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Abstract

The ring structure is important for distributed
computing, and it is useful to construct a hamil-
tonian cycle or rings of various length in the net-
work. Kanevsky and Feng [3] proved that all cycles
of length l where 6 ≤ l ≤ n!−2 or l = n! can be em-
bedded in the pancake graphs Gn. Later, Senoussi
and Lavault [9] presented the embedding of ring of
length l, 3 ≤ l ≤ n!, with dilation 2 in the pancake
graphs Gn. These results prompt us to explore the
possibility of embedding a cycle of length n!−1 into
Gn, and to establish some topological properties of
the pancake graphs. In this paper, we prove that
there exists a hamiltonian path joining any two
nodes of the pancake graph Gn. And we show that
the pancake graph still has a hamiltonian cycle in
the presence of one faulty node. As a consequence,
a cycle of length n!−1 can be embedded in Gn. And
we expand Kanevsky and Feng’s result as follows:
For n ≥ 4, a cycle of length l can be embedded in
the pancake graph Gn where 6 ≤ l ≤ n!.
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1 Introduction

Since there are a rapid growing need for large
scale computation and an ever increasing density
of low cost VLSI circuit, a number of architectures
have been studied. Most of the well accepted par-
allel topologies stem from Cayley graphs. Because
these topologies can be recursively decomposed,
they provide a simple way for the application of
recursive algorithms.

Among hierarchical Cayley graphs, other than
the binary hypercube, both the star and pancake
interconnection networks are attractive alterna-
tives to the hypercube in several aspects [1, 2].
For example, both n-star and n-pancake inter-
connection networks has n! nodes, and both their
degree and diameter are O(n), that is, subloga-
rithmic in the number of nodes, while a hyper-
cube with n! nodes has degree and diameter of
O(log n!) = O(n log n), i.e., logarithmic in the
number of nodes [7].

The n-dimensional pancake network, denoted
by Gn, has several attractive properties. It is
vertex symmetric, which implies that the conges-
tion problems for transmission are minimized since
the load will be distributed uniformly through
all the vertices. Moreover, the pancake network



has a very simple routing algorithm because it
is built using algebraic groups (Cayley groups).
Other attractive properties include that the pan-
cake graphs are strongly hierarchical, maximally
fault tolerant, hamiltonian, have a small diameter
which is smaller than hypercubes [1, 3, 5, 6, 8].

The ring structure is important for distributed
computing, it allows communication with low cost
because the number of edges of the ring is low,
it is free of branching, and it is often used in lo-
cal area networks, for example, Token Ring [10].
Hence it is useful to construct a hamiltonian cycle
or ring structure in the network. In [3], Kanevsky
and Feng proved that all cycles of length l where
6 ≤ l ≤ n! − 2 or l = n! can be embedded
in the pancake graphs Gn. In [9], Senoussi and
Lavault presented the embedding of ring of length
l, 3 ≤ l ≤ n!, with dilation 2 into the pancake
graph Gn. These results prompt us to explore the
possibility of embedding a cycle of length n! − 1
into Gn. For example, we can find a cycle of length
4! − 1 in G4, as shown in Fig 4.

In this paper, we study some intriguing topolog-
ical properties of the pancake networks Gn. First,
we prove that there exists a hamiltonian path be-
tween any two nodes of the pancake networks.
Based on the existence of hamiltonian paths be-
tween every pair of nodes, we then show that there
exists a hamiltonian cycle in the pancake networks
with the occurring of one faulty node. As a conse-
quence, a cycle of length n! − 1 can be embedded
into Gn for any n ≥ 4. We then expand Kanevsky
and Feng’s result as follows: For n ≥ 4, a cycle
of length l can be embedded in the pancake graph
Gn where 6 ≤ l ≤ n!.

The paper is organized as follows. In Section 2,
we describe the definitions and terminologies used
in this paper. Section 3 is devoted to the Hamil-
tonian properties and the embedding of rings in
the pancake networks. Section 4 summarizes the
result of this paper.

2 Definitions and preliminaries

An interconnection network is usually repre-
sented by a graph. Most of the graph definitions
used in this paper are standard (see [4]). Let

Fig 1. Examples of pancake graphs.
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G = (V, E) be a graph where V denotes the ver-
tex/node set and E denotes the edge set of G. A
cycle that traverses every vertex of the graph G ex-
actly once is called a hamiltonian cycle. A graph
G is hamiltonian if it contains a hamiltonian cy-
cle. A hamiltonian path in graph G is a path that
visits every vertex exactly once. A graph G is
hamiltonian connected if every two vertices of G

are connected by a hamiltonian path. A graph G

is called 1-node fault-tolerant hamiltonian, or sim-
ply 1-node hamiltonian, if it remains hamiltonian
after removing any single node.

Let 〈n〉 = {1, 2, . . . , n}, p = (p1p2 . . . pn) be
a permutation such that pi ∈ 〈n〉 and pi �= pj

for i �= j. An n-dimensional pancake graph
Gn = (Pn, En) of dimension n is defined as fol-
lows: Pn = {(p1p2 . . . pn) | pi ∈ 〈n〉, pi �= pj

for i �= j} and En = {((p1p2 . . . pjpj+1 . . . pn),
(pjpj−1 . . . p2p1pj+1 . . . pn)) | (p1p2 . . . pn) ∈ Pn

and 2 ≤ j ≤ n}. In other words, the set of Pn

of all permutations form the vertices of Gn. Two
nodes u and v are adjacent if and only if the per-
mutation corresponding to node v can be obtained
from that of u by flipping the objects in positions 1
through j. For each permutation, we can flip any
number of objects from 1st to jth positions with
2 ≤ j ≤ n, thus Gn is regular with degree n − 1,
|Pn| = n!, and |En| = n!(n − 1)/2. Examples of
Gn, for 2 ≤ n ≤ 4, are given in Fig. 1.

Let p = (p1p2 . . . pn) be any permutation in
Pn. We define Head(p) to be p1, which is
the object of the leftmost position; and define



Tail(p) to be pn, which is the object of the right-
most position. Moreover, we define Flipi(p) to
be (pipi−1 . . . p1pi+1pi+2 . . . pn), which is obtained
by flipping the objects of p between positions 1
through i for 2 ≤ i ≤ n. Let Pn[k] denote the set
of all permutations p with Tail(p) = k. And let
Gn[k] be the subgraph induced by Pn[k]. Gn[k]
is called the nth projection corresponding to the
kth symbol. The following lemma follows directly
from the definition of pancake networks.

Lemma 1 Gn[k] is isomorphic to a (n − 1)-
dimensional pancake graph Gn−1.

The pancake graph can also be defined recur-
sively: Gn is constructed from n copies of (n− 1)-
dimensional pancake graphs Gn[k] for 1 ≤ k ≤ n.
Gn[i] and Gn[j], i �= j, are connected by (n − 2)!
edges of the form ((j . . . i), (i . . . j)). We consider
each Gn[k] to be a super node. The (n− 2)! edges
connecting Gn[i] and Gn[j], i �= j, are called exter-
nal edges, while the edges joining a pair of nodes in
the same Gn[k] are called internal edges. We de-
note those (n−2)! external edges collectively to be
a super edge between super nodes Gn[i] and Gn[j].
Let Gs

n = (P s
n , Es

n) where P s
n is the set of super

nodes Gn[k], 1 ≤ k ≤ n, and Es
n is the set of super

edges between these super nodes. Obviously the
number of super nodes of Gs

n is |P s
n| = n, and the

number of super edges of Gs
n is |Es

n| = n(n−1)/2.

By the definition of the pancake graph, we have
the following lemmas.

Lemma 2 Gs
n is a complete graph.

Lemma 3 Let p = (p1p2 . . . pn) be a node in
Gn[pn]. Among the n − 1 adjacent nodes of p,
exactly one of them is not in Gn[pn], namely
Flipn(p), and the other n − 2 adjacent nodes are
all in the same nth projection Gn[pn].

In other words, each node p = (p1p2 . . . pn) in
Gn[pn] has exactly one external edge (p, F lipn(p))
incident to it, and has n − 2 internal edges
(p, F lipk(p)) for 2 ≤ k ≤ n − 1 incident to it.

3 Hamiltonian properties and em-
bedding of cycles

At the beginning of this section, we present the
way how to connect any set of m nth projections
Gn[i1], Gn[i2], . . ., Gn[im] by m−1 external edges.
The remarks about the notations used in this pa-
per are first explained. Considering each nth pro-
jection Gn[ij ] as a super node for 1 ≤ j ≤ m,
the subgraph of Gn induced by Gn[i1], Gn[i2], . . .,
Gn[im] is a complete graph on the m super nodes
connected by the super edges. To simplify the no-
tations, we relabel the nth projections Gn[ik] to be
Gn[k], 1 ≤ k ≤ m. In the remainder of this paper,
instead of writing Gn[i1], Gn[i2], . . ., Gn[im], we
will write these nth projections as Gn[1], Gn[2],
. . ., Gn[m]. The notation s ∈ Gn[i] signifies that
s is a node in Gn[i].

Lemma 4 Let {Gn[1], Gn[2], . . . , Gn[m]} be a set
of nth projections, n ≥ 4. Let u be a node in Gn[1]
and v be a node in Gn[m]. Then Gn[i] and Gn[i+
1] can be connected by an external edge (si, di+1)
where si ∈ Gn[i] and di+1 ∈ Gn[i+1], for 1 ≤ k ≤
m − 1, such that s1 �= u and dm �= v.

Proof. Consider the choice of the first edge
(s1, d2). Because the number of nodes of the form
(2 . . . 1) in Gn[1] is (n − 2)! and n ≥ 4, we can
always find a nodes s1 other than u in Gn[1] such
that Head(s1) = 2. Obviously Flipn(s1) is a node
in Gn[2]. Therefore, we set d2 to be Flipn(s1).
Then (s1, d2) is an external edge joining Gn[1] to
Gn[2] such that s1 �= u.

Then we choose the external edges (si, di+1) for
2 ≤ i ≤ m−2 as follows. We set si to be any node
of Gn[i] with Head(si) = i + 1. Then we set di+1

to be Flipn(si). Because Tail(di+1) is i+1, di+1 is
a node in Gn[i+1]. Thus, (si, di+1) is an external
edge joining Gn[i] to Gn[i + 1].

Finally, we show the way how to choose the
external edge (sm−1, dm) with dm �= v. First,
we choose dm other than v from Gn[m] such that
Head(dm) = m− 1. Because the number of nodes
of the form (m− 1 . . .m) in Gn[m] is (n− 2)! and
n ≥ 4, there exists at least one node which sat-
isfies our requirement. Then, we set sm−1 to be
Flipn(dm). Because Tail(sm−1) is m − 1, sm−1
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Fig 2. A pseudo path from Gn [1] to Gn [m]

is a node in Gn[m − 1]. Thus, (sm−1, dm) is an
external edge joining Gn[m − 1] to Gn[m].

Therefore, the edges (s1, d2), (s2, d3), . . .,
(sm−1, dm) satisfy our requirement and this lemma
is proved. �

In the previous lemma, the m nth projections
are connected by m − 1 external edges to form
a “path-like” structure. We call this “path-like”
structure a pseudo path. More precisely, a pseudo
path denoted by 〈u; Gn[1], Gn[2], . . . , Gn[m]; v〉
where u ∈ Gn[1] and v ∈ Gn[m] consists of m

nth projections Gn[1], Gn[2], . . . , Gn[m] and m −
1 external edges (si, di+1) such that si ∈ Gn[i],
di+1 ∈ Gn[i + 1], s1 �= u, and dm �= v, where
2 ≤ m ≤ n and 1 ≤ i ≤ m−1. Let d1 be u and sm

be v. By Lemma 3 it can be checked that di �= si

for every i. Note that if there exists a hamiltonian
path between di and si in each subgraph Gn[i] for
1 ≤ i ≤ m, then the pseudo path joining Gn[1]
to Gn[m] can be extended to form a hamiltonian
path from u to v in the subgraph of Gn induced
by Gn[1], Gn[2], . . ., Gn[m]. See the illustration
of Fig 2. The following theorem is motivated by
this idea.

Theorem 1 The n-dimensional pancake graph
Gn is hamiltonian connected for n ≥ 4.
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Fig 3. Illustration of Theorem 1
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Proof. We prove this theorem by induction.
For n = 4, table 1 presents all hamiltonian

paths between the fixed node (1234) and all the
other nodes. Since the pancake graph is node sym-
metric, this theorem holds for n = 4.

Assume that this theorem holds for k ≤ n − 1.
That is, there exists a hamiltonian path between
any two nodes in a (n − 1)-dimensional pancake
graph. Next, we show the way how to construct
a hamiltonian path between any two nodes u and
v in the n-dimensional pancake graph Gn. Ac-
cording to the locations of u and v, we discuss the
following two cases:

1. u and v are not in the same nth pro-
jection: Since Gs

n is a complete graph, to
simplify the notations, we may relabel all the
nth projections and assume that u ∈ Gn[1]



and v ∈ Gn[n]. By Lemma 4, there exists a
pseudo path 〈u; Gn[1], Gn[2], . . ., Gn[n]; v〉
such that Gn[i] and Gn[i + 1] are connected
by an external edge (si, di+1), 1 ≤ i ≤ n − 1,
where s1 �= u and dn �= v. Let d1 = u and
sn = v. By induction hypothesis, Gn[i] is
hamiltonian connected for each 1 ≤ i ≤ n, so
there exists a hamiltonian path between the
node pair di and si in the subgraph Gn[i].
Combining these n hamiltonian paths of each
nth projection with the pseudo path creates
a hamiltonian path from u to v in Gn as il-
lustrated in Fig 3(a).

2. u and v are in the same nth projec-
tion: Without loss of generality, we assume
that both u and v are nodes of Gn[n]. By
induction hypothesis, there exists a hamil-
tonian path H1 from u to v in the subgraph
Gn[n]. Let (a, b) be an arbitrary edge of this
path H1. Let a′ be Flipn(a) and let b′ be
Flipn(b). Because a and b are adjacent nodes,
Head(a) �= Head(b). Thus, a′ and b′ are
in different nth projections. Since Gs

n is a
complete graph, to simplify the notations, we
may relabel all the nth projections and as-
sume that a′ ∈ Gn[1] and b′ ∈ Gn[n − 1].
By Lemma 4, there exists a pseudo path
〈a′; Gn[1], Gn[2], . . . , Gn[n − 1]; b′〉 such
that Gn[i] and Gn[i + 1] are connected by an
external edge (si, di+1) for 1 ≤ i ≤ n − 2
where s1 �= a′ and dn−1 �= b′. Let d1 = a′ and
sn−1 = b′. By induction hypothesis, Gn[i] is
hamiltonian connected for each 1 ≤ i ≤ n−1,
so there exists a hamiltonian path from di to
si in the subgraph Gn[i]. Combining these
n−1 hamiltonian paths of each nth projection
and the pseudo path, we get a hamiltonian
path H2 from a′ to b′ in the subgraph of Gn

induced by the n − 1 nth projections Gn[1],
Gn[2], . . ., Gn[n − 1]. Then, combining H1

and H2, adding two external edges (a, a′) and
(b, b′), and removing the edge (a, b) in H1, we
have a hamiltonian path from u to v in Gn as
illustrated in Fig 3(b).

This completes the proof of the theorem. �
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Fig 4. A hamiltonian cycle of G4 with one faulty
          node (1234)

The following result follows directly from The-
orem 1.

Corollary 1 Given any edge (p, q) in the pancake
graph Gn, n ≥ 4, there exists a hamiltonian cycle
containing the edge (p, q).

In the following theorem, we show that the pan-
cake graph still has a hamiltonian cycle in the pres-
ence of one faulty node.

Theorem 2 The n-dimensional pancake graph
Gn is 1-node hamiltonian for n ≥ 4.

Proof. We show this theorem by induction.
For n = 4, Fig 4 presents a fault-free hamil-

tonian cycle of G4 with one faulty node (1234).
The bold lines indicate a cycle of length 4!−1 = 23.
Since pancake graph is node symmetric, this the-
orem holds for 4-dimensional pancake graph with
any one faulty node.

Assume that this theorem holds for k ≤ n −
1. That is, there exists a fault-free hamiltonian
cycle in a (n−1)-dimensional pancake graph Gn−1

under any one faulty node occurring.
Now we show the way how to construct a hamil-

tonian cycle in the n-dimensional pancake graph
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Fig 5. Illustration of Theorem 2

Gn in the presence of one faulty node. Without
loss of generality, we assume that the only faulty
node, denoted by f , is in Gn[n]. By induction
hypothesis, there exists a fault-free hamiltonian
cycle H1 in the subgraph Gn[n] − f . Let (a, b)
be an arbitrary edge of this hamiltonian cycle,
then Head(a) �= Head(b). Let a′ be Flipn(a)
and let b′ be Flipn(b). So, a′ and b′ are in dif-
ferent nth projections. Using the similar argu-
ment in Theorem 1, we assume that a′ ∈ Gn[1]
and b′ ∈ Gn[n − 1]. By Lemma 4, there exists a
pseudo path 〈a′; Gn[1], Gn[2], . . . , Gn[n−1]; b′〉
such that Gn[i] and Gn[i+1] are connected by the
external edge (si, di+1) for 1 ≤ i ≤ n − 2 where
s1 �= a′ and dn−1 �= b′. Let d1 = a′ and sn−1 = b′.
Since each Gn[i] is a (n − 1)-dimensional pan-
cake graph, by Theorem 1, there exists a hamil-
tonian path joining di to si in the subgraph Gn[i],
1 ≤ i ≤ n− 1. Combining these n− 1 hamiltonian
paths of each nth projection and the pseudo path,
we get a hamiltonian path H2 from a′ to b′ in the
subgraph of Gn induced by the n − 1 nth projec-
tions Gn[i], 1 ≤ i ≤ n−1. Finally, we combine H1

and H2 by adding two external edges (a, a′) and
(b, b′) and removing the edge (a, b) in H1. The
resulting cycle is a fault-free hamiltonian cycle in
Gn − f as illustrated in Fig 5. Thus, this theorem
holds. �

Therefore, deleting any one node from the pan-
cake network, the resulting graph still has a hamil-
tonian cycle. Since a n-dimensional pancake graph
has n! nodes, the following result follows from The-
orem 2.

Corollary 2 A cycle of length n! − 1 can be em-
bedded into the n-dimensional pancake graph Gn,
n ≥ 4.

The following theorem is proposed by Kanevsky
and Feng in [3].

Theorem 3 All cycles of length l where 6 ≤ l ≤
n! − 2, or l = n! can be embedded in the pancake
graph Gn.

This theorem does not mention the case l =
n!−1, or l < 6. We have proven that for l = n!−1
the cycle of length l = n!−1 can also be embedded
in pancake graph Gn. As for l < 6, the following
lemma gives a negative answer.

Lemma 5 The pancake graph Gn does not con-
tain any cycle of length l < 6.

Proof. We show this lemma by induction. Since
a 2-dimensional pancake graph G2 has only one
edge, and a 3-dimensional pancake graph G3 is a
6-cycle, obviously this lemma holds for n = 2 and
n = 3.

Assume that the lemma is true for n−1. Thus,
each cycle in a (n− 1)-dimensional pancake graph
Gn−1 has length at least 6.

Now we show that each cycle in a n-dimensional
pancake graph Gn has length at least 6. Let C

be an arbitrary cycle in Gn. Suppose that C is
totally within one nth projection. By induction,
the length of C is at least 6.

Assume that C goes through more than three
nth projections. Then C contains at least three ex-
ternal edges. By Lemma 3, no two external edges
are incident to each other, so C has length at least
6.

Now suppose that C goes through exactly two
nth projections Gn[i] and Gn[j]. Then C con-
tains at least two external edges (a, F lipn(a))
and (b, F lipn(b)) where a and b are two nodes in
Gn[i], and Flipn(a) and Flipn(b) are two nodes in



Gn[j]. If (a, b) is an internal edge in Gn[i], then
Head(a) �= Head(b). So, Flipn(a) and Flipn(b)
are in different nth projections. This is not the
case. So a and b are not adjacent. Similarly,
Flipn(a) and Flipn(b) are not adjacent either.
Therefore, C has length at least 6. This proves
the lemma. �

By Corollary 2, Theorem 3, and Lemma 5, we
expand Kanevsky and Feng’s result as follows.

Theorem 4 For n ≥ 4, a cycle of length l can be
embedded in the pancake graph Gn where 6 ≤ l ≤
n!.

4 Conclusion

The main purpose of this paper is to study some
intriguing topological properties of the pancake
networks Gn. We prove that there exists a hamil-
tonian path between any two nodes of Gn. This
result is useful to construct a hamiltonian cycle in
a faulty pancake network. Applying this result we
show that there exists a hamiltonian cycle in Gn

with the occurring of any one faulty node. As a
consequence, a cycle of length n! − 1 can be em-
bedded into Gn for any n ≥ 4. We then expand
Kanevsky and Feng’s result as follows: A cycle of
length l can be embedded in the pancake graph
Gn, n ≥ 4, if and only if 6 ≤ l ≤ n!.
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Table 1    Table of all hamiltonian paths from (1234) to other nodes 

Destination node  hamiltonian path 

3214 1234, 2134, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321, 
3421, 2431, 4231, 3241, 1423, 2413, 4213, 1243, 2143, 4123, 3214 

2134 1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321, 
2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134 

2314 1234, 3214, 4123, 1423, 2413, 3142, 4132, 1432, 3412, 2143, 1243, 4213, 3124, 
2134, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314  

3124 1234, 3214, 4123, 1423, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 1243, 
2143, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 4312, 2134, 3124 

1324 1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341, 1432, 3412, 
2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 2134, 3124, 1324 

4123 1234, 3214, 2314, 1324, 4231, 2431, 1342, 4312, 2134, 3124, 4213, 2413, 3142, 
4132, 1432, 3412, 2143, 1243, 3421, 4321, 2341, 3241, 1423, 4123 

2143 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431, 
4231, 3241, 2341, 4321, 3421, 1243, 4213, 2413, 1423, 4123, 2143 

1423 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321, 
3421, 1243, 4213, 2413, 3142, 4132, 1432, 3412, 2143, 4123, 1423 

1243 1234, 3214, 2314, 1324, 4231, 2431, 1342, 4312, 2134, 3124, 4213, 2413, 3142, 
4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 1243 

2413 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 3241, 4231, 
2431, 1342, 3142, 4132, 1432, 2341, 4321, 3421, 1243, 4213, 2413 

4213 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 3142, 1342, 2431, 
4231, 3241, 2341, 4321, 3421, 1243, 2143, 4123, 1423, 2413, 4213 

4312 1234, 3214, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 
1243, 4213, 2413, 3142, 1342, 2431, 4231, 1324, 3124, 2134, 4312 

1342 1234, 3214, 2314, 4132, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 4231, 
1324, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342 

3412 1234, 3214, 2314, 1324, 4231, 3241, 2341, 4321, 3421, 2431, 1342, 4312, 2134, 
3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412 

3142 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 2341, 4321, 
3421, 1243, 4213, 2413, 1423, 4123, 2143, 3412, 1432, 4132, 3142 

1432 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213, 
1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432 

4132 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 
2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132 

2431 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143, 
4123, 1423, 2413, 4213, 1243, 3421, 4321, 2341, 3241, 4231, 2431 

3421 1234, 3214, 2314, 4132, 1432, 3412, 4312, 2134, 3124, 1324, 4231, 2431, 1342, 
3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421 

4231 1234, 4321, 2341, 3241, 1423, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 4132, 
3142, 1342, 2431, 3421, 1243, 2143, 4123, 3214, 2314, 1324, 4231 

4321 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 1432, 3412, 2143, 
4123, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321 

3241 1234, 3214, 2314, 1324, 3124, 2134, 4312, 3412, 2143, 4123, 1423, 2413, 4213, 
1243, 3421, 4321, 2341, 1432, 4132, 3142, 1342, 2431, 4231, 3241 

2341 1234, 3214, 2314, 1324, 3124, 2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 
2143, 3412, 1432, 4132, 3142, 2413, 4213, 1243, 3421, 4321, 2341 

 




