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Abstract

The ring structure is important for distributed
computing, and it is useful to construct a hamil-
tonian cycle or rings of various length in the net-
work. Kanevsky and Feng [3] proved that all cycles
of length I where 6 <1 < n!—2 orl = n! can be em-
bedded in the pancake graphs G.,,. Later, Senoussi
and Lavault [9] presented the embedding of ring of
length 1, 3 <1 < nl, with dilation 2 in the pancake
graphs G,,. These results prompt us to explore the
possibility of embedding a cycle of length n!—1 into
G, and to establish some topological properties of
the pancake graphs. In this paper, we prove that
there exists a hamiltonian path joining any two
nodes of the pancake graph G,,. And we show that
the pancake graph still has a hamiltonian cycle in
the presence of one faulty node. As a consequence,
a cycle of length n!—1 can be embedded in G,,. And
we expand Kanevsky and Feng’s result as follows:
Forn >4, a cycle of length | can be embedded in
the pancake graph G, where 6 <1 < nl.
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1 Introduction

Since there are a rapid growing need for large
scale computation and an ever increasing density
of low cost VLSI circuit, a number of architectures
have been studied. Most of the well accepted par-
allel topologies stem from Cayley graphs. Because
these topologies can be recursively decomposed,
they provide a simple way for the application of
recursive algorithms.

Among hierarchical Cayley graphs, other than
the binary hypercube, both the star and pancake
interconnection networks are attractive alterna-
tives to the hypercube in several aspects [1, 2].
For example, both n-star and n-pancake inter-
connection networks has n! nodes, and both their
degree and diameter are O(n), that is, subloga-
rithmic in the number of nodes, while a hyper-
cube with n! nodes has degree and diameter of
O(logn!) = O(nlogn), i.e., logarithmic in the
number of nodes [7].

The n-dimensional pancake network, denoted
by G,, has several attractive properties. It is
vertex symmetric, which implies that the conges-
tion problems for transmission are minimized since
the load will be distributed uniformly through
all the vertices. Moreover, the pancake network
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has a very simple routing algorithm because it
is built using algebraic groups (Cayley groups).
Other attractive properties include that the pan-
cake graphs are strongly hierarchical, maximally
fault tolerant, hamiltonian, have a small diameter
which is smaller than hypercubes [1, 3, 5, 6, 8].

The ring structure is important for distributed
computing, it allows communication with low cost
because the number of edges of the ring is low,
it is free of branching, and it is often used in lo-
cal area networks, for example, Token Ring [10].
Hence it is useful to construct a hamiltonian cycle
or ring structure in the network. In [3], Kanevsky
and Feng proved that all cycles of length [ where
6 <1l < nl—-—2o0r!l = n! can be embedded
in the pancake graphs G,. In [9], Senoussi and
Lavault presented the embedding of ring of length
I, 3 <1 < n!, with dilation 2 into the pancake
graph G,,. These results prompt us to explore the
possibility of embedding a cycle of length n! — 1
into G,,. For example, we can find a cycle of length
4! — 1 in G4, as shown in Fig 4.

In this paper, we study some intriguing topolog-
ical properties of the pancake networks G,,. First,
we prove that there exists a hamiltonian path be-
tween any two nodes of the pancake networks.
Based on the existence of hamiltonian paths be-
tween every pair of nodes, we then show that there
exists a hamiltonian cycle in the pancake networks
with the occurring of one faulty node. As a conse-
quence, a cycle of length n! — 1 can be embedded
into G,, for any n > 4. We then expand Kanevsky
and Feng’s result as follows: For n > 4, a cycle
of length [ can be embedded in the pancake graph
G, where 6 <1 <nl.

The paper is organized as follows. In Section 2,
we describe the definitions and terminologies used
in this paper. Section 3 is devoted to the Hamil-
tonian properties and the embedding of rings in
the pancake networks. Section 4 summarizes the
result of this paper.

2 Definitions and preliminaries

An interconnection network is usually repre-
sented by a graph. Most of the graph definitions
used in this paper are standard (see [4]). Let
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Fig 1. Examples of pancake graphs.

G = (V,E) be a graph where V denotes the ver-
tex/node set and E denotes the edge set of G. A
cycle that traverses every vertex of the graph G ex-
actly once is called a hamiltonian cycle. A graph
G is hamiltonian if it contains a hamiltonian cy-
cle. A hamiltonian path in graph G is a path that
visits every vertex exactly once. A graph G is
hamiltonian connected if every two vertices of G
are connected by a hamiltonian path. A graph G
is called 1-node fault-tolerant hamiltonian, or sim-
ply 1-node hamiltonian, if it remains hamiltonian
after removing any single node.

Let (n) = {1,2,...,n}, p = (p1p2...pn) be
a permutation such that p; € (n) and p; # p;
for ¢ # j. An n-dimensional pancake graph
G, = (P, E,) of dimension n is defined as fol-
lows: P, = {(pip2...pn) | pi € (n), pi # pj
for i # j} and E, = {((p1p2-..pjpj+1---Pn),
(Pjpj—1---P2P1Pj+1---Pn)) | (P1P2...pn) € Pn
and 2 < j < n}. In other words, the set of P,
of all permutations form the vertices of G,,. Two
nodes v and v are adjacent if and only if the per-
mutation corresponding to node v can be obtained
from that of u by flipping the objects in positions 1
through j. For each permutation, we can flip any
number of objects from 1st to jth positions with
2 < j < n, thus G, is regular with degree n — 1,
|P,| = n!, and |E,| = nl(n — 1)/2. Examples of
Gy, for 2 <n <4, are given in Fig. 1.

Let p = (p1p2...pn) be any permutation in
P,. We define Head(p) to be pj, which is
the object of the leftmost position; and define
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Tail(p) to be p,, which is the object of the right-
most position. Moreover, we define Flip;(p) to
be (pipi—1 ... P1Pi+1Pi+2 - - - Pn), Which is obtained
by flipping the objects of p between positions 1
through ¢ for 2 < i < n. Let P,[k] denote the set
of all permutations p with Tail(p) = k. And let
G, [k] be the subgraph induced by P,[k]. Gn[k]
is called the nth projection corresponding to the
kth symbol. The following lemma follows directly
from the definition of pancake networks.

Lemma 1 G,[k] is isomorphic to a (n — 1)-
dimensional pancake graph G _1.

The pancake graph can also be defined recur-
sively: G, is constructed from n copies of (n —1)-
dimensional pancake graphs G, [k] for 1 < k < n.
G,li] and G,[j], ¢ # j, are connected by (n — 2)!
edges of the form ((j...4),(i...7)). We consider
each G, [k] to be a super node. The (n — 2)! edges
connecting G, [i] and G, [j], ¢ # j, are called exter-
nal edges, while the edges joining a pair of nodes in
the same G, [k] are called internal edges. We de-
note those (n—2)! external edges collectively to be
a super edge between super nodes G, [i] and G [j].
Let G5 = (P2, E?) where P? is the set of super
nodes Gplk], 1 <k <n, and E? is the set of super
edges between these super nodes. Obviously the
number of super nodes of G}, is |P?| = n, and the
number of super edges of G, is |[ES| =n(n—1)/2.

By the definition of the pancake graph, we have
the following lemmas.

Lemma 2 G7 is a complete graph.

Lemma 3 Let p = (pip2...pn) be a node in
Gnlpn]. Among the n — 1 adjacent nodes of p,
exactly one of them is not in Gplpn], namely
Flip,(p), and the other n — 2 adjacent nodes are
all in the same nth projection Gy [py].

In other words, each node p = (p1p2...pn) in
G, [pn] has exactly one external edge (p, Flip,(p))
incident to it, and has n — 2 internal edges
(p, Flipk(p)) for 2 < k <n —1 incident to it.

3 Hamiltonian properties and em-
bedding of cycles

At the beginning of this section, we present the
way how to connect any set of m nth projections
Grli1], Grliz], - - ., Gnlim] by m—1 external edges.
The remarks about the notations used in this pa-
per are first explained. Considering each nth pro-
jection Gli;] as a super node for 1 < j < m,
the subgraph of G,, induced by G, [i1], Gyliz], - .,
G lim] is a complete graph on the m super nodes
connected by the super edges. To simplify the no-
tations, we relabel the nth projections G, [ix] to be
Gnlk], 1 <k < m. In the remainder of this paper,
instead of writing G, [i1], Gnlia], ..., Gulim], we
will write these nth projections as G, [1], Gn[2],

.., Gp[m]. The notation s € G,[¢] signifies that
s is a node in Gy [i].

Lemma 4 Let {G,[1],Gy[2],...,Gn[m]} be a set
of nth projections, n > 4. Let u be a node in Gy [1]
Then Gyli] and Gpli+
1] can be connected by an external edge (s;,d;t+1)
where s; € Gyli] and diy1 € Gpli+1], for 1 <k <
m — 1, such that s1 # u and d,,, # v.

and v be a node in Gp[m].

Proof. Consider the choice of the first edge
(s1,d2). Because the number of nodes of the form
(2...1) in G,[1] is (n — 2)! and n > 4, we can
always find a nodes s; other than w in G, [1] such
that Head(s1) = 2. Obviously Flip,(s1) is a node
in G,[2].
Then (s1,dz) is an external edge joining G,[1] to
G, [2] such that s; # u.

Then we choose the external edges (s;,d;+1) for

Therefore, we set da to be Flip,(s1).

2 <1i<m-—2 as follows. We set s; to be any node
of G, [i] with Head(s;) =i+ 1. Then we set d;+1
to be Flip,(s;). Because Tail(d;t1) is i+1, d;y1 is
anode in G, [i +1]. Thus, (s;,d;+1) is an external
edge joining G, [i] to G [i + 1].

Finally, we show the way how to choose the
First,
we choose d,, other than v from G,,[m] such that

external edge (sm—1,dm) with d,, # v.

Head(d,,) = m —1. Because the number of nodes
of the form (m —1...m) in G,[m] is (n — 2)! and
n > 4, there exists at least one node which sat-
isfies our requirement. Then, we set s,,_1 to be

Flipy(dm). Because Tail(spy—1) is m — 1, $pm—1
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G, [1] G, [m]

G,[3]

G,[4]

Fig 2. A pseudo path fromG, [1] to G [m]

is a node in Gyp[m — 1]. Thus, (sm—-1,dn) is an
external edge joining G,,[m — 1] to G, [m].
Therefore, the edges (s1,ds), (s2,ds3), ...,
(Sm—1, dm) satisfy our requirement and this lemma
is proved. O

In the previous lemma, the m nth projections
are connected by m — 1 external edges to form
a “path-like” structure. We call this “path-like”
structure a pseudo path. More precisely, a pseudo
path denoted by (u; G,[1], G,[2], ..., Gplm]; v)
where v € G,[1] and v € Gy[m] consists of m
nth projections G,[1],Gp[2], ...
1 external edges (s;,d;11) such that s; € G,li],
dit1 € Gpli+ 1], s1 # u, and d,,, # v, where
2<m<nand1l<i<m-—1. Let d; be u and s,,
be v. By Lemma 3 it can be checked that d; # s;
for every i. Note that if there exists a hamiltonian

,Grp[m] and m —

path between d; and s; in each subgraph G, [i] for
1 < i < m, then the pseudo path joining G,[1]
to Gp[m] can be extended to form a hamiltonian
path from u to v in the subgraph of G,, induced
by Gp[l], Gn[2], ..., Gn[m].
of Fig 2. The following theorem is motivated by
this idea.

See the illustration

Theorem 1 The n-dimensional pancake graph

G, is hamiltonian connected for n > 4.

G,

(b) uand v areinthe same nth projection

Fig 3. lllustration of Theorem 1

Proof. We prove this theorem by induction.

For n = 4, table 1 presents all hamiltonian
paths between the fixed node (1234) and all the
other nodes. Since the pancake graph is node sym-
metric, this theorem holds for n = 4.

Assume that this theorem holds for k < n — 1.
That is, there exists a hamiltonian path between
any two nodes in a (n — 1)-dimensional pancake
graph. Next, we show the way how to construct
a hamiltonian path between any two nodes u and
Ac-

cording to the locations of u and v, we discuss the

v in the n-dimensional pancake graph G,,.

following two cases:

1. v and v are not in the same nth pro-
jection: Since G is a complete graph, to
simplify the notations, we may relabel all the

nth projections and assume that u € G,[1]
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and v € Gp[n]. By Lemma 4, there exists a
pseudo path (u; Gp[l], Gp[2], ..., Gu[n]; v)
such that G,[i] and G,[i + 1] are connected
by an external edge (s;,dit1), 1 <i<n-—1,
where s; # w and d, # v. Let di = u and
$n = v. By induction hypothesis, G,[i] is
hamiltonian connected for each 1 <1i < n, so
there exists a hamiltonian path between the
node pair d; and s; in the subgraph G,[i].
Combining these n hamiltonian paths of each
nth projection with the pseudo path creates
a hamiltonian path from u to v in G, as il-
lustrated in Fig 3(a).

2. v and v are in the same nth projec-
tion: Without loss of generality, we assume
that both w and v are nodes of G,[n]. By
induction hypothesis, there exists a hamil-
tonian path H; from u to v in the subgraph
Gy[n]. Let (a,b) be an arbitrary edge of this
path Hy. Let a’ be Flip,(a) and let b’ be
Flip,(b). Because a and b are adjacent nodes,
Head(a) # Head(b).
in different nth projections.

Thus, o’ and ¥ are
Since G, is a
complete graph, to simplify the notations, we
may relabel all the nth projections and as-
sume that o’ € Gp[l] and ' € Gp[n — 1].
By Lemma 4, there exists a pseudo path
(a'; Gpll], Gn[2], ..., Gupln —1]; V') such
that Gp[i] and G, [i + 1] are connected by an
external edge (s;,diy1) for 1 < i < n —2
where s1 #a’ and d,,_1 # V. Let d; = a’ and
Sn—1 = b'. By induction hypothesis, G, 7] is
hamiltonian connected for each 1 <i <n-—1,
so there exists a hamiltonian path from d; to
s; in the subgraph G,[i]. Combining these
n—1 hamiltonian paths of each nth projection
and the pseudo path, we get a hamiltonian
path Hs from a’ to b’ in the subgraph of G,
induced by the n — 1 nth projections G,[1],
Gr[2], ..., Gpln — 1]. Then, combining H;
and Ho, adding two external edges (a,a’) and
(b,b"), and removing the edge (a,b) in Hy, we
have a hamiltonian path from u to v in G,, as
illustrated in Fig 3(b).

This completes the proof of the theorem. O

1234 4321
3014 2134 3421
14 15
1324 4231
4132 3 2
1432
4312 1243
412 214

Fig 4. A hamiltonian cycle of G, with one faulty

node (1234)

The following result follows directly from The-
orem 1.

Corollary 1 Given any edge (p, q) in the pancake
graph G, n > 4, there exists a hamiltonian cycle
containing the edge (p,q).

In the following theorem, we show that the pan-
cake graph still has a hamiltonian cycle in the pres-
ence of one faulty node.

Theorem 2 The n-dimensional pancake graph
G, is 1-node hamiltonian for n > 4.

Proof. We show this theorem by induction.

For n = 4, Fig 4 presents a fault-free hamil-
tonian cycle of G4 with one faulty node (1234).
The bold lines indicate a cycle of length 4!—1 = 23.
Since pancake graph is node symmetric, this the-
orem holds for 4-dimensional pancake graph with
any one faulty node.

Assume that this theorem holds for k < n —
1. That is, there exists a fault-free hamiltonian
cycle in a (n—1)-dimensional pancake graph G,,_1
under any one faulty node occurring.

Now we show the way how to construct a hamil-

tonian cycle in the n-dimensional pancake graph
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Fig 5. lllustration of Theorem 2

G, in the presence of one faulty node. Without
loss of generality, we assume that the only faulty
node, denoted by f, is in G,[n].
hypothesis, there exists a fault-free hamiltonian
cycle Hy in the subgraph G,[n] — f. Let (a,b)
be an arbitrary edge of this hamiltonian cycle,
then Head(a) # Head(b). Let a' be Flip,(a)
and let b’ be Flip,(b). So, ¢’ and ¥ are in dif-
ferent nth projections. Using the similar argu-

By induction

ment in Theorem 1, we assume that o’ € G,[1]
and b € Gn[n — 1]. By Lemma 4, there exists a
pseudo path (a'; G,[1], Gn[2], ..., Gp[n—1]; V)
such that G, [i] and G, [i+ 1] are connected by the
external edge (s;,d;i+1) for 1 < i < n — 2 where
s1#a andd, 1 #V. Let dy =a’ and s,,_1 = V'.
Since each G,[i] is a (n — 1)-dimensional pan-
cake graph, by Theorem 1, there exists a hamil-
tonian path joining d; to s; in the subgraph G,,[i],
1 <i<n-—1. Combining these n — 1 hamiltonian
paths of each nth projection and the pseudo path,
we get a hamiltonian path Hs from a’ to b’ in the
subgraph of G,, induced by the n — 1 nth projec-
tions Gy, [i], 1 <14 < n—1. Finally, we combine H;
and Hy by adding two external edges (a,a’) and
(b,b') and removing the edge (a,b) in Hy. The
resulting cycle is a fault-free hamiltonian cycle in
G, — f asillustrated in Fig 5. Thus, this theorem
holds. O

Therefore, deleting any one node from the pan-
cake network, the resulting graph still has a hamil-
tonian cycle. Since a n-dimensional pancake graph
has n! nodes, the following result follows from The-

orem 2.

Corollary 2 A cycle of length n! — 1 can be em-
bedded into the n-dimensional pancake graph G,
n > 4.

The following theorem is proposed by Kanevsky
and Feng in [3].

Theorem 3 All cycles of length | where 6 <1 <
n! —2, orl = n! can be embedded in the pancake
graph G, .

This theorem does not mention the case | =
n!—1, or I < 6. We have proven that for | = n!—1
the cycle of length [ = n!—1 can also be embedded
in pancake graph G,. As for [ < 6, the following
lemma gives a negative answer.

Lemma 5 The pancake graph G, does not con-
tain any cycle of length | < 6.

Proof. We show this lemma by induction. Since
a 2-dimensional pancake graph G> has only one
edge, and a 3-dimensional pancake graph G3 is a
6-cycle, obviously this lemma holds for n = 2 and
n=3.

Assume that the lemma is true for n — 1. Thus,
each cycle in a (n — 1)-dimensional pancake graph
Gy —1 has length at least 6.

Now we show that each cycle in a n-dimensional
pancake graph G, has length at least 6. Let C
be an arbitrary cycle in G,. Suppose that C' is
totally within one nth projection. By induction,
the length of C is at least 6.

Assume that C' goes through more than three
nth projections. Then C contains at least three ex-
ternal edges. By Lemma 3, no two external edges
are incident to each other, so C has length at least
6.

Now suppose that C' goes through exactly two
Then C' con-
tains at least two external edges (a, Flip,(a))

nth projections G,[i] and Gy[j].

and (b, Flip, (b)) where a and b are two nodes in
G, li], and Flip,(a) and Flip,(b) are two nodes in
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Gylj]- If (a,b) is an internal edge in Gy[i], then
Head(a) # Head(b). So, Flipy(a) and Flipy(b)
are in different nth projections. This is not the
case. So a and b are not adjacent. Similarly,
Flipn(a) and Flip,(b) are not adjacent either.
Therefore, C' has length at least 6. This proves

the lemma. O

By Corollary 2, Theorem 3, and Lemma 5, we
expand Kanevsky and Feng’s result as follows.

Theorem 4 Forn > 4, a cycle of length | can be
embedded in the pancake graph G, where 6 <1 <
nl.

4 Conclusion

The main purpose of this paper is to study some
intriguing topological properties of the pancake
networks GG,,. We prove that there exists a hamil-
tonian path between any two nodes of G,,. This
result is useful to construct a hamiltonian cycle in
a faulty pancake network. Applying this result we
show that there exists a hamiltonian cycle in G,
with the occurring of any one faulty node. As a
consequence, a cycle of length n! — 1 can be em-
bedded into G,, for any n > 4. We then expand
Kanevsky and Feng’s result as follows: A cycle of
length | can be embedded in the pancake graph
Gn,n >4, if and only if 6 <1 < nl.
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Table 1 Table of all hamiltonian paths from (1234) to other nodes

Destination node hamiltonian path

3214 1234, 2134, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321
3421, 2431, 4231, 3241, 1423, 2413, 4213, 1243, 2143, 4123, 3214

2134 1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321
2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134

2314 1234, 3214, 4123, 1423, 2413, 3142, 4132, 1432, 3412, 2143, 1243, 4213, 3124,
2134, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314

3124 1234, 3214, 4123, 1423, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 1243
2143, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 4312, 2134, 3124

1324 1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341, 1432, 3412
2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 2134, 3124, 1324

4123 1234, 3214, 2314, 1324, 4231, 2431, 1342, 4312, 2134, 3124, 4213, 2413, 3142
4132, 1432, 3412, 2143, 1243, 3421, 4321, 2341, 3241, 1423, 4123

2143 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431
4231, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 1423, 4123, 2143

1423 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321
3421, 1243, 4213, 2413, 3142, 4132, 1432, 3412, 2143, 4123, 1423

1243 1234, 3214, 2314, 1324, 4231, 2431, 1342, 4312, 2134, 3124, 4213, 2413, 3142
4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 1243

2413 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 3241, 4231
2431, 1342, 3142, 4132, 1432, 2341, 4321, 3421, 1243, 4213, 2413

4213 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431
4231, 3241, 2341, 4321, 3421, 1243, 2143, 4123, 1423, 2413, 4213

4312 1234, 3214, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321, 3421
1243, 4213, 2413, 3142, 1342, 2431, 4231, 1324, 3124, 2134, 4312

1342 1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 4231
1324, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342

3412 1234, 3214, 2314, 1324, 4231, 3241, 2341, 4321, 3421, 2431, 1342, 4312, 2134,
3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412

3142 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321
3421, 1243, 4213, 2413, 1423, 4123, 2143, 3412, 1432, 4132, 3142

1432 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213
1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432

4132 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123
2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132

2431 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143
4123, 1423, 2413, 4213, 1243, 3421, 4321, 2341, 3241, 4231, 2431

3421 1234, 3214, 2314, 4132, 1432, 3412, 4312, 2134, 3124, 1324, 4231, 2431, 1342
3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421

4231 1234, 4321, 2341, 3241, 1423, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 4132
3142, 1342, 2431, 3421, 1243, 2143, 4123, 3214, 2314, 1324, 4231

4321 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143
4123, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321

3241 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213
1243, 3421, 4321, 2341, 1432, 4132, 3142, 1342, 2431, 4231, 3241

2341 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123

2143, 3412, 1432, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341
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