
On the Complexity of the Max-Edge-Coloring Problem with Its Variant

Chang Wu Yu
Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
{cwyu}@chu.edu.tw

Abstract
The max-edge-coloring problem (MECP) is

finding an edge colorings {E1, E2, E3, …, Ez} of a

weighted graph G=(V, E) to minimize

{ }∑ =
∈

z

i ikk Eeew
1

)(max , where w(ek) is the

weight of ek. In the work, we discuss the

complexity issues on the new graph problem and

its variants. Specifically, we design a

2-approximmation algorithm for the

max-edge-coloring problem on biplanar graphs.

Next, we show the splitting chromatic

max-edge-coloring problem, a variant of MECP, is

NP-complete even when the input graph is

restricted to biplanar graphs. Finally, we also

show that these two problems have applications in

scheduling data redistribution on parallel

computer systems.

Keywords: edge coloring, bipartite graphs,

multi-graphs, algorithm design

1. Introduction
The max-edge-coloring problem (MECP) is

finding an edge colorings {E1, E2, E3, …, Ez} of a

weighted graph G to minimize

{ }∑ =
∈

z

i ikk Eeew
1

)(max , where w(ek) is the

weight of ek. We can also define its two variants

by using the minimum number of coloring as

follows. The chromatic max-edge-coloring

problem (CMECP) is finding an edge colorings

{E1, E2, E3, …, E∆} of a weighted graph G to

minimize { }∑ ∆

=
∈

1
)(max

i ikk Eeew , where

∆ is the maximum degree of G and w(ek) is the

weight of ek. Given a weighted graph G=(V, E),

the splitting chromatic max-edge-coloring

problem (SCMECP) is an decision problem

whether we can add extra edges E′ such that the

resulting graph G′=(V, E∪E′) satisfies the

following four conditions:

(1) Another edge (s, t) can be added to E′ only if

there exists an edge (s, t) in E.

(2) The maximum degree of the resulting new

graph is the same; that is, ∆(G)=∆(G′).

(3) The value { }∑∆

=
=

1
'in) ,()(

i kk EEtseew U

equals the weight of (s, t) in E, where w(ek) is

the weight of ek.

(4) There is an edge coloring {E1, E2, E3, …, E∆}

of G′=(V, E∪E′) such that

{ }∑ ∆

=
∈

1
)(max

i ikk Eeew ≤K, where K

is given and w(ek) is the weight of ek.

To the best of our knowledge, the above three

problems are defined formally for the first time.

Although some heuristic algorithms have been

designed for the CMECP [19, 20, 21], both the

MECP and the CMECP are still open to devise a

polynomial-time algorithm even when the input

graph is restricted to biplanar graphs. The first

contribution of the work is showing the existence

of 2-approximation algorithm for the MECP when

the input graph is restricted to biplanar graphs.

The SCMECP is a new graph problem defined

here, which have applications in shortening the

overall communication time for data redistribution

in parallel systems. In this work, we will show the

SCMECP is NP-complete even when the input

graph is restricted to biplanar graphs.

Only a similar problem called the

max-coloring problem [28, 29] can be found in

literature. The problem is to find a proper vertex

coloring of input graphs whose color classes C1,

C2, …, Ck, minimize { }∑ =
∈

k

i iCeew
1

)(max

where w(e) is the weight of e. The max-coloring

problem has been shown to be NP-hard on interval

graphs [28]; however, there exist some

approximation algorithms for the problem on

many well-known subclasses of graphs including

bipartite graphs, interval graphs, circle graphs,

circular arc graphs, unit disk graph, chordal graphs,

and permutation graphs [28, 29].

The rest of the paper is organized as follows.

Section 2 presents necessary definitions and

notations. Next, Section 3 presents a

2-approximation algorithm for the MECP when

the input graph is restricted to biplanar graphs.

The SCMECP is shown to be NP-complete even

when the input graph is restricted to biplanar

graphs in Section 4. The applications of these

problems to scheduling problems for data

redistribution in parallel systems are discussed in

Section 5. Finally, Section 6 concludes the paper.

2. Definitions and notations
A graph G consists of a finite nonempty

vertex set together with an edge set. A bipartite

graph G =(S, T, E) is a graph whose vertex set can

be partitioned into two subsets S and T such that

each of the edges has one end in S and the other

end in T. A typical convention for drawing a

bipartite graph G=(S, T, E) is to put the vertices of

S on a line and the vertices of T on a separate

parallel line and then represent edges by placing

straight line segments between the vertices that

determine them. In this convention, a drawing is

biplanar if edges do not cross, and a graph G is

biplanar if it has a biplanar drawing [27]. A graph

is connected if there is a path joining each pair of

nodes. An acyclic graph is one that contains no

cycles. A forest is an acyclic graph. A tree is a

connected acyclic graph. A component of a graph

is a maximal connected subgraph. The number of

components of G is denoted by ω(G).

Let N(v) denote the set of vertices which are

adjacent to v in G. The ends of an edge are said to

be incident with the edge. Two vertices which are

incident with a common edge are adjacent. A

multi-graph is a graph allowing more than one

edge to join two vertices. The degree dG(v) of a

vertex v in G is the number of edges of G incident

with v. We denote the maximum degree of vertices

of G by ∆(G). A complete bipartite graph G =(S, T,

E) is a graph such that each vertex of S is joined to

each vertex of T; if ⎪S⎪=m and ⎪T⎪=n, such a

graph is denoted by Km, n.

An ordering of S (T) has the adjacency

property if for each vertex v∈T(S), N(v) contains

consecutive vertices in this ordering. The graph

G=(S, T, E) is called a doubly convex-bipartite

graph if there are orderings of S and T having the

adjacency property [24]. A graph is called interval

graph if its vertex set can be represented by using

a finite number of interval on a straight line and

two vertices are connected by an edge when the

corresponding intervals overlap at least partially.

The line graph L(G) of a graph G=(V, E) is

defined so that there is a one-to-one

correspondence between the vertices in L(G) and

the edges in G. That is, there is an edge joining

two vertices in L(G) when their corresponding

edges in G are incident with a common vertex.

The coloring is proper if no two adjacent

edges have the same color. An edge with identical

ends is called a loop. A k-edge coloring of a

loopless graph G is an assignment of k colors to

the edges of G. G is k-edge colorable if G has a

proper k-edge coloring. The edge chromatic

number χ′(G), of a loopless graph G, is the

minimum k for which G is k-edge-colorable. A

subset M of E is called a matching in G=(V, E) if

its elements are links and no two are adjacent in G.

Note that the each edge set with the same color in

a proper edge coloring forms a matching. At last,

most graph definitions used in the paper can be

found in [22].

An algorithm that generates near-optimal

solution is called an approximation algorithm. We

say that an approximation algorithm has a

ratio-bound of ρ, called ρ-approximation

algorithm, if for any input of size, the cost C of

the solution produced by the approximation

algorithm is within a factor of ρ of the cost C* of

an optimal solution: max(C/C*, C*/C)≤ ρ.

3. The 2-approximation algorithm for
the max-edge-coloring problem when
the input graph is restricted to biplanar
graphs

The section gives a 2-approximation

algorithm for the max-edge-coloring problem

when the input graph is restricted to biplanar

graphs. First, the following theorem presents

additional properties of biplanar graphs.

Theorem 1: The following four statements are

equivalent [25-27]:

(1) A bipartite graph G is biplanar.

(2) The graph G is a collection of disjoint

caterpillars.

(3) The graph G contains no cycle and no double

claw.

(4) The graph G* that is the remainder of G after

deleting all vertices of degree one, is acyclic

and contains no vertices of degree at least

three.

Figure 1. A double claw.

Here a caterpillar is a connected graph that has a

path called the backbone b such that all vertices of

degree larger than one lie on b; and a double claw

graph is depicted in Figure 1.

 The size of edge set of a general bipartite

graph is at most O(n2), where n is the number of

vertices in the graph. However, if the input graph

can be drawn in a plane without crossing edges

(i.e., it is a planar graph), the size of the edge set

is less than 3n-6 [22]. Since biplanar graphs are

intrinsically planar, the size of the edge set of

biplanar graphs is less than 3n-6. In fact, a

biplanar graph is a tree, the size of whose edge set

is n-1.

Theorem 2: The line graph of a biplanar graph is

an interval graph.

Proof: Given a biplanar graph G=(S, T, E), we

will construct an interval model to represent the

line graph of G. Since G is biplanar, we have a

biplanar drawing of G on two horizontal lines. By

preserving the orderings of the biplanar drawing,

this drawing can be further rearranged to satisfy

the following two properties (See Figure 2 for

example):

(1) Every vertex v of S and T has distinct χ(v)

value and 1≤χ(v)≤|S|+|T|. Hereafter χ(v)

denotes the x-coordinate of a vertex v in the

biplanar drawing of G.

(2) The integer set {χ(u)|u∈N(v) and

d(u)=1 }consists of consecutive integers for

every vertex v∈S∪T.

The first property can be achieved by scaling

the x-coordinates of vertices properly, and the

second by packing the degree-one vertices which

incident to the other same vertex.

 According to the drawing, each vertex of G is

labeled by using its x-coordinate, and an interval

[x-o.5, y+0.5] is created for each edge (x, y) in E

(See Figure 2 for example). The remainder is to

show that the set of intervals represents the line

graph of G. Suppose that two vertices are adjacent

in L(G) and the corresponding edges in G are

e1=(u, v) and e2. Without loss of generality, let u≤v

and the interval [u-o.5, v+0.5] represents e1. That

implies that e2 must be incident with u or v; and

the interval created for e2 is [z, u+0.5] or [v-o.5, z],

both of which overlap with [u-o.5, v+0.5].

 On the other hand, given any pair of

overlapped intervals [x1, y1] and [x2, y2] in the set,

we have x1≤x2<y1≤y2. We claim that the

corresponding two edges in G are incident with a

common vertex; that also indicates the

corresponding two vertices are adjacent in L(G).

Otherwise, the edges are not incident with a

common vertex, and the created intervals for the

edges must be [x1, y1] and [x2, y2] and x1< y1<x2<y2

according to the two properties of the drawing. A

contradiction occurs.

 Thus, the set of intervals represents the line

graph of G, and L(G) is an interval graph. ■

Figure 2. A biplanar graph G with the interval

model of its line graph.

 Based on above theorem, an algorithm for

the max-edge-coloring problem is described as

follows.

Algorithm AMEC:

Input: a biplanar graph G =(S, T, E).

Output: an edge colorings {E1, E2, E3, …, Ez} of

G and the value

{ }∑ =
∈

z

i ikk Eeew
1

)(max , where

w(ek) is the weight of ek.

Step 1: Constructing the line graph L(G) from G.

Step 2: Finding an interval model for L(G) by

applying an interval graph recognition

algorithm.

1

2 3 4 6 10

5 7 8 9

a

b
c

d
e

f
g
h

i

b c d e
f g h i

a
1 2 3 4 5 6 7 8 9

Step 3: Finding a vertex coloring {C1, C2, C3, …,

Cz} of L(G) by applying a 2-approximation

algorithm for solving the max-coloring

problem on interval graphs.

Step 4: Constructing an edge colorings {E1, E2,

E3, …, Ez} of G from {C1, C2, C3, …, Cz}

and compute the value

{ }∑ =
∈

z

i ikk Eeew
1

)(max .

The correctness and performance guarantee of

algorithm AMEC are demonstrated in the next

theorem.

Theorem 3: Algorithm AMEC is a

2-approximation algorithm for the

max-edge-coloring problem.

Proof: Since an edge coloring of an graph G

corresponds to a vertex coloring of its line graph

L(G), the max-edge-coloring problem of G can be

transformed to the max-coloring problem of L(G).

Since L(G) is an interval graph (by Theorem 2),

we obtain a 2-approximation algorithm for

max-edge-coloring problem of G by applying

Pemmaraju et al ’s 2-approximation algorithm for

the max-coloring problem on interval graphs [28].

Finally, we conclude that Algorithm AMEC is a

2-approximation algorithm for the

max-edge-coloring problem. ■

The time complexity of AMEC is discussed as

follows. Step 1 requires O(n2) time because the

step compares at most every pair in the edge set

(whose size of edge set is |E|=O(n)) of G for

constructing the edge set of L(G). Step 2 can be

implemented in O(n2) time if we apply Booth and

Lueker’s linear-time recognition algorithm for

interval graphs [30]. Step 3 takes O(nlog n) time if

we apply Pemmaraju et al ’s 2-approximation

algorithm for the max-coloring problem on

interval graphs [28]. Finally, Step 4 can be

implemented in O(n) time. The next theorem

makes a summary.

Theorem 4: When the input graph is biplanar,

AMEC is a 2-approxmiation algorithm for the

max-edge-coloring problem requiring O(n2) time,

where n is the size of the vertex set of the input

graph.

4. The splitting chromatic
max-edge-coloring problem is
NP-complete when the input graph is
restricted to biplanar graphs

When the input graph is restricted to biplanar

graphs, we will prove that the SCMECP is

NP-complete by transforming from the partition

problem: Given a finite set A and a weight s(a)

∈Z+ for each a∈A, the partition problem is to ask

whether there is a subset A′⊆A such that

∑∑
′−∈′∈

=
AAaAa

asas)()(.

Theorem 5: The SCMECP is NP-complete even

the input graph is restricted to biplanar graphs.

Proof: It is easy to see that SCMECP∈NP, since a

nondeterministic algorithm need only guess the set

of added edges E′ with its associated weights and

check whether the above four conditions are

satisfied.

We will transform the partition problem to

SCMECP. Let A={a1, a2, …, an}and given weight

s(a) for each a∈A constitute an arbitrary instance

of the partition problem. We can construct a

weighted biplanar graph G=(S, T, E) such that (1)

vertex set S={sx, sy, s1, s2, …, sn} and T={t1, t2}, (2)

edge set E={(sx, t1), (sy, t1), (s1, t2), (s2, t2), …, (sn,

t2)}, and (3) the weights of (sx, t1) and (sy, t1) are

∑
∈Aa

as)(/2, and that of (si, t2) is s(ai) for i=1 to n.

Figure 3 illustrates the construction when

A={2, 3, 4, 6, 8, 9} where n=6.

Figure 3. SMECP instance resulting from partition

instance in which A={2, 3, 4, 6, 8, 9}.

It is easy to show how the construction can be

accomplished in polynomial time. All that remains

to be shown is that there is a set subset A′⊆A such

that ∑∑
′−∈′∈

=
AAaAa

asas)()(if and only if there

is an edge coloring {E1, E2, E3, …, E∆} of G′=(S, T,

E∪E′) such that

{ }∑∆

=
∈

1
)(max

i ikk Eeew ≤K=∑
∈Aa

as)(.

 Suppose that there is a set subset A′={ao(1),

ao(1), …, ao(k)}⊆A such that ∑∑
′−∈′∈

=
AAaAa

asas)()(,

obviously ∑
≤≤ ki

ioas
1

)()(=(∑
∈ Aa

as)()/2=K. We can

then construct the corresponding weighted

biplanar graph G=(S, T, E) according to the above

discussions. Let the extra adding edges E′ consist

of o(k)-1 copies of (sx, t1) and n-o(k)-1 copies of

(sy, t1). Consequently, the maximum degree of the

resulting graph remains n; that is, ∆(G′)=∆(G)=n.

Since ∑
≤≤ ki

ioas
1

)()(=(∑
∈ Aa

as)()/2=K

and ∑∑
′−∈′∈

=
AAaAa

asas)()(, we can reassign ith

edge of o(k) (sx, t1) with weight)()(ioas and the

other n-o(k) edges of (sy, t1) with weight)()(ioas .

There exists an edge coloring {E1, E2, E3, …, En}

of G′=(S, T, E∪E′) where Ei={(sx, t1), (so(i), t2)} for

1≤i≤k and Ei={(sy, t1), (so(j), t2)} for k+1≤j≤n.

Evidently, { }∑ =
∈

n

i ikk Eeew
1

)(max =K.

Figure 4 depicts the corresponding edge coloring

of G′ constructed from G shown in Figure 3.

Figure 4. The corresponding edge coloring of G′.

 Conversely, suppose that there is an edge

coloring {E1, E2, E3, …, E∆} of G′=(S, T, E∪E′)

such that { }∑∆

=
∈

1
 max

i ikk Eew ≤K= ∑
∈Aa

as)(,

where wk is the weight of ek. According to

the graph construction of G, the weights of (sx, t1)

and (sy, t1) equals ∑
∈ Aa

as)(/2, respectively, and

that of (si, t2) is s(ai) for i=1 to n. Consequently,

there is a subset A′={ao(1), ao(1), …, ao(k)}⊆A such

that ∑∑
′−∈′∈

=
AAaAa

asas)()(. Otherwise,

{ }∑∆

=
∈

1
 max

i ikk Eew >K, a contradiction

8 3 98 6 4 3 2 4 92 6

s sy s1

t1

s6s5 s4 s3 s2

t2

1 1 98 6 4 3 2

s sy s1 s6s5s4 s3 s2

t1 t2

occurs. ■

5. Applications in scheduling data
redistribution
 We also find applications in scheduling

problems for data redistribution in parallel

systems for these problems in this section.

5.1 Applications of MECP and CMECP

Array redistribution is crucial for system

performance because a specific array distribution

may be appropriate for the current phase, but

incompatible for the subsequent one. Many

parallel programming languages thus support

run-time primitives for rearranging a program’s

array distribution. Therefore developing efficient

algorithms for array redistribution is essential for

designing distributed memory compilers for those

languages. While array redistribution is performed

at run time, a trade-off occurs between the

efficiency of the new data rearrangement for the

coming phase and the cost of array redistributing

among processors.

In irregular redistribution, messages of

varying sizes are scheduled in the same

communication step. Therefore, the largest size of

message in the same communication step

dominates the data transfer time required for this

communication step.

A bipartite graph model will be introduced to

represent data redistributions. Any data

redistribution can be represented by a bipartite

graph G=(S, T, E), called a redistribution graph.

Where S denotes source processor set, T denotes

destination processor set, and each edge denotes a

message required to be sent. For example, a

Block-Cyclic(x) to Block-Cyclic(y) data

redistribution from P processors to Q processors

(denoted by BC (x, y, P, Q)) can be modeled by a

bipartite graph GBC(x, y, P, Q)=(S, T, E) where S={s0,

s1, …, s|s|-1} (T={t0, t1, …, t|t|-1}) denotes the source

processor set {p0, p1, …, p|s|-1} (destination

processor set{p0, p1, …, p|t|-1}) and we have (si,

tj)∈E with weight w if source processor pi has to

send the amount of w data elements to destination

processor pj. For simplicity, we use BC (x, y, P) to

denote BC (x, y, P, P). Figure 5 depicts the a data

redistribution pattern BC(1, 4, 4), and its

corresponding redistribution graph GBC(1, 4, 4) is

shown in Figure 6.

Figure 5. A data redistribution pattern BC(1, 4, 4).

Figure 6. The redistribution graph GBC(1, 4, 4) is a

complete bipartite graph.

Similarly, GEN_BLOCK data redistribution

from P processors to Q processors (denoted by GB

(P, Q)) can also be modeled by a bipartite graph

GGB(P, Q)=(S, T, E). For example, a GB(4, 4) with

its redistribution graph GGB(4, 4) is depicted in

Figure 7 and 8.

Figure 7. GEN_BLOCK data redistribution GB(4,

4).

Figure 8. A redistribution graph GGB(4, 4).

Theorem 6: The redistribution graph of

GEN-BLOCK is a biplanar graph.

Proof: Evidently the redistribution graph G is

bipartite. The remainder is to show the planarity

property. We may image that source processors

and destination processors are assembled into two

parallel lines (Figure 7 and 8). Subsequently

consecutive array elements (described in the

GEN-BLOCK format) allocates to a single source

processor (and destination processor) one by one.

Note that the elements in a source processor Pi

must be reallocated to consecutive destination

processors {Qj, Qj+1, …, Qk} in the line; and the

elements stored in the following source processor

Pi+1 may be reallocated to the consecutive

destination processors from Qk. Therefore, the

resulting redistribution bipartite graph can be

drawn without any crossing edge. ■

A set of conflict-free data communication can

be represented by a matching of the given

redistribution graph G. Thus, the data

redistribution problem can be modeled as the

MECP and CMECP.

5.2 Applications of SCMECP
 Designing data redistribution scheduling

algorithms for CMECP encounters a difficulty:

shortening the overall communication time

without increasing the number of communication

steps at the same time. Unlike existing algorithms,

Yu et al [31] presented an algorithm to partition

large data segments into multiple small data

segments and properly schedule them in different

communication steps without increasing the

number of total communication steps. For

example, Figure 9 depicts a redistribution graph G

with a possible scheduling.

Figure 9. A redistribution graph G with maximum

degree ∆=4.

Since G is bipartite, it is well known that

χ′(G)=∆(G) [22]. That indicates that the minimum

number of required communication steps (colors)

equals the maximum degree ∆ of the given

distribution graph G. Therefore, we at least need

four communication steps for the data

redistribution since χ′(G)=∆(G)=4. In addition, the

overall cost of the scheduling is 38 (See Table 1).

Table 1. Costs of the scheduling correspond to the

edge coloring in Figure 9.

Note that the cost of Step 1 (colored in red) is

dominated by the data segment (with 18 data

elements) from P0 to Q0. Suppose that we partition

the data of the segment into two data segments

(with 9 and 9 data elements respectively) and

transmit them in different steps; then the cost

required for Step 1 is reduced to 10 (Currently the

step is dominated by the data segment from P3 to

Q3). We can represent the kind of message

partition by adding a new edge (P0, Q0) in the

original redistribution graph and sharing weight

with the old edge (P0, Q0). Similarly, we can

partition other large data segments into multiple

small data segments if the maximum degree of the

resulting redistribution graph remains unchanging.

After several data partitions, the overall

communication cost can be reduced to 29 (or

equivalently 76%) and the number of required

communication step is still minimized (see Figure

10 and Table 2).

Figure 10. The resulting redistribution graph after

partitioning long data segments.

Table 2. Costs of the scheduling after partitioning

long data segments.

Step 1(red) 2(yellow) 3(green) 4(purple) Total

Cost 9 9 5 6 29

Evidently, the above technique can be modeled by

the SCMECP. We have shown the SCMECP is

NP-complete even when the input graph is

biplanar by Theorem 5.

6. Conclusions
In this work, we have designed the first

2-approximmation algorithm for the MECP on

biplanar graphs. We also proved that the SCMECP

is NP-complete even when the input graph is

restricted to biplanar graphs. These two problems

find applications in scheduling data redistribution

on parallel computer systems. The authors believe

that these newly defined graph problems deserve

serious attention and can be applied to tackle more

practical problems in diverse fields.

References:
[1] G. Bandera and E.L. Zapata, “Sparse Matrix

Block-Cyclic Redistribution,” Proceeding of
IEEE Int'l. Parallel Processing Symposium
(IPPS'99), San Juan, Puerto Rico, April 1999.

[2] Frederic Desprez, Jack Dongarra, and Antoine
Petitet, “Scheduling Block-Cyclic Data
redistribution,” IEEE Trans. on PDS, vol. 9, no.
2, pp. 192-205, Feb. 1998.

[3] C.-H Hsu, S.-W Bai, Y.-C Chung, and C.-S
Yang, “A Generalized Basic-Cycle
Calculation Method for Efficient Array
Redistribution,” IEEE Transactions on Parallel
and Distributed Systems, vol. 11, no. 12, pp.
1201-1216, Dec. 2000.

[4] C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung,
and Chyi-Ren Dow, “A Generalized Processor
Mapping Technique for Array Redistribution,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 12, vol. 7, pp. 743-757, July 2001.

[5] Minyi Guo, “Communication Generation for
Irregular Codes,” The Journal of
Supercomputing, vol. 25, no. 3, pp. 199-214,
2003.

[6] Minyi Guo and I. Nakata, “A Framework for
Efficient Array Redistribution on Distributed
Memory Multicomputers,” The Journal of
Supercomputing, vol. 20, no. 3, pp. 243-265,
2001.

1(red) 2(yellow) 3(green) 4(purple) Total

Cost 18 6 3 11 38

[7] Minyi Guo, I. Nakata, and Y. Yamashita,
“Contention-Free Communication Scheduling
for Array Redistribution,” Parallel Computing,
vol. 26, no.8, pp. 1325-1343, 2000.

[8] Minyi Guo, I. Nakata, and Y. Yamashita, “An
Efficient Data Distribution Technique for
Distributed Memory Parallel Computers,”
JSPP'97, pp.189-196, 1997.

[9] Minyi Guo, Yi Pan, and Zhen Liu, “Symbolic
Communication Set Generation for Irregular
Parallel Applications,” The Journal of
Supercomputing, vol. 25, pp. 199-214, 2003.

[10] Edgar T. Kalns and Lionel M. Ni, “Processor
Mapping Technique Toward Efficient Data
Redistribution,” IEEE Trans. on Parallel and
Distributed Systems, vol. 6, no. 12, December
1995.

[11] S. D. Kaushik, C. H. Huang, J. Ramanujam and
P. Sadayappan, “Multiphase data redistribution:
Modeling and evaluation,” Proceeding of
IPPS’95, pp. 441-445, 1995.

[12] S. Lee, H. Yook, M. Koo, and M. Park,
“Processor reordering algorithms toward
efficient GEN_BLOCK redistribution,”
Proceedings of the ACM symposium on Applied
computing, 2001.

[13] Y. W. Lim, Prashanth B. Bhat, and Viktor K.
Prasanna, “Efficient Algorithms for
Block-Cyclic Redistribution of Arrays,”
Algorithmica, vol. 24, no. 3-4, pp. 298-330,
1999.

[14] Neungsoo Park, Viktor K. Prasanna, and
Cauligi S. Raghavendra, “Efficient Algorithms
for Block-Cyclic Data redistribution Between
Processor Sets,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, No. 12,
pp.1217-1240, Dec. 1999.

[15] Antoine P. Petitet and Jack J. Dongarra,
“Algorithmic Redistribution Methods for
Block-Cyclic Decompositions,” IEEE Trans. on
PDS, vol. 10, no. 12, pp. 1201-1216, Dec. 1999.

[16] L. Prylli and B. Touranchean, “Fast runtime
block cyclic data redistribution on
multiprocessors,” Journal of Parallel and
Distributed Computing, vol. 45, pp. 63-72, Aug.
1997.

[17] S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for Efficient Data redistribution
on Distributed Memory Multicomputers,”
Journal of Parallel and Distributed Computing,
vol. 38, pp. 217-228, 1996.

[18] Akiyoshi Wakatani and Michael Wolfe,
“Optimization of Data redistribution for
Distributed Memory Multicomputers,” short
communication, Parallel Computing, vol. 21,
no. 9, pp. 1485-1490, September 1995.

[19] Hui Wang, Minyi Guo, and Daming Wei,
"Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The
Journal of Supercomputing, vol. 29, no. 2,

2004.
[20] Hui Wang, Minyi Guo, and Wenxi Chen, “An

Efficient Algorithm for Irregular Redistribution
in Parallelizing Compilers,” Proceedings of
2003 International Symposium on Parallel and
Distributed Processing with Applications,
LNCS 2745, 2003.

[21] H.-G. Yook and Myung-Soon Park, “Scheduling
GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International
Conference Parallel and Distributed Computing
and Systems, November, 1999.

[22] J.A. Bondy and U.S.R. Murty, Graph Theory
with Applications, Macmillan, London, 1976.

[23] R. Cole and J. Hopcroft, “On edge-coloring
bipartite graphs,” SIAM J. Comput. vol. 11, pp.
540-546, 1982.

[24] C. W. Yu and G. H. Chen, “Efficient
parallel algorithms for doubly
convex-bipartite graphs,” Theoretical
Computer Science, vol. 147, pp. 249-265,
1995.

[25] P. Eades, B. D. McKay, and N. C. Wormald,
“On an edge crossing problem,” Proc. 9th
Australian Computer Science Conference,
Australian National University, 1986, pp.
327-334.

[26] N. Tomii, Y. Kambayashi, and Y. Shuzo, “On
planarization algorithms of 2-level graphs,”
Papers of tech. group on electronic computers,
IECEJ, EC77-38, pp. 1-12, 1977.

[27] C. W. Yu, “On the complexity of the maximum
biplanar subgraph problem,” Information
Science, vol. 129, pp. 239-250, 2000.

[28] Sriram V. Pemmaraju, Rajiv Raman, and
Kasturi R. Varadarajan, “Buffer minimization
using max-coloring,” Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2004, pp. 562-571.

[29] Sriram V. Pemmaraju and Rajiv Raman,
“Approximation algorithms for the
max-coloring problem,” Lecture Notes in
Computer Science, vol. 3580, pp. 1064-1075,
2005.

[30] K. S. Booth, and G. S. Lueker, “Testing for the
consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms,” J.
Comput. System Sci., vol. 13, pp. 335-379,
1976.

[31] C. W. Yu, Ching-Hsien Hsu, Kun-Ming Yu,
Chiu Kuo Lian, and Chun-I Chen “Irregular
Redistribution Scheduling by partitioning
Messages,” Springer-Verlag Lecture Notes in
Computer Science (LNCS), vol. 3740, pp.
295-309, 2005.

