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Abstract

Let G be a bipartite graph. For any two vertices
u and v in G, a cycle C' is called a balanced cycle
between u and v if de(u,v) = maz{dc(z,y) |
and u are in the same partite set, and y and v
are in the same partite set }. A bipartite graph
G is bipancyclic [3] if it contains a cycle of ev-
ery even length from 4 to |V(G)| inclusive. A bi-
partite graph G is balanced bipancyclic if for each
pair of vertices u,v € V(G), it contains a bal-
anced cycle of every even length of k satisfying
maz{2dg(u,v),4} < k < |V(G)| between u and
v. In this paper, we show that @, is balanced
bipancyclic.
Keywords: hypercube, interconnection networks,
edge-bipancyclic, balanced bipancyclic.

1 Introduction

An interconnection network topology is usually
represented by a graph where vertices represent
processors and edges represent links between pro-
cessors. There are various kinds of graphs ap-
plied to design interconnection networks. Our
fundamental graph terminologies refer to [1]. A
graph G = (V,E) is bipartite if the node set
V(G) = BUW is the union of two disjoints node
sets B and W (also called the partite sets), such

*This work was supported in part by the National Sci-
ence Council of the Republic of China under Contract NSC
95-2221-E-026-002.

that every edge joins B and W. Two vertices,
u and v, have the same color if and only if u
and v are in the same partite set. We also use
G = (BUW, E) to denote a bipartite graph. Two
vertices a and b are adjacent if (a,b) € E. A
path is a sequence of adjacent vertices, written as
(vo, P[vo, Vm], vm) = (vo,v1,V2,...,0m), in which
all the vertices vg,v1,...,v,, are distinct except
possibly vg = v,. The path (vg, P[vg, Vm], Um)
could be simply replaced with Plu,v] and P. The
two vertices vy and v, are called the end-vertices
of Plvg,vm]. The length of a path P denoted by
[(P) is the number of edges in P. Two paths are
vertex-disjoint (also called disjoint) if and only if
they do not have any vertices in common. Two
edges (u,v) and (w, z) are disjoint if u ¢ {w,z}
and v ¢ {w, z}. Let u and v be two vertices of G.
The distance between u and v denoted by deg(u, v)
is the length of a shortest path of G joining u and
v.

A cycle C is a special path with at least three
vertices such that the first vertex is the same as the
last one. A cycle C' is called k-cycle if [(C) = k. A
path (respectively, cycle) which traverses each ver-
tex of G exactly once is a hamiltonian path (respec-
tively, hamiltonian cycle). To route a packet from
u to v in a k-cycle, one may first breaks the packet
into two smaller pieces. Then, route the two pieces
along two internal vertex-disjoint paths to the two
intermediate vertices vy, vs. In the second phase,
symmetrically, the two pieces are routed from the
intermediate vertices vy, v2 to their common des-
tination v. The packet is combined in v until all
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pieces of this packet arrived. Therefore, this kind
of transmission delay between v and v in a cycle is
determined by the longest path between u and v
in this cycle. It is of interest to find a cycle passing
through u and v such that lengths of two disjoint
paths between u and v in this cycle are as equal
as possible.

Definition 1 Let G be a graph. For any two ver-
tices u,v € V(G), a cycle C is called a balanced
cycle between u and v if do(u,v) = maz{dc(z,y) |
z,y € V(C)}.

Consequently, if C' is a balanced k-cycle be-
tween u and v, de(u,v) = [£]. In a bipartite
graph, there are only even cycles and vertex set
is divided into two partite sets. Hence we modify
definition 1 for bipartite graphs.

Definition 2 Let G = (BU W, E) be a bipartite
graph. For any two vertices u and v in G, a cycle
C is called a balanced cycle between u and v if
de(u,v) = maz{dc(x,y) | x andw are in the same
partite set, and y and v are in the same partite set.

}.

Figure 1: (a) A balanced 6-cycle between u and v
that are in different partite sets. (b) A balanced 8-
cycle between u and v that are in different partite
sets. (¢) A balanced 8-cycle between u and v that
are in the same partite set. (d) A balanced 6-cycle
between v and v that are in the same partite set.

A bipartite graph is vertez-bipancyclic [3] if ev-
ery vertex lies on a cycle of every even length from
4 to |V(G)] inclusive. Similarly, a bipartite graph
is edge-bipancyclic if every edge lies on a cycle
of every even length from 4 to |V(G)| inclusive.
Obviously, every edge-bipancyclic graph is vertex-
bipancyclic. A bipartite graph G is balanced bi-
pancyclic if for each pair of vertices u,v € V(G),

it contains a balanced cycle of every even length
of k satisfying maz{2dg(u,v),4} < k < |[V(G)|
between v and v.

Figure 2: @,, forn =2,3.

Let v = up_1Up—2...urup be an n-bit binary
strings. The Hamming weight of u, denoted by
w(u), is the number of u; such that u; = 1. Let
U= Up_1Up—2...ULUy and VU = VUp_1Vp_2...V100
be two distinct n-bit binary strings. The Ham-
ming distance h(u,v) between two vertices u and
v is the number of different bits in the correspond-
ing strings of both vertices. The n-dimensional
hypercube, denoted by @Q,,, consists of all n-bit bi-
nary strings as its vertices and two vertices v and
v are adjacent if and only if h(u,v) = 1. Thus,
Q@ is a bipartite graph with bipartition {u | w(u)
is odd} and {u | w(u) is even}. Figure 2 shows
Q, for n = 2 and n = 3. It is observed that
h(u,v) is odd if and only if v and v are in different
partite sets. For 0 < k < n, we use u* to de-
note the binary string v,,_1v,_2 ... v1vg such that
v =1 —up and u; = v; if ¢ # k. An edge (u,v)
in B(Q,) is of dimension i if u = v®. It is known
that dg, (u,v) = h(u,v). The following lemmas
are useful in our later proofs.

Lemma 1 [2] Let u and v be two arbitrary dis-
tinct vertices with the same partite set in Q,, for
n > 2. Then, for any vertex w such that h(w,u)
is odd, there exists a path joining u and v passing
all vertices of Q. except w.

Lemma 2 [2] Let w and v be two arbitrary dis-
tinct vertices in Qn and h(u,v) = d, where n > 2.
There are paths formed by (u, Plu,v],v) in the Qy
with lengths d,d +2,d+4,...,c, where c =2™ — 1
if d is odd, and ¢ = 2" — 2 if d is even.

2 (@, is balanced bipancyclic

In this section, for any two vertices u and v in
Q, we will discuss the cycle passing v and v with
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some special properties. Let h(u,v) = d. We have
that if v and v are in the same partite set then d
is even, otherwise d is odd. The balanced 2I-cycle
C with | > 2 between u and v must satisfy one of
the following conditions:

(1) dis odd, [ is odd, and d¢(u,v) = 1.

(2) dis odd, [ is even, and d¢(u,v) =1—1.

(3) dis even, [ is even, and d¢(u,v) = 1.

(4) d is even, [ is odd, and d¢(u,v) =1 — 1.

@, is balanced bipancyclic if for each pair
of vertices u,v € V(Q,), it contains a bal-
anced cycle of every even length of 2] satisfying
maz{h(u,v),2} <1< 2" ! between u and v. The
following lemma is useful in the proof of Theo-
rem 1.

Lemma 3 Forn > 2, let (u,v) and (w, z) be two
disjoint edges in Q. Then, Q. can be partitioned
into two (n—1)-cubes such that one contains (u,v)
and the other contains (w, z).

Proof. The lemma is true when n = 2.
Let (u,v) and (w,z) be two disjoint edges, and
v = u' and z = wF. Hence u, v, w, and z
are four distinct vertices. Without loss of gen-
erality, we may assume that v = 00...0 and
W= Wp—1Wp—2 ... We+10wWk_1 ... wp. Since n > 3
as well as u, v, and w are distinct, there exists
j #iand j # k such that w; = 1. One may parti-
tion @, along dimension j into two (n — 1)-cubes,

Y and QL _;, such that Q% _; contains u and v

as well as QL _, contains w and z. O

Lemma 4 For any two disjoint edges (u,v) and
(w,z) in Qn with n > 2, there exist two disjoint
paths Piu,v] and Py|w, 2], in Qn where l(P1) =1,
3,5,7..,2" '~ 1and P, =1,3,5,7,...,
on—l 1.

Proof. Let (u,v) and (w,z) be two disjoint
edges in @),. By Lemma 3, @,, can be partitioned
along dimension j into two (n — 1)-cubes, Q% _;
and QL_;, such that Q% , contains (u,v) and
Q}hl contains (w, z) for some 0 < j <n —1. By
Lemma 2, there exist paths joining v and v (re-
spectively, w and z) of lengths 1, 3, ..., 2771 —1
in Q%_, (respectively, QL_;). O

Theorem 1 Q,, is balanced bipancyclic if n > 2.

Proof. Let u = up_1Up_2...urug and v =
Up_1Up_2...010 be any two distinct vertices of
Qn and h(u,v) = d. To prove the theorem, we
will find every balanced 2I-cycle between u and v
where maz{d,2} <1< 2"~!. The proof is divided
into two parts: d =1 and d > 2.

l:’] [u,V] PZ [V]suj]

0, 0.

Figure 3: (a) Let [(P1) = I(P2) = k. Then, a
balanced (2k + 2)-cycle between u and v is con-
structed, where k = 1,3,5,...,2"~t — 1. (b) Let
I(P1) = k+ 2 and [(P,) = k. Then, a balanced
(2k + 4)-cycle between u and v is constructed,
where k = 1,3,5,...,2" "1 — 3.

Case 1: d =1, i.e. u and v are adjacent. (See
Figure 3.)

Without loss of generality, we may assume that
(u,v) is an edge of dimension 0. We may par-
tition @, along dimension 1 into two (n — 1)-
subcubes such that QY _; denotes the subgraph
of @, induced by {z € V(Q,) | z1 = 0} and

L | denotes the subgraph of @, induced by
{r € V(Qn) | z1 = 1}. Therefore, u and v are
in the same subcube Q% _; or QL ;. Without loss
of generality, we suppose that u and v are in Q¥ _;.

Let (u,u') and (v,v!) be two edges of dimen-
sion 1. Hence h(u!,v') = 1 and u!,v' € V(QL_,).
Applying Lemma 2, there are paths formed by
(u, P[u,v],v) in the Q%_, with length k1 = 1,
3,5, 7,..., 27 1 — 1 and there are paths formed
by (vl, Po[vl,ul],u!) in the QL _, whose lengths
are ko =1,3,5,7,..., 2" 1 —1. We can construct
a cycle as C = (u, Pi[u,v], v, vt, Py[vl,ul] jul, u)
of length I(C) = k1 + k2 + 2 where k; = [(P1) and
ko = I(P2). Obviously, the cycle C passes through
u and v.

(a). balanced (2k + 2)-cycle between u and v
where k =1, 3,5,...,2" 1 — 1. Let k; = k and
ko = k. Then, I(C) = 2k+2 where k =1, 3,5, ...,
27=1 _ 1. Hence de(u,v) =k = &2 — 1. Since d
is odd, I(TC) is even, and d¢(u,v) = @ — 1, the
cycle C is balanced (2k 4 2)-cycle between u and
v where k=1,3,5,..., 2" "1 — 1.

(b). balanced (2k + 4)-cycle between u and v
where k =1,3,5,...,2" ' —3. Let ky = k+2
and ky = k. Then, [(C) = 2k + 4 where k = 1, 3,
5, ..., 2" 1 — 3. Hence do(u,v) = k+2 = @
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Since d is odd, @ is odd, and d¢(u,v) = —),
the cycle C' is balanced (2k + 4)-cycle between
and v where k=1, 3,5, ...,2" ! —3.

Case 2: d > 2, i.e. u and v are not adjacent.

We prove this case by induction on n. Obvi-
ously, the proof of case 2 holds for n = 2. As-
sume that the proof of case 2 is true for every
integer 2 < m < n. Let u = Up_1Up_2... U1l
and v = Vp_1VUn_2...0109 be any two distinct
vertices of @, and h(u,v) = d. Partitioning Q,
along dimension 0, @), can be divided into two
(n — 1)-subcubes where Q2 _, denotes the sub-
graph of @, induced by {z € V(Q,) | zo0 = 0}
and Q! _; denotes the subgraph of Q,, induced by
{x € V(Qn) | o =1}.

Subcase 2-1: u,v € Q9_
(See Figure 4 and Figure 5.)

Without loss of generality, we may assume that
u,v € Q°_,. For the basis of this proof, we con-
sider Q3. It is clear that Q3 is balanced bipan-
cyclic (See Figure 4 for an illustration).

u ,\ o U’
Xeo S [ ()x()]
Pyly,ul X0 I

L or u,v € Qg

P][X, ] [\-Sz[ ()ay()]
Y 0
*y
v po

0, Q.

Figure 5: Let I(S1) = 1(S2) = k where k =
1,3,5,...,2""L. Then, a balanced (m + 2k +
2)-cycle between u and v is constructed, where
(u, z, P1[z,v],v,y, Pa[y,u],u) is balanced m-cycle
between u and v of Q%_,; where m > 6.

Suppose that n > 4. By induction hypothesis,
QY _, is balanced bipancyclic. Every balanced 21I-
cycle between u and v in @, can be found in Q% _;
where d <1 < 272, Let C be a balanced m-cycle
with m > 6 between u and v in Q%_,. Hence we
rewrite the cycle C as (u, z, Pi[z,v], v, y, P2[y, u],
u). Let (u,u®), (z,2°), (v,v°), and (y,y°) be four

edges of dimension 0. It is observed that u®, 20,

v%, and y° are four distinct vertices in Q_;, and
that (u%, 2%) and (v°,4°) are two disjoint edges in

1 . Applying Lemma 4, there exist two disjoint
paths S;[u®, 2°] and So[v?,%°] in QL_, such that
1(S1) = 1(S3) = k where k = 1,3,5,7,...,2"2 —

1. Therefore, we may construct a cycle C' = (u,
u®, S1[u’, 2%, 2°, 2, Pi[xz,v], v, v0, S3[v°, 0], ¢°,
y, Paly,u], u) passing through v and v. Hence
1(C") = m + 2k + 2.

Subcase 2-1-1: balanced (2" ! +2k)-cycle be-
tween v and v where k =1,3,5,...,2772 —1. Let
m = 2"~ — 2. Therefore, [(C") = 2"~ 4 2k.

(a). Suppose that d is odd. Since C is a
balanced (2"~! — 2)-cycle between u and v, and
l(c) =2""2 —1is odd, do(u,v) =272 — 1. Tt is
clearly that dor(u,v) = do(u,v)+k+1=2""2+k
and XS0 — 92 1 k. Since d is odd, 152 is odd,
and dor(u,v) =22+ k = l(c) , the cycle C' is
balanced (2"~1 4 2k)-cycle between wand v in @y
where k = 1,3,5,...,2" 2 — 1.

(b). Suppose that d is even. Since C' is a bal-
anced (2"~ —2)-cycle between u and v, and @ =
27=2 — 1 is odd, dc(u,v) = 2"~2 — 2. Tt is clearly
that dev(u,v) = do(u,v) +k+1=2""24k—1

and l(C) =272 1 k. Since d is even, @ is odd,

and dc/(u, v)=2""24+k—1= @ —1, the cycle
C’ is balanced (2"~! 4 2k)-cycle between u and v
in Q, where k =1,3,5,...,2""2 — 1.

Subcase 2-1-2: balanced (2"~ +2k+2)-cycle
between u and v where k=1, 3,5, ..., 2" 2 — 1.
Let m = 2"~ Therefore, [(C') = 2"~! + 2k + 2.

(a). Suppose that d is odd. Since C is a bal-
anced 2" !-cycle between u and v, and @ =
272 is even, do(u,v) = 272 — 1. It is clearly
that der (u,v) = do(u,v) +k+1=2""2 4k and
@ =2""2 4 k+1. Since d is odd, @ is even,
and do/(u,v) =22+ k = @ — 1, the cycle '
is balanced (2"~ + 2k + 2)-cycle between v and v
in Q, where k=1,3,5,...,2""2 — 1.

(b). Suppose that d is even. Since C' is a bal-
anced 2" !-cycle between v and v, and @ =
272 is even, dc(u,v) = 2" 2. Tt is clearly that
der (u,v) = dc(u v)+k+1 =2""24+k+1 and
l(C) uen

2
and dor(u,v) =272 +k+1= @, the cycle C’

is balanced (2"~ + 2k + 2)-cycle between u and v
in Q, where k =1,3,5,...,2"72 — 1.

Subcase 2-2: u € Q% _; and v € QL_; (or
ve? ;andue QL ;).

Without loss of generality, we may assume that
uwe Q) and v e QL ;. Let (u, )and( )
be two edges of dlmensmn 0. Hence u’ e V(QL_))
and v° € V(Q°_,), and h(u,v°) = h(v,u®) = d —
1.

Subcase 2-2-1: d is even, i.e. u and v are
in the same partite set. (See Figure 6.) Hence

u% and v are in different partite sets. Simi-
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v=011 110 111

0; 0;

Figure 4: Three balanced cycles between v = 000 and v = 011 in Q3.

U a uo
P [u,"] P,[v,u’]
Vo -y

0., Q.

Figure 6: h(u,v) = d is even. (a) Let I(P;) =
[(P2) = k. Then, a balanced (2k + 2)-cycle be-
tween v and v is constructed, where k = d —
1,d+1,d+3,...,2" 1 —1. (b) Let [(P) = k +2
and [(P;) = k. Then, a balanced (2k + 4)-
cycle between u and v is constructed, where k =
d—1,d+1,d+3,...,2""1 - 3.

larly, v° and u are in different partite sets. By
Lemma 2, there exists a path Pj[u,v°] (respec-
tively, P[v,u°]) connecting u and ©v" (respec-
tively, v and u®) where I(P}) = d — 1,d + 1,d +
3,...,2" 11 (vespectively, I(P;) = d—1,d+1,d+
3,...,2""11). The cycle C can be constructed as
{(u, Py [u,v°],v°, v, Py[v,u’],u® u). Therefore, the
cycle C' passing through u and v, and [(C) =
kl + k?g +2 where kl = l(Pl) and kg = Z(PQ)

(a). balanced (2k + 2)-cycle between u and v
where k =d—1,d+1,d+3,...,2" ' —1. Let
ki =k and ko =k where k=d—1,d+ 1, d+ 3,
...y 2771 — 1. Therefore, [(C') = 2k + 2. One can
observe that l(% =k+1and do(u,v) = k + 1.

Since d is even, $) is even, and de (u,v) = 4,

the cycle C' is balanced (2k + 2)-cycle between u
and v where k=d—1,d+1,d+3,...,2"" 1 —1.

(b). balanced (2k + 4)-cycle between u and v
where k =d—1,d+1,d+3,...,2" 1 —3. Let
ki =k+2and ks =k wherek =d—1,d+1, d+3,
..., 2771 — 3. Therefore, [(C) = 2k + 4. One can
observe that “&) = k + 2 and de(u,v) = k+ 1.

21(0) 1<)
=" L

Since d is even, =5~ is odd, and d¢ (u, v)
the cycle C is balanced (2k + 4)-cycle between u
and v where k=d—1,d+1,d+3,...,2" 1 -3

Subcase 2-2-2: dis odd, i.e. u and v are in dif-
ferent partite sets. (See Figure 7.) Hence u" and v
are in the same partite set. Similarly, v° and v are
in the same partite set. By Lemma 2, there exists
a paths P;[u,v°] (respectively, Ps[v,u°]) connect-
ing u and v° (respectively, v and u°) where I(P}) =
d—1,d+1,d+ 3,21 — 2 (respectively, I(P;) =
d—1,d+1,d+3,...,2"1—2). The cycle C can be
constructed as (u, P [u,v°],v%, v, Py[v, u®],u°, u).
Therefore, the cycle C' passing through u and v,
and [(C) = k1 + k2 + 2 where k; = I(P1) and
ko = U(P).

(a). balanced (2k 4 2)-cycle between u and v
where k =d—1,d+1,d+3,...,2" 1 —2. Let
ki =k and ko = k where k=d—1,d+ 1, d+ 3,
ooy 2771 — 2. Therefore, I[(C') = 2k + 2. One can
observe that @ =k+1and do(u,v) = k+ 1.
Since d is odd, ‘&) is odd, and de(u,v) = X2
the cycle C' is balanced (2k + 2)-cycle between u
and v where k=d—1,d+1,d+3,...,2" "1 -2,

(b). balanced (2k + 4)-cycle between u and v
where k=d—1,d+1,d+3,...,2" 1 —4. Let
k1 =k+2and ko = k where k =d—1,d+1, d+3,
..y 271 — 4. Therefore, [(C)) = 2k + 4. One can
observe that @ =k+2and do(u,v) = k+ 1.
Since d is odd, @ is even, and d¢(u, v) = @—1,
the cycle C is balanced (2k + 4)-cycle between u
and v where k=d—1,d+1,d+3,...,2" 1 —4.

(c). balanced 2"-cycle between u and v. Let
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[4] Y. Saad and M. H. Schultz, “Topologi-

U g ut u u’ cal Properties of Hypercubes,” IFEE Trans.
Computers, vol. 37, no. 7, pp. 867-872, July
P [u’] P,[v,u’] P [u,w] Pi[v.u’] 1988.
W() w S
Vo v
0 1 QI(: Q:
o O O ’

Figure 7: h(u,v) = d is odd. (a.l) Let I(P) =
[(P2) = k. Then, a balanced (2k + 2)-cycle be-
tween u and v is constructed, where k =d—1,d+
1,d+3,...,2" "1 —2. (a.2) Let I(P;) = k+ 2 and
[(P2) = k. Then, a balanced (2k + 4)-cycle be-
tween u and v is constructed, where k =d—1,d+
1,d+3,...,2"71 —4. (b) A balanced hamiltoian
cycle between u and v where [(P;) = 2"~! —1 and
I(P) =21 —2.

w € V(QL_;) and h(w,v) = 1. It is observed
that h(w,u®) is odd. By Lemma 1, there ex-
ists a path P[v,u"] of length 2"~ — 2 joining v
and u passing all vertices of QL _; except w. Let
(w,w") be an edge of dimension 0. Hence w® is
in Q%_,, and w® and u are in different partite
sets. By Lemma 2, there exists a hamiltonian path
Py [u,w] joining v and w® in Q% ;. Therefore,
longest cycle C' between u and v in @,, can be con-
structed as (u, Py [u, w®], w®, w, v, Ps[v, u%], u’, u).
Therefore, the cycle C' passing through u and wv,
(C)=2""1—-141+1+2""1—-24+1=2" and
do(u,v) =271 -1 = @ — 1. Since d is odd,
o - (%)

=5+ is even, and d¢(u,v) = =5 — 1, the cycle C
is balanced cycle between v and v. The theorem
is proved. m|
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