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Abstract 
The max-edge-coloring problem (MECP) is 

finding an edge colorings {E1, E2, E3, …, Ez} of a 

weighted graph G=(V, E) to minimize 

{ }∑ =
∈

z

i ikk Eeew
1

 )(max , where w(ek) is the 

weight of ek. In the work, we discuss the 

complexity issues on the new graph problem and 

its variants. Specifically, we design a 

2-approximmation algorithm for the 

max-edge-coloring problem on biplanar graphs. 

Next, we show the splitting chromatic 

max-edge-coloring problem, a variant of MECP, is 

NP-complete even when the input graph is 

restricted to biplanar graphs. Finally, we also 

show that these two problems have applications in 

scheduling data redistribution on parallel 

computer systems. 
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1. Introduction 
The max-edge-coloring problem (MECP) is 

finding an edge colorings {E1, E2, E3, …, Ez} of a 

weighted graph G to minimize 

{ }∑ =
∈

z

i ikk Eeew
1

 )(max , where w(ek) is the 

weight of ek. We can also define its two variants 

by using the minimum number of coloring as 

follows. The chromatic max-edge-coloring 

problem (CMECP) is finding an edge colorings 

{E1, E2, E3, …, E∆} of a weighted graph G to 

minimize { }∑ ∆

=
∈

1
 )(max

i ikk Eeew , where 

∆ is the maximum degree of G and w(ek) is the 

weight of ek. Given a weighted graph G=(V, E), 

the splitting chromatic max-edge-coloring 

problem (SCMECP) is an decision problem 

whether we can add extra edges E′ such that the 

resulting graph G′=(V, E∪E′) satisfies the 

following four conditions: 

(1) Another edge (s, t) can be added to E′ only if 

there exists an edge (s, t) in E. 

(2) The maximum degree of the resulting new 

graph is the same; that is, ∆(G)=∆(G′). 

(3) The value { }∑∆

=
=

1
'in  ) ,()(

i kk EEtseew U  

equals the weight of (s, t) in E, where w(ek) is 

the weight of ek. 

(4) There is an edge coloring {E1, E2, E3, …, E∆} 

of G′=(V, E∪E′) such that 

{ }∑ ∆

=
∈

1
 )(max

i ikk Eeew ≤K, where K 

is given and w(ek) is the weight of ek. 

To the best of our knowledge, the above three 

problems are defined formally for the first time. 

Although some heuristic algorithms have been 



designed for the CMECP [19, 20, 21], both the 

MECP and the CMECP are still open to devise a 

polynomial-time algorithm even when the input 

graph is restricted to biplanar graphs. The first 

contribution of the work is showing the existence 

of 2-approximation algorithm for the MECP when 

the input graph is restricted to biplanar graphs. 

The SCMECP is a new graph problem defined 

here, which have applications in shortening the 

overall communication time for data redistribution 

in parallel systems. In this work, we will show the 

SCMECP is NP-complete even when the input 

graph is restricted to biplanar graphs. 

Only a similar problem called the 

max-coloring problem [28, 29] can be found in 

literature. The problem is to find a proper vertex 

coloring of input graphs whose color classes C1, 

C2, …, Ck, minimize { }∑ =
∈

k

i iCeew
1

 )(max  

where w(e) is the weight of e. The max-coloring 

problem has been shown to be NP-hard on interval 

graphs [28]; however, there exist some 

approximation algorithms for the problem on 

many well-known subclasses of graphs including 

bipartite graphs, interval graphs, circle graphs, 

circular arc graphs, unit disk graph, chordal graphs, 

and permutation graphs [28, 29]. 

The rest of the paper is organized as follows. 

Section 2 presents necessary definitions and 

notations. Next, Section 3 presents a 

2-approximation algorithm for the MECP when 

the input graph is restricted to biplanar graphs. 

The SCMECP is shown to be NP-complete even 

when the input graph is restricted to biplanar 

graphs in Section 4. The applications of these 

problems to scheduling problems for data 

redistribution in parallel systems are discussed in 

Section 5. Finally, Section 6 concludes the paper. 

2. Definitions and notations 
A graph G consists of a finite nonempty 

vertex set together with an edge set. A bipartite 

graph G =(S, T, E) is a graph whose vertex set can 

be partitioned into two subsets S and T such that 

each of the edges has one end in S and the other 

end in T. A typical convention for drawing a 

bipartite graph G=(S, T, E) is to put the vertices of 

S on a line and the vertices of T on a separate 

parallel line and then represent edges by placing 

straight line segments between the vertices that 

determine them. In this convention, a drawing is 

biplanar if edges do not cross, and a graph G is 

biplanar if it has a biplanar drawing [27]. A graph 

is connected if there is a path joining each pair of 

nodes. An acyclic graph is one that contains no 

cycles. A forest is an acyclic graph. A tree is a 

connected acyclic graph. A component of a graph 

is a maximal connected subgraph. The number of 

components of G is denoted by ω(G). 

Let N(v) denote the set of vertices which are 

adjacent to v in G. The ends of an edge are said to 

be incident with the edge. Two vertices which are 

incident with a common edge are adjacent. A 

multi-graph is a graph allowing more than one 

edge to join two vertices. The degree dG(v) of a 

vertex v in G is the number of edges of G incident 

with v. We denote the maximum degree of vertices 

of G by ∆(G). A complete bipartite graph G =(S, T, 

E) is a graph such that each vertex of S is joined to 

each vertex of T; if ⎪S⎪=m and ⎪T⎪=n, such a 

graph is denoted by Km, n. 

An ordering of S (T) has the adjacency 

property if for each vertex v∈T(S), N(v) contains 

consecutive vertices in this ordering. The graph 

G=(S, T, E) is called a doubly convex-bipartite 

graph if there are orderings of S and T having the 

adjacency property [24]. A graph is called interval 



graph if its vertex set can be represented by using 

a finite number of interval on a straight line and 

two vertices are connected by an edge when the 

corresponding intervals overlap at least partially. 

The line graph L(G) of a graph G=(V, E) is 

defined so that there is a one-to-one 

correspondence between the vertices in L(G) and 

the edges in G. That is, there is an edge joining 

two vertices in L(G) when their corresponding 

edges in G are incident with a common vertex. 

The coloring is proper if no two adjacent 

edges have the same color. An edge with identical 

ends is called a loop. A k-edge coloring of a 

loopless graph G is an assignment of k colors to 

the edges of G. G is k-edge colorable if G has a 

proper k-edge coloring. The edge chromatic 

number χ′(G), of a loopless graph G, is the 

minimum k for which G is k-edge-colorable. A 

subset M of E is called a matching in G=(V, E) if 

its elements are links and no two are adjacent in G. 

Note that the each edge set with the same color in 

a proper edge coloring forms a matching. At last, 

most graph definitions used in the paper can be 

found in [22]. 

An algorithm that generates near-optimal 

solution is called an approximation algorithm. We 

say that an approximation algorithm has a 

ratio-bound of ρ, called ρ-approximation 

algorithm, if for any input of size, the cost C of 

the solution produced by the approximation 

algorithm is within a factor of ρ of the cost C* of 

an optimal solution: max(C/C*, C*/C)≤ ρ. 

 

3. The 2-approximation algorithm for 
the max-edge-coloring problem when 
the input graph is restricted to biplanar 
graphs 
 

The section gives a 2-approximation 

algorithm for the max-edge-coloring problem 

when the input graph is restricted to biplanar 

graphs. First, the following theorem presents 

additional properties of biplanar graphs. 

 

Theorem 1: The following four statements are 

equivalent [25-27]: 

(1) A bipartite graph G is biplanar. 

(2) The graph G is a collection of disjoint 

caterpillars. 

(3) The graph G contains no cycle and no double 

claw. 

(4) The graph G* that is the remainder of G after 

deleting all vertices of degree one, is acyclic 

and contains no vertices of degree at least 

three. 

Figure 1. A double claw. 

 

Here a caterpillar is a connected graph that has a 

path called the backbone b such that all vertices of 

degree larger than one lie on b; and a double claw 

graph is depicted in Figure 1. 

 The size of edge set of a general bipartite 

graph is at most O(n2), where n is the number of 

vertices in the graph. However, if the input graph 

can be drawn in a plane without crossing edges 

(i.e., it is a planar graph), the size of the edge set 

is less than 3n-6 [22]. Since biplanar graphs are 

intrinsically planar, the size of the edge set of 

biplanar graphs is less than 3n-6. In fact, a 

biplanar graph is a tree, the size of whose edge set 

is n-1. 

 



Theorem 2: The line graph of a biplanar graph is 

an interval graph. 

 

Proof: Given a biplanar graph G=(S, T, E), we 

will construct an interval model to represent the 

line graph of G. Since G is biplanar, we have a 

biplanar drawing of G on two horizontal lines. By 

preserving the orderings of the biplanar drawing, 

this drawing can be further rearranged to satisfy 

the following two properties (See Figure 2 for 

example): 

(1) Every vertex v of S and T has distinct χ(v) 

value and 1≤χ(v)≤|S|+|T|. Hereafter χ(v) 

denotes the x-coordinate of a vertex v in the 

biplanar drawing of G. 

(2) The integer set {χ(u)|u∈N(v) and 

d(u)=1 }consists of consecutive integers for 

every vertex v∈S∪T. 

The first property can be achieved by scaling 

the x-coordinates of vertices properly, and the 

second by packing the degree-one vertices which 

incident to the other same vertex. 

 According to the drawing, each vertex of G is 

labeled by using its x-coordinate, and an interval 

[x-o.5, y+0.5] is created for each edge (x, y) in E 

(See Figure 2 for example). The remainder is to 

show that the set of intervals represents the line 

graph of G. Suppose that two vertices are adjacent 

in L(G) and the corresponding edges in G are 

e1=(u, v) and e2. Without loss of generality, let u≤v 

and the interval [u-o.5, v+0.5] represents e1. That 

implies that e2 must be incident with u or v; and 

the interval created for e2 is [z, u+0.5] or [v-o.5, z], 

both of which overlap with [u-o.5, v+0.5]. 

 On the other hand, given any pair of 

overlapped intervals [x1, y1] and [x2, y2] in the set, 

we have x1≤x2<y1≤y2. We claim that the 

corresponding two edges in G are incident with a 

common vertex; that also indicates the 

corresponding two vertices are adjacent in L(G). 

Otherwise, the edges are not incident with a 

common vertex, and the created intervals for the 

edges must be [x1, y1] and [x2, y2] and x1< y1<x2<y2 

according to the two properties of the drawing. A 

contradiction occurs. 

 Thus, the set of intervals represents the line 

graph of G, and L(G) is an interval graph. ■ 

 

 

Figure 2. A biplanar graph G with the interval 

model of its line graph. 

 

 Based on above theorem, an algorithm for 

the max-edge-coloring problem is described as 

follows. 

Algorithm AMEC: 

Input:  a biplanar graph G =(S, T, E). 

Output:  an edge colorings {E1, E2, E3, …, Ez} of 

G and the value 

{ }∑ =
∈

z

i ikk Eeew
1

 )(max , where 

w(ek) is the weight of ek. 

Step 1: Constructing the line graph L(G) from G. 

Step 2: Finding an interval model for L(G) by 

applying an interval graph recognition 

algorithm. 
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Step 3: Finding a vertex coloring {C1, C2, C3, …, 

Cz} of L(G) by applying a 2-approximation 

algorithm for solving the max-coloring 

problem on interval graphs. 

Step 4: Constructing an edge colorings {E1, E2, 

E3, …, Ez} of G from {C1, C2, C3, …, Cz} 

and compute the value 

{ }∑ =
∈

z

i ikk Eeew
1

 )(max . 

The correctness and performance guarantee of 

algorithm AMEC are demonstrated in the next 

theorem. 

 

Theorem 3: Algorithm AMEC is a 

2-approximation algorithm for the 

max-edge-coloring problem. 

 

Proof: Since an edge coloring of an graph G 

corresponds to a vertex coloring of its line graph 

L(G), the max-edge-coloring problem of G can be 

transformed to the max-coloring problem of L(G). 

Since L(G) is an interval graph (by Theorem 2), 

we obtain a 2-approximation algorithm for 

max-edge-coloring problem of G by applying 

Pemmaraju et al ’s 2-approximation algorithm for 

the max-coloring problem on interval graphs [28]. 

Finally, we conclude that Algorithm AMEC is a 

2-approximation algorithm for the 

max-edge-coloring problem. ■ 

The time complexity of AMEC is discussed as 

follows. Step 1 requires O(n2) time because the 

step compares at most every pair in the edge set 

(whose size of edge set is |E|=O(n)) of G for 

constructing the edge set of L(G). Step 2 can be 

implemented in O(n2) time if we apply Booth and 

Lueker’s linear-time recognition algorithm for 

interval graphs [30]. Step 3 takes O(nlog n) time if 

we apply Pemmaraju et al ’s 2-approximation 

algorithm for the max-coloring problem on 

interval graphs [28]. Finally, Step 4 can be 

implemented in O(n) time. The next theorem 

makes a summary. 

 

Theorem 4: When the input graph is biplanar, 

AMEC is a 2-approxmiation algorithm for the 

max-edge-coloring problem requiring O(n2) time, 

where n is the size of the vertex set of the input 

graph. 

 

4. The splitting chromatic 
max-edge-coloring problem is 
NP-complete when the input graph is 
restricted to biplanar graphs 

When the input graph is restricted to biplanar 

graphs, we will prove that the SCMECP is 

NP-complete by transforming from the partition 

problem: Given a finite set A and a weight s(a) 

∈Z+ for each a∈A, the partition problem is to ask 

whether there is a subset A′⊆A such that 

∑∑
′−∈′∈

=
AAaAa

asas )()( . 

 

Theorem 5: The SCMECP is NP-complete even 

the input graph is restricted to biplanar graphs. 

 

Proof: It is easy to see that SCMECP∈NP, since a 

nondeterministic algorithm need only guess the set 

of added edges E′ with its associated weights and 

check whether the above four conditions are 

satisfied. 

We will transform the partition problem to 

SCMECP. Let A={a1, a2, …, an}and given weight 

s(a) for each a∈A constitute an arbitrary instance 

of the partition problem. We can construct a 

weighted biplanar graph G=(S, T, E) such that (1) 

vertex set S={sx, sy, s1, s2, …, sn} and T={t1, t2}, (2) 



edge set E={(sx, t1), (sy, t1), (s1, t2), ( s2, t2), …, ( sn, 

t2)}, and (3) the weights of (sx, t1) and (sy, t1) are 

∑
∈Aa

as )( /2, and that of (si, t2) is s(ai) for i=1 to n. 

Figure 3 illustrates the construction when 

A={2, 3, 4, 6, 8, 9} where n=6. 

 
Figure 3. SMECP instance resulting from partition 

instance in which A={2, 3, 4, 6, 8, 9}. 

 

It is easy to show how the construction can be 

accomplished in polynomial time. All that remains 

to be shown is that there is a set subset A′⊆A such 

that ∑∑
′−∈′∈

=
AAaAa

asas )()(  if and only if there 

is an edge coloring {E1, E2, E3, …, E∆} of G′=(S, T, 

E∪E′) such that 

{ }∑∆

=
∈

1
 )(max

i ikk Eeew ≤K=∑
∈Aa

as )( . 

 Suppose that there is a set subset A′={ao(1), 

ao(1), …, ao(k)}⊆A such that ∑∑
′−∈′∈

=
AAaAa

asas )()( , 

obviously ∑
≤≤ ki

ioas
1

)( )( =(∑
∈ Aa

as )( )/2=K. We can 

then construct the corresponding weighted 

biplanar graph G=(S, T, E) according to the above 

discussions. Let the extra adding edges E′ consist 

of o(k)-1 copies of (sx, t1) and n-o(k)-1 copies of 

(sy, t1). Consequently, the maximum degree of the 

resulting graph remains n; that is, ∆(G′)=∆(G)=n. 

Since ∑
≤≤ ki

ioas
1

)( )( =( ∑
∈ Aa

as )( )/2=K 

and ∑∑
′−∈′∈

=
AAaAa

asas )()( , we can reassign ith 

edge of o(k) (sx, t1) with weight )( )(ioas  and the 

other n-o(k) edges of (sy, t1) with weight )( )(ioas . 

There exists an edge coloring {E1, E2, E3, …, En} 

of G′=(S, T, E∪E′) where Ei={(sx, t1), (so(i), t2)} for 

1≤i≤k and Ei={(sy, t1), (so(j), t2)} for k+1≤j≤n. 

Evidently, { }∑ =
∈

n

i ikk Eeew
1

 )(max =K. 

Figure 4 depicts the corresponding edge coloring 

of G′ constructed from G shown in Figure 3. 

 
Figure 4. The corresponding edge coloring of G′. 

 

 Conversely, suppose that there is an edge 

coloring {E1, E2, E3, …, E∆} of G′=(S, T, E∪E′) 

such that { }∑∆

=
∈

1
 max

i ikk Eew ≤K= ∑
∈Aa

as )( , 

where wk is the weight of ek. According to 

the graph construction of G, the weights of (sx, t1) 

and (sy, t1) equals ∑
∈ Aa

as )( /2, respectively, and 

that of (si, t2) is s(ai) for i=1 to n. Consequently, 

there is a subset A′={ao(1), ao(1), …, ao(k)}⊆A such 

that ∑∑
′−∈′∈

=
AAaAa

asas )()( . Otherwise, 

{ }∑∆

=
∈

1
 max

i ikk Eew  >K, a contradiction 
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occurs. ■ 

 

5. Applications in scheduling data 
redistribution 
 We also find applications in scheduling 

problems for data redistribution in parallel 

systems for these problems in this section. 

 

5.1 Applications of MECP and CMECP 

Array redistribution is crucial for system 

performance because a specific array distribution 

may be appropriate for the current phase, but 

incompatible for the subsequent one. Many 

parallel programming languages thus support 

run-time primitives for rearranging a program’s 

array distribution. Therefore developing efficient 

algorithms for array redistribution is essential for 

designing distributed memory compilers for those 

languages. While array redistribution is performed 

at run time, a trade-off occurs between the 

efficiency of the new data rearrangement for the 

coming phase and the cost of array redistributing 

among processors. 

In irregular redistribution, messages of 

varying sizes are scheduled in the same 

communication step. Therefore, the largest size of 

message in the same communication step 

dominates the data transfer time required for this 

communication step. 

A bipartite graph model will be introduced to 

represent data redistributions. Any data 

redistribution can be represented by a bipartite 

graph G=(S, T, E), called a redistribution graph. 

Where S denotes source processor set, T denotes 

destination processor set, and each edge denotes a 

message required to be sent. For example, a 

Block-Cyclic(x) to Block-Cyclic(y) data 

redistribution from P processors to Q processors 

(denoted by BC (x, y, P, Q)) can be modeled by a 

bipartite graph GBC(x, y, P, Q)=(S, T, E) where S={s0, 

s1, …, s|s|-1} (T={t0, t1, …, t|t|-1}) denotes the source 

processor set {p0, p1, …, p|s|-1} (destination 

processor set{p0, p1, …, p|t|-1}) and we have (si, 

tj)∈E with weight w if source processor pi has to 

send the amount of w data elements to destination 

processor pj. For simplicity, we use BC (x, y, P) to 

denote BC (x, y, P, P). Figure 5 depicts the a data 

redistribution pattern BC(1, 4, 4), and its 

corresponding redistribution graph GBC(1, 4, 4) is 

shown in Figure 6. 

Figure 5. A data redistribution pattern BC(1, 4, 4). 

 

 

Figure 6. The redistribution graph GBC(1, 4, 4) is a 

complete bipartite graph. 

 

Similarly, GEN_BLOCK data redistribution 

from P processors to Q processors (denoted by GB 

(P, Q)) can also be modeled by a bipartite graph 

GGB(P, Q)=(S, T, E). For example, a GB(4, 4) with 

its redistribution graph GGB(4, 4) is depicted in 

Figure 7 and 8. 



 
Figure 7. GEN_BLOCK data redistribution GB(4, 

4). 

 

 

Figure 8. A redistribution graph GGB(4, 4). 

 

Theorem 6: The redistribution graph of 

GEN-BLOCK is a biplanar graph. 

 

Proof: Evidently the redistribution graph G is 

bipartite. The remainder is to show the planarity 

property. We may image that source processors 

and destination processors are assembled into two 

parallel lines (Figure 7 and 8). Subsequently 

consecutive array elements (described in the 

GEN-BLOCK format) allocates to a single source 

processor (and destination processor) one by one. 

Note that the elements in a source processor Pi 

must be reallocated to consecutive destination 

processors {Qj, Qj+1, …, Qk} in the line; and the 

elements stored in the following source processor 

Pi+1 may be reallocated to the consecutive 

destination processors from Qk. Therefore, the 

resulting redistribution bipartite graph can be 

drawn without any crossing edge. ■ 

A set of conflict-free data communication can 

be represented by a matching of the given 

redistribution graph G. Thus, the data 

redistribution problem can be modeled as the 

MECP and CMECP. 

 

5.2 Applications of SCMECP 
 Designing data redistribution scheduling 

algorithms for CMECP encounters a difficulty: 

shortening the overall communication time 

without increasing the number of communication 

steps at the same time. Unlike existing algorithms, 

Yu et al [31] presented an algorithm to partition 

large data segments into multiple small data 

segments and properly schedule them in different 

communication steps without increasing the 

number of total communication steps. For 

example, Figure 9 depicts a redistribution graph G 

with a possible scheduling. 

 
Figure 9. A redistribution graph G with maximum 

degree ∆=4. 

 

Since G is bipartite, it is well known that 

χ′(G)=∆(G) [22]. That indicates that the minimum 

number of required communication steps (colors) 

equals the maximum degree ∆ of the given 

distribution graph G. Therefore, we at least need 

four communication steps for the data 

redistribution since χ′(G)=∆(G)=4. In addition, the 

overall cost of the scheduling is 38 (See Table 1). 

 



Table 1. Costs of the scheduling correspond to the 

edge coloring in Figure 9. 

 

Note that the cost of Step 1 (colored in red) is 

dominated by the data segment (with 18 data 

elements) from P0 to Q0. Suppose that we partition 

the data of the segment into two data segments 

(with 9 and 9 data elements respectively) and 

transmit them in different steps; then the cost 

required for Step 1 is reduced to 10 (Currently the 

step is dominated by the data segment from P3 to 

Q3). We can represent the kind of message 

partition by adding a new edge (P0, Q0) in the 

original redistribution graph and sharing weight 

with the old edge (P0, Q0). Similarly, we can 

partition other large data segments into multiple 

small data segments if the maximum degree of the 

resulting redistribution graph remains unchanging. 

After several data partitions, the overall 

communication cost can be reduced to 29 (or 

equivalently 76%) and the number of required 

communication step is still minimized (see Figure 

10 and Table 2). 

 
Figure 10. The resulting redistribution graph after 

partitioning long data segments. 

 

Table 2. Costs of the scheduling after partitioning 

long data segments. 

 

Step 1(red) 2(yellow) 3(green) 4(purple) Total

Cost 9 9 5 6 29 

 

Evidently, the above technique can be modeled by 

the SCMECP. We have shown the SCMECP is 

NP-complete even when the input graph is 

biplanar by Theorem 5. 

 

6. Conclusions 
In this work, we have designed the first 

2-approximmation algorithm for the MECP on 

biplanar graphs. We also proved that the SCMECP 

is NP-complete even when the input graph is 

restricted to biplanar graphs. These two problems 

find applications in scheduling data redistribution 

on parallel computer systems. The authors believe 

that these newly defined graph problems deserve 

serious attention and can be applied to tackle more 

practical problems in diverse fields. 
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