Balanced bipancyclicity of hypercubes *

Chang-Hsiung Tsai, Jing-Kai Liao Institute of Learning Technology National Hualien University of Education, Hualien, Taiwan 970, R.O.C.

> Hong-Chun Hsu Department of Medical Informatics Tzu Chi University, Hualien, Taiwan 970, ROC

> > Pao-Lien Lai

Department of Computer Science and Information Engineering National Dong Hwa University, Shoufeng, Hualien, Taiwan 97401, R.O.C. chtsai@mail.nhlue.edu.tw

Abstract

Let G be a bipartite graph. For any two vertices u and v in G, a cycle C is called a balanced cycle between u and v if $d_C(u, v) = max\{d_C(x, y) \mid x and u$ are in the same partite set, and y and v are in the same partite set $\}$. A bipartite graph G is bipancyclic [3] if it contains a cycle of every even length from 4 to |V(G)| inclusive. A bipartite graph G is balanced bipancyclic if for each pair of vertices $u, v \in V(G)$, it contains a balanced cycle of every even length of k satisfying $max\{2d_G(u, v), 4\} \leq k \leq |V(G)|$ between u and v. In this paper, we show that Q_n is balanced bipancyclic.

Keywords: hypercube, interconnection networks, edge-bipancyclic, balanced bipancyclic.

1 Introduction

An interconnection network topology is usually represented by a graph where vertices represent processors and edges represent links between processors. There are various kinds of graphs applied to design interconnection networks. Our fundamental graph terminologies refer to [1]. A graph G = (V, E) is bipartite if the node set $V(G) = B \cup W$ is the union of two disjoints node sets B and W (also called the *partite sets*), such

that every edge joins B and W. Two vertices, u and v, have the same color if and only if uand v are in the same partite set. We also use $G = (B \cup W, E)$ to denote a bipartite graph. Two vertices a and b are adjacent if $(a, b) \in E$. A path is a sequence of adjacent vertices, written as $\langle v_0, P[v_0, v_m], v_m \rangle = \langle v_0, v_1, v_2, \dots, v_m \rangle$, in which all the vertices v_0, v_1, \ldots, v_m are distinct except possibly $v_0 = v_m$. The path $\langle v_0, P[v_0, v_m], v_m \rangle$ could be simply replaced with P[u, v] and P. The two vertices v_0 and v_m are called the *end-vertices* of $P[v_0, v_m]$. The *length* of a path P denoted by l(P) is the number of edges in P. Two paths are vertex-disjoint (also called disjoint) if and only if they do not have any vertices in common. Two edges (u, v) and (w, z) are disjoint if $u \notin \{w, z\}$ and $v \notin \{w, z\}$. Let u and v be two vertices of G. The distance between u and v denoted by $d_G(u, v)$ is the length of a shortest path of G joining u and v.

A cycle C is a special path with at least three vertices such that the first vertex is the same as the last one. A cycle C is called k-cycle if l(C) = k. A path (respectively, cycle) which traverses each vertex of G exactly once is a hamiltonian path (respectively, hamiltonian cycle). To route a packet from u to v in a k-cycle, one may first breaks the packet into two smaller pieces. Then, route the two pieces along two internal vertex-disjoint paths to the two intermediate vertices v_1, v_2 . In the second phase, symmetrically, the two pieces are routed from the intermediate vertices v_1, v_2 to their common destination v. The packet is combined in v until all

^{*}This work was supported in part by the National Science Council of the Republic of China under Contract NSC 95-2221-E-026-002.

pieces of this packet arrived. Therefore, this kind of transmission delay between u and v in a cycle is determined by the longest path between u and vin this cycle. It is of interest to find a cycle passing through u and v such that lengths of two disjoint paths between u and v in this cycle are as equal as possible.

Definition 1 Let G be a graph. For any two vertices $u, v \in V(G)$, a cycle C is called a balanced cycle between u and v if $d_C(u, v) = max\{d_C(x, y) \mid x, y \in V(C)\}$.

Consequently, if C is a balanced k-cycle between u and v, $d_C(u, v) = \lfloor \frac{k}{2} \rfloor$. In a bipartite graph, there are only even cycles and vertex set is divided into two partite sets. Hence we modify definition 1 for bipartite graphs.

Definition 2 Let $G = (B \cup W, E)$ be a bipartite graph. For any two vertices u and v in G, a cycle C is called a balanced cycle between u and v if $d_C(u, v) = max\{d_C(x, y) \mid x \text{ and } u \text{ are in the same} partite set, and <math>y$ and v are in the same partite set. }.

Figure 1: (a) A balanced 6-cycle between u and v that are in different partite sets. (b) A balanced 8-cycle between u and v that are in different partite sets. (c) A balanced 8-cycle between u and v that are in the same partite set. (d) A balanced 6-cycle between u and v that are in the same partite set.

A bipartite graph is vertex-bipancyclic [3] if every vertex lies on a cycle of every even length from 4 to |V(G)| inclusive. Similarly, a bipartite graph is *edge-bipancyclic* if every edge lies on a cycle of every even length from 4 to |V(G)| inclusive. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. A bipartite graph G is balanced bipancyclic if for each pair of vertices $u, v \in V(G)$,

it contains a balanced cycle of every even length of k satisfying $max\{2d_G(u,v),4\} \leq k \leq |V(G)|$ between u and v.

Figure 2: Q_n for n = 2, 3.

Let $u = u_{n-1}u_{n-2}\dots u_1u_0$ be an *n*-bit binary strings. The Hamming weight of u, denoted by w(u), is the number of u_i such that $u_i = 1$. Let $u = u_{n-1}u_{n-2}\dots u_1u_0$ and $v = v_{n-1}v_{n-2}\dots v_1v_0$ be two distinct n-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits in the corresponding strings of both vertices. The *n*-dimensional hypercube, denoted by Q_n , consists of all *n*-bit binary strings as its vertices and two vertices u and v are adjacent if and only if h(u, v) = 1. Thus, Q_n is a bipartite graph with bipartition $\{u \mid w(u)\}$ is odd} and $\{u \mid w(u) \text{ is even}\}$. Figure 2 shows Q_n for n = 2 and n = 3. It is observed that h(u, v) is odd if and only if u and v are in different partite sets. For $0 \leq k < n$, we use u^k to denote the binary string $v_{n-1}v_{n-2}\ldots v_1v_0$ such that $v_k = 1 - u_k$ and $u_i = v_i$ if $i \neq k$. An edge (u, v)in $E(Q_n)$ is of dimension *i* if $u = v^i$. It is known that $d_{Q_n}(u,v) = h(u,v)$. The following lemmas are useful in our later proofs.

Lemma 1 [2] Let u and v be two arbitrary distinct vertices with the same partite set in Q_n for $n \ge 2$. Then, for any vertex w such that h(w, u)is odd, there exists a path joining u and v passing all vertices of Q_n except w.

Lemma 2 [2] Let u and v be two arbitrary distinct vertices in Q_n and h(u, v) = d, where $n \ge 2$. There are paths formed by $\langle u, P[u, v], v \rangle$ in the Q_n with lengths $d, d + 2, d + 4, \ldots, c$, where $c = 2^n - 1$ if d is odd, and $c = 2^n - 2$ if d is even.

2 Q_n is balanced bipancyclic

In this section, for any two vertices u and v in Q_n , we will discuss the cycle passing u and v with

some special properties. Let h(u, v) = d. We have that if u and v are in the same partite set then dis even, otherwise d is odd. The balanced 2*l*-cycle C with $l \ge 2$ between u and v must satisfy one of the following conditions:

(1) d is odd, l is odd, and $d_C(u, v) = l$.

- (2) d is odd, l is even, and $d_C(u, v) = l 1$.
- (3) d is even, l is even, and $d_C(u, v) = l$.
- (4) d is even, l is odd, and $d_C(u, v) = l 1$.

 Q_n is balanced bipancyclic if for each pair of vertices $u, v \in V(Q_n)$, it contains a balanced cycle of every even length of 2l satisfying $max\{h(u, v), 2\} \leq l \leq 2^{n-1}$ between u and v. The following lemma is useful in the proof of Theorem 1.

Lemma 3 For $n \ge 2$, let (u, v) and (w, z) be two disjoint edges in Q_n . Then, Q_n can be partitioned into two (n-1)-cubes such that one contains (u, v) and the other contains (w, z).

Proof. The lemma is true when n = 2. Let (u, v) and (w, z) be two disjoint edges, and $v = u^i$ and $z = w^k$. Hence u, v, w, and z are four distinct vertices. Without loss of generality, we may assume that u = 00...0 and $w = w_{n-1}w_{n-2}\ldots w_{k+1}0w_{k-1}\ldots w_0$. Since $n \ge 3$ as well as u, v, and w are distinct, there exists $j \ne i$ and $j \ne k$ such that $w_j = 1$. One may partition Q_n along dimension j into two (n-1)-cubes, Q_{n-1}^0 and Q_{n-1}^1 , such that Q_{n-1}^0 contains u and v as well as Q_{n-1}^1 contains w and z.

Lemma 4 For any two disjoint edges (u, v) and (w, z) in Q_n with $n \ge 2$, there exist two disjoint paths $P_1[u, v]$ and $P_2[w, z]$, in Q_n where $l(P_1) = 1$, 3, 5, 7,..., $2^{n-1} - 1$ and $P_2 = 1$, 3, 5, 7,..., $2^{n-1} - 1$.

Proof. Let (u, v) and (w, z) be two disjoint edges in Q_n . By Lemma 3, Q_n can be partitioned along dimension j into two (n - 1)-cubes, Q_{n-1}^0 and Q_{n-1}^1 , such that Q_{n-1}^0 contains (u, v) and Q_{n-1}^1 contains (w, z) for some $0 \le j \le n - 1$. By Lemma 2, there exist paths joining u and v (respectively, w and z) of lengths 1, 3, ..., $2^{n-1} - 1$ in Q_{n-1}^0 (respectively, Q_{n-1}^1).

Theorem 1 Q_n is balanced bipancyclic if $n \ge 2$.

Proof. Let $u = u_{n-1}u_{n-2} \dots u_1u_0$ and $v = v_{n-1}v_{n-2} \dots v_1v_0$ be any two distinct vertices of Q_n and h(u, v) = d. To prove the theorem, we will find every balanced 2l-cycle between u and v where $max\{d, 2\} \le l \le 2^{n-1}$. The proof is divided into two parts: d = 1 and $d \ge 2$.

Figure 3: (a) Let $l(P_1) = l(P_2) = k$. Then, a balanced (2k + 2)-cycle between u and v is constructed, where $k = 1, 3, 5, \ldots, 2^{n-1} - 1$. (b) Let $l(P_1) = k + 2$ and $l(P_2) = k$. Then, a balanced (2k + 4)-cycle between u and v is constructed, where $k = 1, 3, 5, \ldots, 2^{n-1} - 3$.

Case 1: d = 1, i.e. u and v are adjacent. (See Figure 3.)

Without loss of generality, we may assume that (u, v) is an edge of dimension 0. We may partition Q_n along dimension 1 into two (n - 1)-subcubes such that Q_{n-1}^0 denotes the subgraph of Q_n induced by $\{x \in V(Q_n) \mid x_1 = 0\}$ and Q_{n-1}^1 denotes the subgraph of Q_n induced by $\{x \in V(Q_n) \mid x_1 = 1\}$. Therefore, u and v are in the same subcube Q_{n-1}^0 or Q_{n-1}^1 . Without loss of generality, we suppose that u and v are in Q_{n-1}^0 .

Let (u, u^1) and (v, v^1) be two edges of dimension 1. Hence $h(u^1, v^1) = 1$ and $u^1, v^1 \in V(Q_{n-1}^1)$. Applying Lemma 2, there are paths formed by $\langle u, P_1[u, v], v \rangle$ in the Q_{n-1}^0 with length $k_1 = 1$, 3, 5, 7, ..., $2^{n-1} - 1$ and there are paths formed by $\langle v^1, P_2[v^1, u^1], u^1 \rangle$ in the Q_{n-1}^1 whose lengths are $k_2 = 1, 3, 5, 7, \ldots, 2^{n-1} - 1$. We can construct a cycle as $C = \langle u, P_1[u, v], v, v^1, P_2[v^1, u^1], u^1, u \rangle$ of length $l(C) = k_1 + k_2 + 2$ where $k_1 = l(P_1)$ and $k_2 = l(P_2)$. Obviously, the cycle C passes through u and v.

(a). balanced (2k + 2)-cycle between u and vwhere $k = 1, 3, 5, \ldots, 2^{n-1} - 1$. Let $k_1 = k$ and $k_2 = k$. Then, l(C) = 2k+2 where $k = 1, 3, 5, \ldots, 2^{n-1} - 1$. Hence $d_C(u, v) = k = \frac{l(C)}{2} - 1$. Since dis odd, $\frac{l(C)}{2}$ is even, and $d_C(u, v) = \frac{l(C)}{2} - 1$, the cycle C is balanced (2k + 2)-cycle between u and v where $k = 1, 3, 5, \ldots, 2^{n-1} - 1$.

(b). balanced (2k + 4)-cycle between u and v where $k = 1, 3, 5, \ldots, 2^{n-1} - 3$. Let $k_1 = k + 2$ and $k_2 = k$. Then, l(C) = 2k + 4 where $k = 1, 3, 5, \ldots, 2^{n-1} - 3$. Hence $d_C(u, v) = k + 2 = \frac{l(C)}{2}$.

Since d is odd, $\frac{l(C)}{2}$ is odd, and $d_C(u, v) = \frac{l(C)}{2}$, the cycle C is balanced (2k + 4)-cycle between u and v where $k = 1, 3, 5, \ldots, 2^{n-1} - 3$.

Case 2: $d \ge 2$, i.e. u and v are not adjacent.

We prove this case by induction on n. Obviously, the proof of case 2 holds for n = 2. Assume that the proof of case 2 is true for every integer $2 \leq m < n$. Let $u = u_{n-1}u_{n-2}\dots u_1u_0$ and $v = v_{n-1}v_{n-2}\dots v_1v_0$ be any two distinct vertices of Q_n and h(u, v) = d. Partitioning Q_n along dimension 0, Q_n can be divided into two (n-1)-subcubes where Q_{n-1}^0 denotes the subgraph of Q_n induced by $\{x \in V(Q_n) \mid x_0 = 0\}$ and Q_{n-1}^1 denotes the subgraph of Q_n induced by $\{x \in V(Q_n) \mid x_0 = 1\}.$

Subcase 2-1: $u, v \in Q_{n-1}^0$ or $u, v \in Q_{n-1}^1$. (See Figure 4 and Figure 5.)

Without loss of generality, we may assume that $u, v \in Q_{n-1}^0$. For the basis of this proof, we consider Q_3 . It is clear that Q_3 is balanced bipancyclic (See Figure 4 for an illustration).

Figure 5: Let $l(S_1) = l(S_2) = k$ where k = $1, 3, 5, ..., 2^{n-1}$. Then, a balanced (m + 2k + 2k)2)-cycle between u and v is constructed, where $\langle u, x, P_1[x, v], v, y, P_2[y, u], u \rangle$ is balanced *m*-cycle between u and v of Q_{n-1}^0 where $m \ge 6$.

Suppose that $n \ge 4$. By induction hypothesis, Q_{n-1}^0 is balanced bipancyclic. Every balanced 2*l*cycle between u and v in Q_n can be found in Q_{n-1}^0 where $d \leq l \leq 2^{n-2}$. Let C be a balanced m-cycle with $m \ge 6$ between u and v in Q_{n-1}^0 . Hence we rewrite the cycle C as $\langle u, x, P_1[x, v], v, y, P_2[y, u],$ u. Let (u, u^0) , (x, x^0) , (v, v^0) , and (y, y^0) be four edges of dimension 0. It is observed that u^0 , x^0 , v^0 , and y^0 are four distinct vertices in Q_{n-1}^1 , and that (u^0, x^0) and (v^0, y^0) are two disjoint edges in Q_{n-1}^1 . Applying Lemma 4, there exist two disjoint paths $S_1[u^0, x^0]$ and $S_2[v^0, y^0]$ in Q_{n-1}^1 such that $l(S_1) = l(S_2) = k$ where $k = 1, 3, 5, 7, \dots, 2^{n-2}$ –

1. Therefore, we may construct a cycle $C' = \langle u, v \rangle$ $u^0, S_1[u^0, x^0], x^0, x, P_1[x, v], v, v^0, S_2[v^0, y^0], y^0,$ $y, P_2[y, u], u$ passing through u and v. Hence l(C') = m + 2k + 2.

Subcase 2-1-1: balanced $(2^{n-1}+2k)$ -cycle between *u* and *v* where $k = 1, 3, 5, ..., 2^{n-2} - 1$. Let $m = 2^{n-1} - 2$. Therefore, $l(C') = 2^{n-1} + 2k$.

(a). Suppose that d is odd. Since C is a balanced $(2^{n-1}-2)$ -cycle between u and v, and $\frac{l(C)}{2} = 2^{n-2} - 1$ is odd, $d_C(u, v) = 2^{n-2} - 1$. It is clearly that $d_{C'}(u, v) = d_C(u, v) + k + 1 = 2^{n-2} + k$ and $\frac{l(C')}{2} = 2^{n-2} + k$. Since d is odd, $\frac{l(C')}{2}$ is odd, and $d_{C'}(u, v) = 2^{n-2} + k = \frac{l(C')}{2}$, the cycle C' is balanced $(2^{n-1} + 2k)$ -cycle between u and v in Q_n where $k = 1, 3, 5, \dots, 2^{n-2} - 1$.

(b). Suppose that d is even. Since C is a balanced $(2^{n-1}-2)$ -cycle between u and v, and $\frac{l(C)}{2} =$ and $\frac{d(2^{n-2})}{2} = 2^{n-2} + k$. Since *d* is even, $\frac{l(C')}{2}$ is odd, and $d_{C'}(u,v) = 2^{n-2} + k - 1 = \frac{l(C')}{2} - 1$, the cycle C' is balanced $(2^{n-1} + 2k)$ -cycle between u and vin Q_n where $k = 1, 3, 5, \dots, 2^{n-2} - 1$.

Subcase 2-1-2: balanced $(2^{n-1}+2k+2)$ -cycle between u and v where $k = 1, 3, 5, ..., 2^{n-2} - 1$. Let $m = 2^{n-1}$. Therefore, $l(C') = 2^{n-1} + 2k + 2$.

(a). Suppose that d is odd. Since C is a balanced 2^{n-1} -cycle between u and v, and $\frac{l(C)}{2} = 2^{n-2}$ is even, $d_C(u, v) = 2^{n-2} - 1$. It is clearly that $d_{C'}(u, v) = d_C(u, v) + k + 1 = 2^{n-2} + k$ and $\frac{l(C')}{2} = 2^{n-2} + k + 1$. Since d is odd, $\frac{l(C')}{2}$ is even, and $d_{C'}(u, v) = 2^{n-2} + k = \frac{l(C')}{2} - 1$, the cycle C'is balanced $(2^{n-1} + 2k + 2)$ -cycle between u and vin Q_n where $k = 1, 3, 5, \dots, 2^{n-2} - 1$.

(b). Suppose that d is even. Since C is a balanced 2^{n-1} -cycle between u and v, and $\frac{l(C)}{2} = 2^{n-2}$ is even, $d_C(u,v) = 2^{n-2}$. It is clearly that $d_{C'}(u,v) = d_C(u,v) + k + 1 = 2^{n-2} + k + 1$ and $\frac{l(C')}{2} = 2^{n-2} + k + 1$. Since d is even, $\frac{l(C')}{2}$ is even, and $d_{C'}(u,v) = 2^{n-2} + k + 1 = \frac{l(C')}{2}$, the cycle C' is balanced $(2^{n-1} + 2k + 2)$ -cycle between u and vin Q_n where $k = 1, 3, 5, ..., 2^{n-2} - 1$. Subcase 2-2: $u \in Q_{n-1}^0$ and $v \in Q_{n-1}^1$ (or

 $v \in Q_{n-1}^0$ and $u \in Q_{n-1}^1$).

Without loss of generality, we may assume that $u \in Q_{n-1}^0$ and $v \in Q_{n-1}^1$. Let (u, u^0) and (v, v^0) be two edges of dimension 0. Hence $u^0 \in V(Q_{n-1}^1)$ and $v^0 \in V(Q_{n-1}^0)$, and $h(u, v^0) = h(v, u^0) = d - d$ 1.

Subcase 2-2-1: d is even, i.e. u and v are in the same partite set. (See Figure 6.) Hence u^0 and v are in different partite sets. Simi-

Figure 4: Three balanced cycles between u = 000 and v = 011 in Q_3 .

Figure 6: h(u, v) = d is even. (a) Let $l(P_1) = l(P_2) = k$. Then, a balanced (2k + 2)-cycle between u and v is constructed, where $k = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 1$. (b) Let $l(P_1) = k + 2$ and $l(P_2) = k$. Then, a balanced (2k + 4)-cycle between u and v is constructed, where $k = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 3$.

larly, v^0 and u are in different partite sets. By Lemma 2, there exists a path $P_1[u, v^0]$ (respectively, $P_2[v, u^0]$) connecting u and v^0 (respectively, v and u^0) where $l(P_1) = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 1$ (respectively, $l(P_2) = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 1$). The cycle C can be constructed as $\langle u, P_1[u, v^0], v^0, v, P_2[v, u^0], u^0, u \rangle$. Therefore, the cycle C passing through u and v, and $l(C) = k_1 + k_2 + 2$ where $k_1 = l(P_1)$ and $k_2 = l(P_2)$.

(a). balanced (2k+2)-cycle between u and vwhere k = d-1, d+1, d+3, ..., $2^{n-1}-1$. Let $k_1 = k$ and $k_2 = k$ where k = d-1, d+1, d+3, ..., $2^{n-1}-1$. Therefore, l(C) = 2k+2. One can observe that $\frac{l(C)}{2} = k+1$ and $d_C(u,v) = k+1$. Since d is even, $\frac{l(C)}{2}$ is even, and $d_C(u,v) = \frac{l(C)}{2}$, the cycle C is balanced (2k+2)-cycle between uand v where k = d-1, d+1, d+3, ..., $2^{n-1}-1$. (b). balanced (2k + 4)-cycle between u and vwhere k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 3$. Let $k_1 = k + 2$ and $k_2 = k$ where k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 3$. Therefore, l(C) = 2k + 4. One can observe that $\frac{l(C)}{2} = k + 2$ and $d_C(u, v) = k + 1$. Since d is even, $\frac{l(C)}{2}$ is odd, and $d_C(u, v) = \frac{l(C)}{2} - 1$, the cycle C is balanced (2k + 4)-cycle between uand v where k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 3$.

Subcase 2-2-2: d is odd, i.e. u and v are in different partite sets. (See Figure 7.) Hence u^0 and v are in the same partite set. Similarly, v^0 and u are in the same partite set. By Lemma 2, there exists a paths $P_1[u, v^0]$ (respectively, $P_2[v, u^0]$) connecting u and v^0 (respectively, v and u^0) where $l(P_1) = d-1, d+1, d+3, 2^{n-1}-2$ (respectively, $l(P_2) = d-1, d+1, d+3, \ldots, 2^{n-1}-2$). The cycle C can be constructed as $\langle u, P_1[u, v^0], v^0, v, P_2[v, u^0], u^0, u \rangle$. Therefore, the cycle C passing through u and v, and $l(C) = k_1 + k_2 + 2$ where $k_1 = l(P_1)$ and $k_2 = l(P_2)$.

(a). balanced (2k+2)-cycle between u and vwhere k = d-1, d+1, d+3, ..., $2^{n-1}-2$. Let $k_1 = k$ and $k_2 = k$ where k = d-1, d+1, d+3, ..., $2^{n-1}-2$. Therefore, l(C) = 2k+2. One can observe that $\frac{l(C)}{2} = k+1$ and $d_C(u,v) = k+1$. Since d is odd, $\frac{l(C)}{2}$ is odd, and $d_C(u,v) = \frac{l(C)}{2}$, the cycle C is balanced (2k+2)-cycle between uand v where k = d-1, d+1, d+3, ..., $2^{n-1}-2$.

(b). balanced (2k + 4)-cycle between u and vwhere k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 4$. Let $k_1 = k + 2$ and $k_2 = k$ where k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 4$. Therefore, l(C) = 2k + 4. One can observe that $\frac{l(C)}{2} = k + 2$ and $d_C(u, v) = k + 1$. Since d is odd, $\frac{l(C)}{2}$ is even, and $d_C(u, v) = \frac{l(C)}{2} - 1$, the cycle C is balanced (2k + 4)-cycle between uand v where k = d - 1, d + 1, d + 3, ..., $2^{n-1} - 4$.

(c). balanced 2^n -cycle between u and v. Let

Figure 7: h(u, v) = d is odd. (a.1) Let $l(P_1) = l(P_2) = k$. Then, a balanced (2k + 2)-cycle between u and v is constructed, where $k = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 2$. (a.2) Let $l(P_1) = k + 2$ and $l(P_2) = k$. Then, a balanced (2k + 4)-cycle between u and v is constructed, where $k = d - 1, d + 1, d + 3, \ldots, 2^{n-1} - 4$. (b) A balanced hamiltoian cycle between u and v where $l(P_1) = 2^{n-1} - 1$ and $l(P_2) = 2^{n-1} - 2$.

 $w \in V(Q_{n-1}^1) \text{ and } h(w,v) = 1.$ It is observed that $h(w,u^0)$ is odd. By Lemma 1, there exists a path $P[v,u^0]$ of length $2^{n-1} - 2$ joining v and u^0 passing all vertices of Q_{n-1}^1 except w. Let (w,w^0) be an edge of dimension 0. Hence w^0 is in Q_{n-1}^0 , and w^0 and u are in different partite sets. By Lemma 2, there exists a hamiltonian path $P_1[u,w^0]$ joining u and w^0 in Q_{n-1}^0 . Therefore, longest cycle C between u and v in Q_n can be constructed as $\langle u, P_1[u,w^0], w^0, w, v, P_2[v,u^0], u^0, u \rangle$. Therefore, the cycle C passing through u and v, $l(C) = 2^{n-1} - 1 + 1 + 1 + 2^{n-1} - 2 + 1 = 2^n$, and $d_C(u,v) = 2^{n-1} - 1 = \frac{l(C)}{2} - 1$. Since d is odd, $\frac{l(C)}{2}$ is even, and $d_C(u,v) = \frac{l(C)}{2} - 1$, the cycle C is balanced cycle between u and v. The theorem is proved.

References

- J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, North-Holland, New York, 1980.
- [2] T. K. Li, C. H. Tsai, Jimmy J. M. Tan, and L. H. Hsu, "Bipanconnectivity and edge-faulttolerant bipancyclicity of hypercubes," *Information Processing Letters*, vol. 87, pp. 107– 110, 2003.
- [3] J. Mitchem and E. Schmeichel, "Pancyclic and bipancyclic graphs-a survey," *Graphs* and applications, pp. 271–278, 1982.

[4] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes," *IEEE Trans. Computers*, vol. 37, no. 7, pp. 867-872, July 1988.