 3. A tree machine TMh (h1) can be
embedded into Hh with dilation 1, congestion 3 and
load 3.

Proof. First, DTh can be embedded into Hh with
dilation 1, congestion 2 and load 2 by Lemma 4. We
let two nodes on level 1 of DTh embedded
respectively into the nodes on level 0 and level 2h of
TMh. Then the nodes between levels 0 and h-1 of
TMh are embedded into the left-subtree of the roots
of DTh. Likewise, the nodes between levels 2h and
h+1 of TMh are embedded into the right-subtree of
the roots of DTh (see Figure 14). Next, we consider
how to embed the nodes on level h of TMh into Hh.

DTh-1

level 0

level h-2

level h-1

level h
Figure 11. Embedding 2h leaf nodes of DTh into the DTh-1 contained in Hh. The leaf nodes of left
subtree (right subtree) of DTh are embedded into their parent nodes and white nodes (black nodes)
between levels h-2 and 0, where  depicts embedding.

x1 x2 x3 x4 y1 y2 y3 y4

1

2

3 4

5

6

7 8

x1

5

y1

x2

2

1
y2

3
67

8

x34

x4

y3

y4

Figure 12. Nodes x1, x2, x3, x4, y1, y2, y3 and y4 are embedded into nodes 3, 2, 4, 5, 7, 1, 8 and 6,
respectively. Node xi (1i4) has an edge (dashed line) to link to yi, and this edge are unused for
embedding the edges (bold lines) between levels 2 and 1 of DT3 into H3, where the congestion of
bold lines are 2.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

106

*101 h-2 *100 h-2 *000 h-2 *010 h-2

h-2*110 *001 h-2

h-1

Figure 13. Construction of DTh from two DTh-1’s. The added edges are shown in solid
lines. Nodes 000*

h-2 and 100*
h-2 are the double roots of DTh.

TMh

DTh

level 0

level h-1

level h

level 2h

level h+1

Figure 14. Embedding of TMh into the DTh contained in Hh.

For two son nodes (on level h) of each node on
leve l h-1 of TMh, we embed one son node into its
upper parent node (on level h-1) and the other son
node into its lower parent node (on level h+1). By
Lemma 5, the upper parent node has an edge to link
to the lower parent node and this edge is unused for
embedding the edges between levels h-1 and h-2 of
DTh into Hh. The congestion of half edges between
levels h-1 and h-2 are 2 and those of others are 1 by
Lemma 4. Hence, the dilation of two edges linking
the node on level h-1 and its two sons on level h are
respectively 0 and 1. Similarly, the dilation of two
edges linking the node on level h+1 and its two sons
on level h are respectively 0 and 1. The congestion of
edges linking between levels h-1 and h+1 of TMh

increase by 1 and become 3 since these edges may be
used to embed DTh into Hh. The load increases by 1,
and it remains load-balance. Therefore, TMh is
embedded into Hh with dilation 1, congestion 3 and
load 3. □

Theorem 4. A tree machine TMh can be embedded
into Hn (h>n1) with dilation 1, congestion 3 and
load 2h-n+1+2h-n.

Proof. First, we embed TMh into TMn; that is we
embed the nodes between levels n and 2h-n of TMh

into their ancestor nodes on level n of TMh (see
Figure 15). Hence, the load of each node on level n
of TMn is:

(2h+1+2h-2-2(2n-1))/2n=2h-n+1+2h-n-2

, and there is no dilation and congestion for this
embedding. By Theorem 3, TMn can be embedded
into Hn with dilation 1, congestion 3 and load 3.
Therefore, TMh can be embedded into Hn with load
2h-n+1+2h-n-2+3-1=2h-n+1+2h-n, the dilation and
congestion are not altered. The theorem is proved. □

5 Conclusion

Öhring and Das [14] have described how to embed
a tree machine of dimension h into an incomplete
hypercube which comprises an (h+1)-dimensional
hypercube and an h-dimensional hypercube with load
1, dilation 2, congestion 2 and expansion
(2h+1+2h)/(2h+1+2h-2). In this paper, we have shown

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

107

how to embed a tree machine into an incomplete
hypercube with load 1, dilation 2, congestion 2 and

expansion 1, and how to embed a large tree machine
into a hypercube with optimal load.

level n

level h

level 2h-n

TMh

level n

TMn

Figure 15. Embedding TMh into TMn.

Reference

[1] C. L. Seitz, The Cosmic Cube, Commun, ACM 28
(1985) 22-33.

[2] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley
and J. Palmer, A Micoprocessor-based Hypercube
Supercomputer, IEEE Mico 6 (1986) 6-17.

[3] Y. Saad and M. H. Schultz, Topological
Properties of Hypercubes, IEEE Trans.
Computers C-37 (7) (1988) 867-872.

[4] D. A. Read and R. M. Fujimoto, Multicomputer
Network: Message-Based Parallel Processing,
Cambridge, MA: MIT Press (1987).

[5] T. Leighton, Introduction To Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes
(Morgan Kaufmann, Reading, MA, 1992).

[6] H. P. Katseff, Incomplete Hypercubes, IEEE
Trans. Computer 37 (5) (1988) 604-608.

[7] H. C. Chen and N. F. Tzeng, Enhanced

Incomplete Hypercubes, Proc. Int. Conf. Parallel
Processing 1 (1989) 270-277.

[8] N. F. Tzeng, Structural Properties of Incomplete
Hypercubes, Proc. 10th Int. Conf. Distrib. Comout.
Syst. (1990) 262-269.

[9] N. F. Tzeng, H. L. Cheng and P. J. Chuang,
Embeddings in incomplete hypercubes, Proc. of
Int. Conf. on Parallel Processing 3 (1990)
335-339.

[10] J. L. Bentley and H. T. Kung, A Tree Machine
for Searching Problems, Proc. IEEE 1979 Int.
Conf. Parallel Processing (1979) 257-266.

[11] S. A. Browning, The Tree Machine: a Highly
Concurrent Computing Environment, Tech. Rep.
1980: TR 3760, Computer Science, California
Institute of Technology (Jan. 1980).

[12] A. Gupta, A. Boals and N. Sherwani, On
Optimal Embeddings into Incomplete
Hypercubes, Proc. the Fifth Int. Parallel

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

108

Processing Symp. (1991) 416-423.
[13] K. Efe, Embedding Mesh of Trees in the

Hypercube, J. Parallel and Distrib. Comput. 11
(1991) 222-230.

[14] S. Öhring and S. K. Das, Incomplete
Hypercubes: Embeddings of Tree-Related
Networks, J. Parallel and Distrib. Comput. 26
(1995) 36-47.

[15] A. L. Rosenberg, Issues in the Study of Graph

Embeddings, In H. Noltemeir (ed.).
Graph-Theoretic Concept in Computer Science
(Proc. Int. Workshop WG80), Lecture Notes in
Computer Science, Springer-Verlag, New York
100 (1981) 151-176.

[16] C. C. Chen and R. J. Chen, Optimal Embedding
of Large Complete Binary Trees into
Hypercubes, J. of Information Science and
Engineering 12 (2) (1996) 307-314.

Proc. of the 19th Workshop on Combinatorial
 Mathematics and Computation Theory

109

