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Abstract

Let G be a bipartite graph. For any two vertices
u and v in G, a cycle C is called a balanced cycle
between u and v if dC(u, v) = max{dC(x, y) | x
and u are in the same partite set, and y and v
are in the same partite set }. A bipartite graph
G is bipancyclic [3] if it contains a cycle of ev-
ery even length from 4 to |V (G)| inclusive. A bi-
partite graph G is balanced bipancyclic if for each
pair of vertices u, v ∈ V (G), it contains a bal-
anced cycle of every even length of k satisfying
max{2dG(u, v), 4} ≤ k ≤ |V (G)| between u and
v. In this paper, we show that Qn is balanced
bipancyclic.
Keywords: hypercube, interconnection networks,
edge-bipancyclic, balanced bipancyclic.

1 Introduction

An interconnection network topology is usually
represented by a graph where vertices represent
processors and edges represent links between pro-
cessors. There are various kinds of graphs ap-
plied to design interconnection networks. Our
fundamental graph terminologies refer to [1]. A
graph G = (V, E) is bipartite if the node set
V (G) = B ∪W is the union of two disjoints node
sets B and W (also called the partite sets), such

∗This work was supported in part by the National Sci-
ence Council of the Republic of China under Contract NSC
95-2221-E-026-002.

that every edge joins B and W . Two vertices,
u and v, have the same color if and only if u
and v are in the same partite set. We also use
G = (B ∪W, E) to denote a bipartite graph. Two
vertices a and b are adjacent if (a, b) ∈ E. A
path is a sequence of adjacent vertices, written as
〈v0, P [v0, vm], vm〉 = 〈v0, v1, v2, . . . , vm〉, in which
all the vertices v0, v1, . . . , vm are distinct except
possibly v0 = vm. The path 〈v0, P [v0, vm], vm〉
could be simply replaced with P [u, v] and P . The
two vertices v0 and vm are called the end-vertices
of P [v0, vm]. The length of a path P denoted by
l(P ) is the number of edges in P . Two paths are
vertex-disjoint (also called disjoint) if and only if
they do not have any vertices in common. Two
edges (u, v) and (w, z) are disjoint if u /∈ {w, z}
and v /∈ {w, z}. Let u and v be two vertices of G.
The distance between u and v denoted by dG(u, v)
is the length of a shortest path of G joining u and
v.

A cycle C is a special path with at least three
vertices such that the first vertex is the same as the
last one. A cycle C is called k-cycle if l(C) = k. A
path (respectively, cycle) which traverses each ver-
tex of G exactly once is a hamiltonian path (respec-
tively, hamiltonian cycle). To route a packet from
u to v in a k-cycle, one may first breaks the packet
into two smaller pieces. Then, route the two pieces
along two internal vertex-disjoint paths to the two
intermediate vertices v1, v2. In the second phase,
symmetrically, the two pieces are routed from the
intermediate vertices v1, v2 to their common des-
tination v. The packet is combined in v until all
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pieces of this packet arrived. Therefore, this kind
of transmission delay between u and v in a cycle is
determined by the longest path between u and v
in this cycle. It is of interest to find a cycle passing
through u and v such that lengths of two disjoint
paths between u and v in this cycle are as equal
as possible.

Definition 1 Let G be a graph. For any two ver-
tices u, v ∈ V (G), a cycle C is called a balanced
cycle between u and v if dC(u, v) = max{dC(x, y) |
x, y ∈ V (C)}.

Consequently, if C is a balanced k-cycle be-
tween u and v, dC(u, v) = �k

2 	. In a bipartite
graph, there are only even cycles and vertex set
is divided into two partite sets. Hence we modify
definition 1 for bipartite graphs.

Definition 2 Let G = (B ∪W, E) be a bipartite
graph. For any two vertices u and v in G, a cycle
C is called a balanced cycle between u and v if
dC(u, v) = max{dC(x, y) | x and u are in the same
partite set, and y and v are in the same partite set.
}.

(a) (b)

u

v

u

vv

u

v

u

(c) (d)

Figure 1: (a) A balanced 6-cycle between u and v
that are in different partite sets. (b) A balanced 8-
cycle between u and v that are in different partite
sets. (c) A balanced 8-cycle between u and v that
are in the same partite set. (d) A balanced 6-cycle
between u and v that are in the same partite set.

A bipartite graph is vertex-bipancyclic [3] if ev-
ery vertex lies on a cycle of every even length from
4 to |V (G)| inclusive. Similarly, a bipartite graph
is edge-bipancyclic if every edge lies on a cycle
of every even length from 4 to |V (G)| inclusive.
Obviously, every edge-bipancyclic graph is vertex-
bipancyclic. A bipartite graph G is balanced bi-
pancyclic if for each pair of vertices u, v ∈ V (G),

it contains a balanced cycle of every even length
of k satisfying max{2dG(u, v), 4} ≤ k ≤ |V (G)|
between u and v.

01

11

00

10
Q2

001

011010

000 101

111110

100

Q3

Figure 2: Qn for n = 2, 3.

Let u = un−1un−2 . . . u1u0 be an n-bit binary
strings. The Hamming weight of u, denoted by
w(u), is the number of ui such that ui = 1. Let
u = un−1un−2 . . . u1u0 and v = vn−1vn−2 . . . v1v0

be two distinct n-bit binary strings. The Ham-
ming distance h(u, v) between two vertices u and
v is the number of different bits in the correspond-
ing strings of both vertices. The n-dimensional
hypercube, denoted by Qn, consists of all n-bit bi-
nary strings as its vertices and two vertices u and
v are adjacent if and only if h(u, v) = 1. Thus,
Qn is a bipartite graph with bipartition {u | w(u)
is odd} and {u | w(u) is even}. Figure 2 shows
Qn for n = 2 and n = 3. It is observed that
h(u, v) is odd if and only if u and v are in different
partite sets. For 0 ≤ k < n, we use uk to de-
note the binary string vn−1vn−2 . . . v1v0 such that
vk = 1 − uk and ui = vi if i 
= k. An edge (u, v)
in E(Qn) is of dimension i if u = vi. It is known
that dQn(u, v) = h(u, v). The following lemmas
are useful in our later proofs.

Lemma 1 [2] Let u and v be two arbitrary dis-
tinct vertices with the same partite set in Qn for
n ≥ 2. Then, for any vertex w such that h(w, u)
is odd, there exists a path joining u and v passing
all vertices of Qn except w.

Lemma 2 [2] Let u and v be two arbitrary dis-
tinct vertices in Qn and h(u, v) = d, where n ≥ 2.
There are paths formed by 〈u, P [u, v], v〉 in the Qn

with lengths d,d + 2,d + 4, . . . , c, where c = 2n − 1
if d is odd, and c = 2n − 2 if d is even.

2 Qn is balanced bipancyclic

In this section, for any two vertices u and v in
Qn, we will discuss the cycle passing u and v with
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some special properties. Let h(u, v) = d. We have
that if u and v are in the same partite set then d
is even, otherwise d is odd. The balanced 2l-cycle
C with l ≥ 2 between u and v must satisfy one of
the following conditions:
(1) d is odd, l is odd, and dC(u, v) = l.
(2) d is odd, l is even, and dC(u, v) = l − 1.
(3) d is even, l is even, and dC(u, v) = l.
(4) d is even, l is odd, and dC(u, v) = l − 1.

Qn is balanced bipancyclic if for each pair
of vertices u, v ∈ V (Qn), it contains a bal-
anced cycle of every even length of 2l satisfying
max{h(u, v), 2} ≤ l ≤ 2n−1 between u and v. The
following lemma is useful in the proof of Theo-
rem 1.

Lemma 3 For n ≥ 2, let (u, v) and (w, z) be two
disjoint edges in Qn. Then, Qn can be partitioned
into two (n−1)-cubes such that one contains (u, v)
and the other contains (w, z).

Proof. The lemma is true when n = 2.
Let (u, v) and (w, z) be two disjoint edges, and
v = ui and z = wk. Hence u, v, w, and z
are four distinct vertices. Without loss of gen-
erality, we may assume that u = 00 . . .0 and
w = wn−1wn−2 . . . wk+10wk−1 . . . w0. Since n ≥ 3
as well as u, v, and w are distinct, there exists
j 
= i and j 
= k such that wj = 1. One may parti-
tion Qn along dimension j into two (n− 1)-cubes,
Q0

n−1 and Q1
n−1, such that Q0

n−1 contains u and v
as well as Q1

n−1 contains w and z. �

Lemma 4 For any two disjoint edges (u, v) and
(w, z) in Qn with n ≥ 2, there exist two disjoint
paths P1[u, v] and P2[w, z], in Qn where l(P1) = 1,
3, 5 , 7, . . ., 2n−1 − 1 and P2 = 1, 3, 5 , 7, . . .,
2n−1 − 1.

Proof. Let (u, v) and (w, z) be two disjoint
edges in Qn. By Lemma 3, Qn can be partitioned
along dimension j into two (n − 1)-cubes, Q0

n−1

and Q1
n−1, such that Q0

n−1 contains (u, v) and
Q1

n−1 contains (w, z) for some 0 ≤ j ≤ n− 1. By
Lemma 2, there exist paths joining u and v (re-
spectively, w and z) of lengths 1, 3, . . ., 2n−1 − 1
in Q0

n−1 (respectively, Q1
n−1). �

Theorem 1 Qn is balanced bipancyclic if n ≥ 2.

Proof. Let u = un−1un−2 . . . u1u0 and v =
vn−1vn−2 . . . v1v0 be any two distinct vertices of
Qn and h(u, v) = d. To prove the theorem, we
will find every balanced 2l-cycle between u and v
where max{d, 2} ≤ l ≤ 2n−1. The proof is divided
into two parts: d = 1 and d ≥ 2.

u

v

Q n-1
0 Q n-1

1

u1

v 1

P [u,v]1 P [v1,u1]2

Figure 3: (a) Let l(P1) = l(P2) = k. Then, a
balanced (2k + 2)-cycle between u and v is con-
structed, where k = 1, 3, 5, . . . , 2n−1 − 1. (b) Let
l(P1) = k + 2 and l(P2) = k. Then, a balanced
(2k + 4)-cycle between u and v is constructed,
where k = 1, 3, 5, . . . , 2n−1 − 3.

Case 1: d = 1, i.e. u and v are adjacent. (See
Figure 3.)

Without loss of generality, we may assume that
(u, v) is an edge of dimension 0. We may par-
tition Qn along dimension 1 into two (n − 1)-
subcubes such that Q0

n−1 denotes the subgraph
of Qn induced by {x ∈ V (Qn) | x1 = 0} and
Q1

n−1 denotes the subgraph of Qn induced by
{x ∈ V (Qn) | x1 = 1}. Therefore, u and v are
in the same subcube Q0

n−1 or Q1
n−1. Without loss

of generality, we suppose that u and v are in Q0
n−1.

Let (u, u1) and (v, v1) be two edges of dimen-
sion 1. Hence h(u1, v1) = 1 and u1, v1 ∈ V (Q1

n−1).
Applying Lemma 2, there are paths formed by
〈u, P1[u, v], v〉 in the Q0

n−1 with length k1 = 1,
3, 5, 7, . . ., 2n−1 − 1 and there are paths formed
by 〈v1, P2[v

1, u1], u1〉 in the Q1
n−1 whose lengths

are k2 = 1, 3, 5, 7, . . ., 2n−1−1. We can construct
a cycle as C = 〈u, P1[u, v], v, v1, P2[v

1, u1] ,u1, u〉
of length l(C) = k1 + k2 + 2 where k1 = l(P1) and
k2 = l(P2). Obviously, the cycle C passes through
u and v.

(a). balanced (2k + 2)-cycle between u and v
where k = 1, 3, 5, . . ., 2n−1 − 1. Let k1 = k and
k2 = k. Then, l(C) = 2k+2 where k = 1, 3, 5, . . .,

2n−1 − 1. Hence dC(u, v) = k = l(C)
2 − 1. Since d

is odd, l(C)
2 is even, and dC(u, v) = l(C)

2 − 1, the
cycle C is balanced (2k + 2)-cycle between u and
v where k = 1, 3, 5, . . ., 2n−1 − 1.

(b). balanced (2k + 4)-cycle between u and v
where k = 1, 3, 5, . . ., 2n−1 − 3. Let k1 = k + 2
and k2 = k. Then, l(C) = 2k + 4 where k = 1, 3,

5, . . ., 2n−1 − 3. Hence dC(u, v) = k + 2 = l(C)
2 .
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Since d is odd, l(C)
2 is odd, and dC(u, v) = l(C)

2 ,
the cycle C is balanced (2k + 4)-cycle between u
and v where k = 1, 3, 5, . . ., 2n−1 − 3.

Case 2: d ≥ 2, i.e. u and v are not adjacent.

We prove this case by induction on n. Obvi-
ously, the proof of case 2 holds for n = 2. As-
sume that the proof of case 2 is true for every
integer 2 ≤ m < n. Let u = un−1un−2 . . . u1u0

and v = vn−1vn−2 . . . v1v0 be any two distinct
vertices of Qn and h(u, v) = d. Partitioning Qn

along dimension 0, Qn can be divided into two
(n − 1)-subcubes where Q0

n−1 denotes the sub-
graph of Qn induced by {x ∈ V (Qn) | x0 = 0}
and Q1

n−1 denotes the subgraph of Qn induced by
{x ∈ V (Qn) | x0 = 1}.

Subcase 2-1: u, v ∈ Q0
n−1 or u, v ∈ Q1

n−1.
(See Figure 4 and Figure 5.)

Without loss of generality, we may assume that
u, v ∈ Q0

n−1. For the basis of this proof, we con-
sider Q3. It is clear that Q3 is balanced bipan-
cyclic (See Figure 4 for an illustration).

u

v
Q n-1

0 Q n-1
1

u0

v 0

P [x,v]1

x

y

S1[u
0,x0]P [y,u]2

y 0

x 0

S2[v
0,y0]

Figure 5: Let l(S1) = l(S2) = k where k =
1, 3, 5, . . . , 2n−1. Then, a balanced (m + 2k +
2)-cycle between u and v is constructed, where
〈u, x, P1[x, v], v, y, P2[y, u], u〉 is balanced m-cycle
between u and v of Q0

n−1 where m ≥ 6.

Suppose that n ≥ 4. By induction hypothesis,
Q0

n−1 is balanced bipancyclic. Every balanced 2l-
cycle between u and v in Qn can be found in Q0

n−1

where d ≤ l ≤ 2n−2. Let C be a balanced m-cycle
with m ≥ 6 between u and v in Q0

n−1. Hence we
rewrite the cycle C as 〈u, x, P1[x, v], v, y, P2[y, u],
u〉. Let (u, u0), (x, x0), (v, v0), and (y, y0) be four
edges of dimension 0. It is observed that u0, x0,
v0, and y0 are four distinct vertices in Q1

n−1, and
that (u0, x0) and (v0, y0) are two disjoint edges in
Q1

n−1. Applying Lemma 4, there exist two disjoint
paths S1[u

0, x0] and S2[v
0, y0] in Q1

n−1 such that
l(S1) = l(S2) = k where k = 1, 3, 5, 7, . . . , 2n−2 −

1. Therefore, we may construct a cycle C′ = 〈u,
u0, S1[u

0, x0], x0, x, P1[x, v], v, v0, S2[v
0, y0], y0,

y, P2[y, u], u〉 passing through u and v. Hence
l(C′) = m + 2k + 2.

Subcase 2-1-1: balanced (2n−1+2k)-cycle be-
tween u and v where k = 1, 3, 5, . . . , 2n−2− 1. Let
m = 2n−1 − 2. Therefore, l(C′) = 2n−1 + 2k.

(a). Suppose that d is odd. Since C is a
balanced (2n−1 − 2)-cycle between u and v, and
l(C)

2 = 2n−2 − 1 is odd, dC(u, v) = 2n−2 − 1. It is
clearly that dC′(u, v) = dC(u, v)+k+1 = 2n−2+k

and l(C′)
2 = 2n−2 + k. Since d is odd, l(C′)

2 is odd,

and dC′(u, v) = 2n−2 + k = l(C′)
2 , the cycle C′ is

balanced (2n−1 +2k)-cycle between u and v in Qn

where k = 1, 3, 5, . . . , 2n−2 − 1.
(b). Suppose that d is even. Since C is a bal-

anced (2n−1−2)-cycle between u and v, and l(C)
2 =

2n−2 − 1 is odd, dC(u, v) = 2n−2 − 2. It is clearly
that dC′(u, v) = dC(u, v) + k + 1 = 2n−2 + k − 1

and l(C′)
2 = 2n−2 +k. Since d is even, l(C′)

2 is odd,

and dC′(u, v) = 2n−2 + k− 1 = l(C′)
2 − 1, the cycle

C′ is balanced (2n−1 + 2k)-cycle between u and v
in Qn where k = 1, 3, 5, . . . , 2n−2 − 1.

Subcase 2-1-2: balanced (2n−1+2k+2)-cycle
between u and v where k = 1, 3, 5, . . ., 2n−2 − 1.
Let m = 2n−1. Therefore, l(C′) = 2n−1 + 2k + 2.

(a). Suppose that d is odd. Since C is a bal-

anced 2n−1-cycle between u and v, and l(C)
2 =

2n−2 is even, dC(u, v) = 2n−2 − 1. It is clearly
that dC′(u, v) = dC(u, v) + k + 1 = 2n−2 + k and
l(C′)

2 = 2n−2 + k + 1. Since d is odd, l(C′)
2 is even,

and dC′(u, v) = 2n−2 + k = l(C′)
2 − 1, the cycle C′

is balanced (2n−1 + 2k + 2)-cycle between u and v
in Qn where k = 1, 3, 5, . . . , 2n−2 − 1.

(b). Suppose that d is even. Since C is a bal-

anced 2n−1-cycle between u and v, and l(C)
2 =

2n−2 is even, dC(u, v) = 2n−2. It is clearly that
dC′(u, v) = dC(u, v) + k + 1 = 2n−2 + k + 1 and
l(C′)

2 = 2n−2 +k+1. Since d is even, l(C′)
2 is even,

and dC′(u, v) = 2n−2 + k + 1 = l(C′)
2 , the cycle C′

is balanced (2n−1 + 2k + 2)-cycle between u and v
in Qn where k = 1, 3, 5, . . . , 2n−2 − 1.

Subcase 2-2: u ∈ Q0
n−1 and v ∈ Q1

n−1 (or
v ∈ Q0

n−1 and u ∈ Q1
n−1).

Without loss of generality, we may assume that
u ∈ Q0

n−1 and v ∈ Q1
n−1. Let (u, u0) and (v, v0)

be two edges of dimension 0. Hence u0 ∈ V (Q1
n−1)

and v0 ∈ V (Q0
n−1), and h(u, v0) = h(v, u0) = d−

1.
Subcase 2-2-1: d is even, i.e. u and v are

in the same partite set. (See Figure 6.) Hence
u0 and v are in different partite sets. Simi-
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001

v=011010

u=000 101

111110

100

Q3

001

v=011010

u=000 101

111110

100

Q3

001

v=011010

u=000 101

111110

100

Q3

Figure 4: Three balanced cycles between u = 000 and v = 011 in Q3.

u

v
Q n-1

0 Q n-1
1

P1[u,v0] P2[v,u0]

v0

u 0

Figure 6: h(u, v) = d is even. (a) Let l(P1) =
l(P2) = k. Then, a balanced (2k + 2)-cycle be-
tween u and v is constructed, where k = d −
1, d + 1, d + 3, . . . , 2n−1 − 1. (b) Let l(P1) = k + 2
and l(P2) = k. Then, a balanced (2k + 4)-
cycle between u and v is constructed, where k =
d− 1, d + 1, d + 3, . . . , 2n−1 − 3.

larly, v0 and u are in different partite sets. By
Lemma 2, there exists a path P1[u, v0] (respec-
tively, P2[v, u0]) connecting u and v0 (respec-
tively, v and u0) where l(P1) = d − 1, d + 1, d +
3, . . . , 2n−1−1 (respectively, l(P2) = d−1, d+1, d+
3, . . . , 2n−1−1). The cycle C can be constructed as
〈u, P1[u, v0], v0, v, P2[v, u0], u0, u〉. Therefore, the
cycle C passing through u and v, and l(C) =
k1 + k2 + 2 where k1 = l(P1) and k2 = l(P2).

(a). balanced (2k + 2)-cycle between u and v
where k = d − 1, d + 1, d + 3, . . ., 2n−1 − 1. Let
k1 = k and k2 = k where k = d− 1, d + 1, d + 3,
. . ., 2n−1 − 1. Therefore, l(C) = 2k + 2. One can

observe that l(C)
2 = k + 1 and dC(u, v) = k + 1.

Since d is even, l(C)
2 is even, and dC(u, v) = l(C)

2 ,
the cycle C is balanced (2k + 2)-cycle between u
and v where k = d− 1, d + 1, d + 3, . . ., 2n−1 − 1.

(b). balanced (2k + 4)-cycle between u and v
where k = d − 1, d + 1, d + 3, . . ., 2n−1 − 3. Let
k1 = k+2 and k2 = k where k = d−1, d+1, d+3,
. . ., 2n−1 − 3. Therefore, l(C) = 2k + 4. One can

observe that l(C)
2 = k + 2 and dC(u, v) = k + 1.

Since d is even, l(C)
2 is odd, and dC(u, v) = l(C)

2 −1,
the cycle C is balanced (2k + 4)-cycle between u
and v where k = d− 1, d + 1, d + 3, . . ., 2n−1 − 3.

Subcase 2-2-2: d is odd, i.e. u and v are in dif-
ferent partite sets. (See Figure 7.) Hence u0 and v
are in the same partite set. Similarly, v0 and u are
in the same partite set. By Lemma 2, there exists
a paths P1[u, v0] (respectively, P2[v, u0]) connect-
ing u and v0 (respectively, v and u0) where l(P1) =
d − 1, d + 1, d + 3, 2n−1 − 2 (respectively, l(P2) =
d−1, d+1, d+3, . . . , 2n−1−2). The cycle C can be
constructed as 〈u, P1[u, v0], v0, v, P2[v, u0], u0, u〉.
Therefore, the cycle C passing through u and v,
and l(C) = k1 + k2 + 2 where k1 = l(P1) and
k2 = l(P2).

(a). balanced (2k + 2)-cycle between u and v
where k = d − 1, d + 1, d + 3, . . ., 2n−1 − 2. Let
k1 = k and k2 = k where k = d− 1, d + 1, d + 3,
. . ., 2n−1 − 2. Therefore, l(C) = 2k + 2. One can

observe that l(C)
2 = k + 1 and dC(u, v) = k + 1.

Since d is odd, l(C)
2 is odd, and dC(u, v) = l(C)

2 ,
the cycle C is balanced (2k + 2)-cycle between u
and v where k = d− 1, d + 1, d + 3, . . ., 2n−1 − 2.

(b). balanced (2k + 4)-cycle between u and v
where k = d − 1, d + 1, d + 3, . . ., 2n−1 − 4. Let
k1 = k+2 and k2 = k where k = d−1, d+1, d+3,
. . ., 2n−1 − 4. Therefore, l(C) = 2k + 4. One can

observe that l(C)
2 = k + 2 and dC(u, v) = k + 1.

Since d is odd, l(C)
2 is even, and dC(u, v) = l(C)

2 −1,
the cycle C is balanced (2k + 4)-cycle between u
and v where k = d− 1, d + 1, d + 3, . . ., 2n−1 − 4.

(c). balanced 2n-cycle between u and v. Let
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(a)

u

v
Q n-1

0 Q n-1
1

P1[u,v0] P2[v,u0]

v0

u 0 u

v

Q n-1
0 Q n-1

1

w0

u0

(b)

P1[u,w0] P2[v,u0]

w

Figure 7: h(u, v) = d is odd. (a.1) Let l(P1) =
l(P2) = k. Then, a balanced (2k + 2)-cycle be-
tween u and v is constructed, where k = d−1, d+
1, d + 3, . . . , 2n−1 − 2. (a.2) Let l(P1) = k + 2 and
l(P2) = k. Then, a balanced (2k + 4)-cycle be-
tween u and v is constructed, where k = d−1, d+
1, d + 3, . . . , 2n−1 − 4. (b) A balanced hamiltoian
cycle between u and v where l(P1) = 2n−1−1 and
l(P2) = 2n−1 − 2.

w ∈ V (Q1
n−1) and h(w, v) = 1. It is observed

that h(w, u0) is odd. By Lemma 1, there ex-
ists a path P [v, u0] of length 2n−1 − 2 joining v
and u0 passing all vertices of Q1

n−1 except w. Let
(w, w0) be an edge of dimension 0. Hence w0 is
in Q0

n−1, and w0 and u are in different partite
sets. By Lemma 2, there exists a hamiltonian path
P1[u, w0] joining u and w0 in Q0

n−1. Therefore,
longest cycle C between u and v in Qn can be con-
structed as 〈u, P1[u, w0], w0, w, v, P2[v, u0], u0, u〉.
Therefore, the cycle C passing through u and v,
l(C) = 2n−1 − 1 + 1 + 1 + 2n−1 − 2 + 1 = 2n, and

dC(u, v) = 2n−1 − 1 = l(C)
2 − 1. Since d is odd,

l(C)
2 is even, and dC(u, v) = l(C)

2 − 1, the cycle C
is balanced cycle between u and v. The theorem
is proved. �
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