Strong Distance of Complete Bipartite Graphs

Yung-Ling Lai*, Feng-Hsu Chiang, Chu-He Lin, Tung-Chin Yu
Computing Science and Information Engineering,
National Chiayi University, Chiayi, Taiwan
{yimmysh2001, meteor0506, tonyycyut}@yahoo.com.tw

Abstract

For two vertices u, v in a strong digraph D, the strong distance $sd(u,v)$ between u and v is the minimum size of a strong subdigraph of D containing u and v. For a vertex v of D, the strong eccentricity $se(v)$ is the maximum strong distance between v and all vertices in D. The strong radius $srad(D)$ is the minimum strong eccentricity among all the vertices of D, and the strong diameter $sdiam(D)$ is the maximum strong eccentricity among all the vertices of D. The lower orientable strong radius $srad(G)$ of a graph G is the minimum strong radius over all strong orientations of G. The upper orientable strong radius $SRAD(G)$ of a graph G is the maximum strong radius over all strong orientations of G. The lower orientable strong diameter $sdiam(G)$ of a graph G is the minimum strong diameter over all strong orientations of G. The upper orientable strong diameter $SDIAM(G)$ of a graph G is the maximum strong diameter over all strong orientations of G. This paper provides the lower and upper orientable strong radius and diameter of complete bipartite graphs.

Keywords: Strong distance, complete bipartite graph, strong radius, strong diameter.

1 Introduction

In [2], they defined strong distance $sd(u,v)$ between u and v for two vertices u, v in a strong digraph D as is the minimum size of a strong subdigraph of D containing u and v. Follow the definitions in [2], the strong eccentricity $se(v)$ of a vertex v in D is

$$se(v) = \max \{sd(v,x) : x \in V(D)\};$$

and the strong radius $srad(D)$ of D is

$$srad(D) = \min \{se(v) : v \in V(D)\};$$

while the strong diameter $sdiam(D)$ of D is

$$sdiam(D) = \max \{se(v) : v \in V(D)\}.$$

For a connected graph G, we define the lower orientable strong radius $srad(G)$ of G by $srad(G)=\min\{srad(D) : D$ is a strong orientations of $G\}$; while the upper orientable strong radius $SRAD(G)$ of G by $SRAD(G)=\max\{srad(D) : D$ is a strong orientations of $G\}$. We also define the lower orientable strong diameter $sdiam(G)$ of G by $sdiam(G)=\min\{sdiam(D) : D$ is a strong orientations of $G\};$ while the upper orientable strong diameter $SDIAM(G)$ of a graph G by $SDIAM(G)=\min\{sdiam(D) : D$ is a strong orientations of $G\}$.

In [1] they discussed the strong radius and strong diameter of complete graphs, and [2] gave upper bound for the strong diameter of a strong oriented graph. Here we turn our attention to the complete bipartite graphs.

2 Orientable strong radius

The girth $g(G)$ of a graph G with cycles is the length of a smallest cycle in G. Lemma 1 is used in the proof of the lower orientable strong radius of the complete bipartite graphs.

Lemma 1 Let $G = (V,E)$ be a connected graph with n vertices and D be an orientation of G. Then $srad(D) \geq g(G)$.

Proof: Let $V(G)=\{v_i : 1 \leq i \leq n\}$, and $C = \{v_1, v_2, \ldots , v_i, v_1\}$ be a cycle whose length is $l = g(G)$. Orient the edges of G cyclically so that (v_j, v_{j+1}) is an arc in D for $1 \leq j \leq l - 1$ and (v_1, v_2) is an arc in D. Then there exists a strong distance $sd(v_r, v_s) = l$ for $1 \leq r, s \leq l$, and $r \neq s$. This implies $srad(D) \geq l = g(G)$. \hfill \Box
Theorem 1 Let $2 \leq m \leq n$. Then $\text{srad}(K_{m,n}) = 4$.

Proof: Let $V = \{v_1, v_2, \ldots, v_m\}$, $U = \{u_1, u_2, \ldots, u_n\}$ be two partite sets of $K_{m,n}$. For any strong orientation of $K_{m,n}$, since $g(K_{m,n}) = 4$, by Lemma 1, we have $\text{srad}(G) \geq 4$. Consider an orientation D_1 of $K_{m,n}$ such that (v_i, u_i) is an arc in D_1 for $1 \leq i \leq m$; (v_m, u_j) is an arc in D_1 for $m + 1 \leq j \leq n$, and orient all other edges from U to V. Then $\text{srad}(D_1) = 4$, which implies $\text{srad}(K_{m,n}) = 4$. \hfill \Box

Figure 1 shows an orientation D of $K_{3,4}$ such that $\text{srad}(D) = 4$.

Next theorem give the lower bound of the upper orientable strong radius of the complete bipartite graphs.

Theorem 2 Let $2 \leq m \leq n$. Then

$$\text{SRAD}(K_{m,n}) \geq \begin{cases} m + 1 & \text{if } m \text{ is odd,} \\ m + 2 & \text{if } m \text{ is even.} \end{cases}$$

Proof: Let $V = \{v_1, v_2, \ldots, v_m\}$, $U = \{u_1, u_2, \ldots, u_n\}$ be two partite sets of $K_{m,n}$.

Case 1: Let $m = n$. Consider an orientation D_1 of $K_{m,m}$ such that (v_i, u_{i+1}) is an arc in D_1 for $1 \leq i \leq m - 1$, (v_m, u_1) is an arc in D_1 for $2 \leq k \leq m$, $l < k$, and orient all other edges from U to V. Then $\text{srad}(D_1) = \begin{cases} m + 1 & \text{if } m \text{ is odd,} \\ m + 2 & \text{if } m \text{ is even,} \end{cases}$ which implies $\text{SRAD}(K_{m,n}) \geq \begin{cases} m + 1 & \text{if } m \text{ is odd,} \\ m + 2 & \text{if } m \text{ is even.} \end{cases}$

Examples of the orientation for $K_{5,5}$ and $K_{4,4}$ are shown in Figure 2 and 3.

3 Orientable strong diameter

In this section, we provide the upper orientable strong diameter and lower orientable strong diameter for the complete bipartite graphs.

Lemma 2 For any orientation D of $K_{m,n}$, $\text{sd}(u,v)$ is even for $u,v \in V(D)$.

Proof: Let $V = \{v_1, v_2, \ldots, v_m\}$, $U = \{u_1, u_2, \ldots, u_n\}$ be two partite sets of $K_{m,n}$. Let r, s be two vertices in D, which are in the same partite set. Let P_1 be a shortest directed path from r to s, P_2 be a shortest directed path from s to r. We know that both $|P_1|$ and $|P_2|$ are even.

Case 1: P_1 and P_2 have even or no common edge. Then $\text{sd}(r,s) = |P_1| + |P_2|$ which is even.

Case 2: P_1 and P_2 have odd common edge. Without loss of generality, assume that there is only one common edge (say xy).

![Figure 1: An orientation D of $K_{3,4}$ such that $\text{srad}(D) = 4$.](image1.png)

![Figure 3: An orientation to reach lower orientable strong radius of and $K_{4,4}$.](image3.png)
Figure 2: An orientation to reach lower orientable strong radius of $K_{5,5}$.

Figure 4: An orientation to reach lower orientable strong radius of $K_{5,6}$.

Figure 5: An orientation to reach lower orientable strong radius of $K_{4,5}$.
Subcase 1: x is in the same partite set of vertices r and s. Let (a_1, x) be an arc on P_2 in D, (b_1, x) be an arc on P_1 on D. Since (s, b_1) must be an arc in D, we have a new path P_2'', which implies that P_1 and P_2'' have two common edges. Then $sd(r, s) = |P_1| + |P_2''|$, which is even.

Subcase 2: x is in the other partite set of r and s. Let (y, a_2) be an arc on P_2, (y, b_2) be an arc on P_1. Since (b_2, r) must be an arc in D, we have a new path P_2', which implies that P_1 and P_2' have two common edges. Then $sd(r, s) = |P_1| + |P_2'|$, which is even.

By Case 1 and 2, we know that $sd(u, v)$ is even for all $u, v \in V(D)$.

\[\text{Proposition 1 (From [2]) For every strong orientable graph } D, \]
\[\text{srad}(D) \leq \text{sdiam}(D) \leq 2\text{srad}(D). \]

\[\text{Theorem 3 Let } 2 \leq m \leq n. \text{ Then} \]
\[\text{sdiam}(K_{m,n}) = \begin{cases} 4 & \text{if } m = n \\ 6 & \text{if } m \neq n. \end{cases} \]

\[\text{Proof:} \text{ Let } V = \{v_1, v_2, \ldots, v_m\}, U = \{u_1, u_2, \ldots, u_n\} \text{ be two partite sets of } K_{m,n}. \]

For $m = n$, since $g(K_{m,n}) = 4$, by Lemma 1, $\text{srad}(D) \geq 4$ for any strong orientation D of $K_{m,n}$. By Proposition 1, such $\text{sdiam}(D) \geq \text{srad}(D)$, hence $\text{sdiam}(D) \geq 4$. Consider an orientation D_1 such that (u_i, v_i) is an arc in D_1 for $1 \leq i \leq m$, and all other edges are oriented all other edges from V to U. Then $\text{sdiam}(D_1) = 4$ which implies that $\text{sdiam}(K_{m,n}) = 4$.

For $m \neq n$, suppose there exists an orientation D_2 such that $\text{sdiam}(K_{m,n}) = 4$. For any two vertices u_i, u_q in U, $1 \leq p, q \leq n$, there exist $v_r, v_s \in V$, such that $(u_p, v_r), (v_r, u_q), (u_q, v_s), (v_s, u_p)$ are arcs in D_2. This implies that it takes at least n vertices in V, which is a contradiction. So $\text{sdiam}(K_{m,n}) > 4$, by Lemma 2, we know that $\text{sdiam}(K_{m,n}) \geq 6$. Consider an orientation D_3 such that (u_i, v_i) is an arc in D_3 for $1 \leq i \leq m$, (u_j, v_m) is an arc in D_3 for $m + 1 \leq j \leq n$, and oriente all other edges from V to U. Then $\text{sdiam}(D_3) = 6$, which implies that $\text{sdiam}(K_{m,n}) = 6$.

\[\text{Theorem 4 Let } 2 \leq m \leq n. \text{ Then} \]
\[\text{SDIAM}(K_{m,n}) = \begin{cases} 2m & \text{if } m = n, \\ 2m + 2 & \text{if } m \neq n. \end{cases} \]

Figure 6 and 7 show an orientation to reach lower orientable strong diameter of $K_{4,4}$ and $K_{4,5}$.

\[\text{Figure 6: An orientation to reach lower orientable strong diameter of } K_{4,4}. \]

\[\text{Proof:} \text{ Let } V = \{v_1, v_2, \ldots, v_m\}, U = \{u_1, u_2, \ldots, u_n\} \text{ be two partite sets of } K_{m,n}. \]

For $m = n$, consider an orientation D_1 of $K_{m,n}$. Let (u_m, v_1) be an arc in D_1, and let $P_1 : v_1, u_1, v_2, u_2, \ldots, v_m, u_m$ be a directed path whose length is $2m - 1$. Then $\text{sd}(v_1, u_m) = 2m$. Since every vertex of $K_{m,n}$ has lying on directed path P_1, we know that P_1 is a longest possible directed path over all orientations of $K_{m,n}$. This implies $\text{sdiam}(D) \leq 2m$ for any orientation D of $K_{m,n}$. Consider an orientation D_2 such that (v_i, u_i+1) is an arc in D_2 for $1 \leq i \leq m - 1$, (v_k, u_i) is an arc in D_2 for $2 \leq k \leq m, l < k$, and all other edges are assign directed from U to V. Then $\text{sdiam}(D_2) = 2m$ which implies that $\text{SDIAM}(K_{m,n}) = 2m$. An orientation to reach upper orientable strong diameter of $K_{5,5}$ and $K_{4,4}$ are shown in Figure 2 and Figure 3.

For $m \neq n$, consider an orientation D_3 such that (v_i, u_{i+1}) is an arc in D_3 for $1 \leq i \leq m, (v_m, u_j)$ is an arc in D_3 for $m + 2 \leq j \leq n$, (v_k, u_i) is an arc in D_3 for $2 \leq k \leq m, l < k$, and oriente all other edges from U to V. Then $\text{sdiam}(D_3) = 2m + 2$. Assume that $\text{SDIAM}(K_{m,n}) = 2m + 2$. For any orientation D of $K_{m,n}$, let r, s be two vertices which implies that $\text{sd}(r, s) = \text{sdiam}(D)$.

Case 1: r, s are not in the same partite set. Without loss of generality, let $\text{sd}(v_1, u_m) = \text{sdiam}(D)$. Let (u_n, v_1) be an arc in D, and $P_2 : v_1, u_1, v_2, u_2, \ldots, v_m, u_m$ be a directed path whose length is $2m - 1$. Since P_2 is the longest possible directed path in D, we have $\text{sd}(v_1, u_m) = 2m$, which implies that $\text{sdiam}(D) \leq 2m$.

Case 2: r, s are in the same partite set. Without loss of generality, let $\text{sd}(u_1, u_n) = \text{sdiam}(D)$. Let p be the number of vertices in V on $u_1 - u_n$ directed path, q be the number of vertices in V on $u_n - u_1$ directed path. Then $2(p + q) > 2m + 2$, which
implies that \(p + 1 > m + 1 \). Let \(P_3 \) be a directed path from \(u_1 \) to \(u_n \), \(P_4 \) be a directed path from \(u_n \) to \(u_1 \). Let \(x, y \) are two vertices in \(V(D) \) on \(P_3 \) and \(P_4 \).

Subcase 1: Either \((u_1, x)\) or \((y, u_n)\) is an arc in \(D \), and either \((u_1, y)\) or \((x, u_n)\) is an arc in \(D \). Then there exists one vertex (say \(z \)) in \(V \) on \(P_3 \) such that \((u_n, z)\), \((z, u_1)\) are arcs in \(D \). Since the length of the longest possible directed path from \(u_1 \) to \(u_n \) is \(2m \), we have \(\text{sd}(u_1, u_n) = 2m + 2 \). This implies that \(\text{sdi}(D) \leq 2m + 2 \).

Subcase 2: Both \((u_1, x)\) and \((y, u_n)\) are arcs in \(D \), or both \((u_1, y)\) and \((x, u_n)\) are arcs in \(D \). If both \((u_1, x)\) and \((y, u_n)\) are arcs in \(D \), let \(P_3 : u_1, x, \ldots, y, u_n \) whose length is \(2k \). Since \((u_n, x)\), \((y, u_1)\) must be arcs in \(D \), let \(P_4 : u_n, x, \ldots, y, u_1 \) whose length is \(2l \). Then \(\text{sd}(u_1, u_n) = 2k + 2l - (2l - 2) = 2k + 2 \). Since the length of the longest directed path from \(u_1 \) to \(u_n \) is \(2m \), \(\text{sd}(u_1, u_n) = 2m + 2 \). This implies that \(\text{sdi}(D) \leq 2m + 2 \). If both \((u_1, y)\) and \((x, u_n)\) are arcs in \(D \), similarly, we have \(\text{sdi}(D) \leq 2m + 2 \). By Case 1 and Case 2, we know that \(\text{Sdiam}(K_{m,n}) = 2m + 2 \). \(\square \)

An orientation to reach upper orientable strong diameter of \(K_{5,6} \) and \(K_{4,8} \) are shown in Figure 4 and Figure 5.

References
