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Abstract

Suppose f is a graph function which assigns to
each graph H a positive integer f(H) < |V (H)].
An f-colouring of G is a mapping ¢ : V(G) - N
such that every subgraph H of G receives at
least f(H) colours, i.e., [c(H)| > f(H). The f-
chromatic number, x(f, G), is the minimum num-
ber of colours used in an f-colouring of G. The
parameter x(f,G) is introduced by Nesetril and
Ossona de Mendez and they proved that if f(H) <
min{p, td(H)}, where p is a constant and ¢td(H) is
the tree-depth of H, then for any proper minor
closed class K of graphs, x(f,G) is bounded by a
constant for all G € K. In this paper, we study
the game version of f-colouring of graphs. Sup-
pose G is a graph and X is a set of colours. Two
players, Alice and Bob, take turns colour the ver-
tices of G with colours from the set X. A partial
colouring of G is legal (with respect to graph func-
tion f) if for any subgraph H of G, the sum of the
number of colours used in H and the number of
uncoloured vertices of H is at least f(H). Both
Alice and Bob must colour legally (i.e., the partial
colouring produced needs to be legal). The game
ends if either all the vertices are coloured or there
are uncoloured vertices but there is no legal colour
for any of the uncoloured vertices. In the former
case, Alice wins the game. In the latter case, Bob
wins the game. The f-game chromatic number of
G, x4(f,G), is the least number of colours that
the colour set X needs to contain so that Alice
has a winning strategy. In this paper, we prove
that if f(K2) = 2, f(Cp) = 3 for any n > 3
and f(H) = 1 otherwise, then for any outerpla-
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nar graph G, xq(f,G) < 7. If i > 6 and ¢; is
the graph function with ¢;(Ks2) = 2, ¢;(F;) = 3
and ¢;(H) = 1 otherwise, then for any tree T,
Xg(¢i,T) < 10. On the other hand, if ¢ < 5,
then for any integer k, there is a tree T" such that

1 Introduction

Many variations of the chromatic number of
graphs have been studied extensively in the liter-
ature. As an unification of many variants of chro-
matic number, NeSetfil and Ossona de Mendez
in [18] introduced the following generalization of
chromatic number of graphs. Suppose f is a graph
function, which assigns to each graph H a pos-
itive integer f(H) < |V(H)|. An f-colouring
of a graph G is a mapping ¢ which assigns to
each vertex of G a colour so that any subgraph
H of G receives at least f(H) colours. The f-
chromatic number, x(f,G), is the least number
of colours used in an f-colouring of G. For ex-
ample, if f1(C,) = 2 for any n, and fi(H) = 1
otherwise, then x(f1, G) is the point-arboricity of
G, i.e., the smallest size of vertex partition whose
parts induces forests. If fo(K3) = 2and fo(H) =1
otherwise, then x(f2,G) is the same as x(G). If
fa(K2) = 2, f3(Cy) = 3 for any n > 3, and
f3(H) = 1 otherwise, then x(f5,G) is the acyclic
chromatic number of G, i.e., the minimum number
of colours needed to colour the vertices so that
each colour class is an independent set, and the
union of any two colour classes induces a forest. If
fa(K2) = 2, f4(Py) = 3 (where Py is the path on 4
vertices) and f4(H) = 1 otherwise, then x(fs, G)
is the star-chromatic number of G, i.e., the mini-
mum number of colours needed to colour the ver-
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tices so that each colour class is an independent
set, and the union of any two colour classes induces
a star forest. If f5(K1441) = 2 and f5(H) =1
otherwise, then x(f5, G) is the d-relaxed chromatic
number of G, i.e., the minimum number of colours
needed to colour the vertices of G so that each
colour class induces a subgraph of maximum de-
gree at most d. A class I of graphs is called a
proper minor closed class of graphs, if G € K im-
plies that G’ € K for any minor G’ of G, and
K does not contain all finite graphs. Many other
variants of chromatic number of graphs are known
to be bounded by a constant on any proper mi-
nor closed class of graphs. Nesettil and Ossona de
Mendez studied the problem that for which graph
function f, the parameter x(f,g) is bounded by
a constant on any proper minor closed class of
graphs. They proved that x(f,G) is bounded by
a constant on any proper minor closed class of
graphs if and only if there is a constant p such
that f(H) < min{p,td(H)}, where td(H) is the
tree-depth of H defined as follows: Suppose T is
a rooted tree. The height of T is the number of
vertices in a longest path from the root to a leaf.
The closure of T is the graph @ on V(T') in which
x simqy if x is an ancestor of y or y is an ancestor
of . The tree-depth of a connected graph G is the
smallest height of a rooted tree T such that G is a
subgraph of the closure of T'. If G is disconnected,
then the tree-depth of G is the maximum of the
tree-depth of its components.

In this paper, we are interested in the game
version of f-colourings. Suppose G is a graph,
f is a graph function and X is a set of colours.
The f-colouring game on G with colour set X is
the following two-person game: Two players, Al-
ice and Bob, take turns colour the vertices of G,
with Alice takes the first turn. Suppose some ver-
tices of G are coloured. A colour a € X is legal
for an uncoloured vertex u if by assigning colour
« to u, the resulting partial colouring has the fol-
lowing property: For any subgraph H of G, the
sum of the number of colours assigned to vertices
of H and the number of uncoloured vertices of H
is at least f(H). On each turn, a player chooses
one uncoloured vertex u of G and one colour «
from X which is legal for u, and assign colour «
to u. The game ends if either all the vertices are
coloured or there is no legal colour for any of the
remaining uncoloured vertices. If all the vertices
are coloured, then Alice wins the game. Otherwise
Bob is the winner. So Alice and Bob have opposite
goals. Alice wants to produce an f-colouring of
G, and Bob tries to prevent this from happening.
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The f-game chromatic number of G, x4(f,G), is
the minimum number of colours in the colour set
X such that Alice has a winning strategy in the
colouring game described above. Observe that if
|X| = |V(G)|, then Alice always wins. So the pa-
rameter x,(f,G) is well-defined.

In case f is the graph function defined as
f(K2) =2 and f(H) = 1 otherwise, then x,(f, G)
is just the game chromatic number of G, and is
denoted by x4(G). About twenty-five years ago,
Steven J. Brams invented the coloring game for
plane maps, and asked what is the minimum num-
ber of colours needed so that Alice always has
a winning strategy when the game is played on
a plane map. Brams’ question is equivalent to
ask what is the maximum game chromatic num-
ber of planar graphs. Brams’ game was published
by Martin Gardner in his column “Mathematical
Games” in Scientific American in 1981 [7]. It re-
mained unnoticed by the graph-theoretic commu-
nity until ten years later, when it was reinvented
by Hans L. Bodlaender [1] in a wider context of
general graphs. He considered the game in which
Alice and Bob color the vertices of a graph G
and introduced the game chromatic number x4 (G)
of a graph G. Since then the problem has been
analyzed in serious combinatorial journals. The
benchmark problem in this area is the maximum
game chromatic number of planar graphs, which is
studied in a sequence of papers [13, 3, 22, 10, 21].
The presently best known upper bound for the
game chromatic number of planar graphs is 17 [21].
The game chromatic number of some other classes
of graphs have also been studied in the literature,
including forests [6, 13], outerplanar graphs [8],
partial k-trees [23, 15], etc.

If f is the graph function defined as
f(Ki1,4+1) = 2 and f(H) = 1 otherwise, then
Xq(f,G) is called the d-relazed game chromatic
number of G, and is denoted by ng)(G). The
d-relaxed game chromatic number of graphs was
introduced in [2], and has been studied in [5, 4, 9,
19, 20]. Tt is known that if G is a forest, then for

d=0,1,2, X_S,d)(G) <4—d. If G is an outerplanar
graph, then for d = 0,1,2, 3,4, ng)(G) <7-d
and if d > 6, then ng)(G) < 2. If G is a pla-
nar graph, then for d > 93, ng)(G) < 6, and for
d > 132, ng)(G) < 3. If G is a partial k-tree and
d > 4k — 1, then Xéd)(G) <k+1.

There are some other variations of game chro-
matic number have been studied in the literature.

These include game chromatic number of oriented
graphs [17, 14], coloring game in which a move
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can colour more than one vertices [11, 12, 16], and
game colouring number (which we shall define in
Section 2).

Suppose K is a class of graphs and f is a graph
function. A natural question is whether the f-
game chromatic number x,(f,G) is bounded by
a constant for all G € K. If x,(f,G) is bounded
from above for all G € K, then we would like to
find the smallest upper bound. In this paper, we
consider some special graph functions, and con-
sider the case that K is either the class of outer-
planar graphs or the class of forests.

First we consider the case that f(K3) = 2 and
f(Cy) =3foralln > 3, and f(H) = 1 for all other
H. In other words, Alice’s goal is to produce an
acyclic colouring of GG. For this graph function f,
we call x4(f, G) the acyclic game chromatic num-
ber of G and denote it by xj(G). We observe that
X§(G) is not bounded for series-parallel graphs,
however, XZ(G) < 7 for any outer planar graph
G. Then we consider graph functions ¢; (i > 3)
defined d)i(KQ) = 2, Qﬁz(P,) = 3 and qﬁz(H) =1
for other graphs H. The question we are inter-
ested is whether x,4(¢;,T) is bounded by a con-
stant all trees 7. We shall prove that for i > 6,
Xg(¢:,T) < 10 for any tree T, and for i < 5,
Xg(®:,T) is not bounded by a constant on trees.

2 Acyclic game chromatic number
of outerplanar graphs

This section studies the acyclic game chromatic
number of graphs. First we observe that x§(G) is
unbounded for series-parallel graphs.

Example 1 For any integer n, there is a series-
parallel graph G with x5(G) > n.

Proof. Let G be the graph with vertex set
{av ba CT1,T2, 7, Ty Y1, Y2, 77 ayn} and edge set
{zia,2:b,y;b,y;c: i =1,2,--- ,n}. We shall prove
that with n colours, Bob has a winning strategy.
In Bob’s first two moves, he makes either a, b or b, ¢
be coloured by the same colour. This is certainly
possible, no matter what vertices are coloured by
Alice. Now with n colours, Bob wins the game,
because if all vertices are coloured, at least two
of the x;’s are coloured by the same colour, and
at least two of the y;’s are coloured by the same
colour. In any case, there is a 2-coloured cycle,
and hence is not an f-colouring of G. |

Now we shall prove that xj(G) is bounded
for outer planar graphs. First we prove an easy
lemma.
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Lemma 1 Suppose G is an outerplanar graph, C
s a cycle of G and uzxv are three consecutive ver-
tices of C. Let Py, be the shortest path of G — x
connecting u and v. Then all the vertices of Py,
are contained in C'.

Proof. Assume w € P,, is not contained in C.
Let z,2" be the two vertices of P,, on the two
sides of w in P,, that are closest to w and lies
on C. Then the segment of C connecting z, 2z’
contains at least one vertex, say w’, because P,
is a shortest path. Now we can contract edge of
the union C'U P, so that z, z’ become adjacent to
z,w,w’. So Ky 3 is a minor of G, in contrary to
the assumption that G is outerplanar. |

The game colouring number of a graph defined
through the following two person game: Alice and
Bob alternately marks vertices of G, with Alice
takes the first turn. Each move marks one un-
marked vertex. The game ends when all vertices
are marked. When the game ends, let m : V(G) —
N be defined as m(v) = k if v is marked at the
kth move (counting both Alice’s move and Bob’s
move). Let s(v) = {u : u ~ v,m(u) < m(v)}
be the number of neighbours of v that are marked
before v. The score of the game is max{s(v) : v €
V(@G)}. The game colouring number of a graph G,
denoted by coly(G), is the least integer k such that
Alice has a strategy in playing the marking game
so that the score is at most £k — 1. We shall need
the following result proved in [8]:

Theorem 1 If G is an outerplanar graph, then
coly(G) < 7.

Now we are ready to prove the main result of
this section.

Theorem 2 If G is an outerplanar graph, then
Xg(G) <7

Proof. Assume G is an outerplanar graph. By
Theorem 1, Alice has a strategy for choosing the
vertices to be coloured in her moves so that each
uncoloured vertex has at most 6 coloured neigh-
bours. Alice uses this strategy to choose the ver-
tex to be coloured. When a vertex to be coloured
has been chosen, Alice uses any legal colour to
colour that vertex. It remains to show that any
uncoloured vertex = has a legal colour.

We assume that G is embedded in the plane
so that all the vertices lie on the facial cycle of
the infinite face. Assume z is an uncoloured ver-
tex. Let uy,us, - - -, us be the coloured neighbours
of x, ordered according to the embedding of G,
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in the anti-clockwise direction. By the previous
paragraph, s < 6.

We choose a set S of colours as follows:
First of all, S contains all the colours used on
Uy, Uz, -+, Us. For i =1,2,--- 5 —1, we do the
following: If u; and u;41 are coloured the same
colour, and the shortest path P; in G — x connect-
ing u; and w,;41 exist and are all coloured, then
choose one colour ¢; used on vertices of P; that is
distinct from the colour of u;, add colour ¢; to S.

By the construction of S, we know that S con-
tains at most s < 6 colours. As there are 7 colours,
so there is a colour ¢ ¢ S. We claim that ¢ is a
legal colour for x. First of all, ¢ is distinct from all
the colours of the coloured neighbours of x. So by
colouring x with colour ¢, there is no monochro-
matic edge. Assume there is a 2-coloured cycle C.
Let u;,u; be the two neighbours of z in C, with
1 < j. As uj,ug,---,us are ordered according to
the outerplanar embedding of G, we conclude that
C —z contains all the vertices u;, u;y1,---,u;, and
all the vertices on the paths P;, Pii1, -, Pj_1.
But ¢ is distinct from two colours used on P;.
Hence C' cannot be a 2-coloured cycle. |

3 colouring trees

In this section, let ¢; be the graph function de-
fined as ¢;(K3) = 2 and ¢;(P;) =3 and ¢;(H) =1
for all other graph H. Here P; is a path with ¢ ver-
tices.

Theorem 3 If T is a tree and i > 6, then

In the following, T'= (V, E) is a tree, and X is
a colour set with |X| = 10. We shall only prove
Theorem 3 for the case that i = 6. The case that
1 > 6 can be proved in the same way.

Choose a vertex u of T as a root, and con-
sider T' as a rooted tree. Then each vertex v of
T other than v has a unique father, which we de-
note by f(v). For convenience, we let f(u) = u.
For a vertex v of T, let S(v) be the set of sons
of v, and let 5?(v) = Upes)S(w). Let N*(v) =
{F(0), F(f(0))} U S(v) U $3(0).

Suppose the tree T is partially coloured. We
denote by C the set of coloured vertices and denote
by U the set of uncoloured vertices. For a coloured
vertex v € C, we denote the colour of v by ¢(v).
A colour « is legal for an uncoloured vertex v if

e « is not used by any coloured neighbour of v.
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e There is no path P of on 6 vertices containing
v such that all vertices of P other than v are
coloured by a and (3 for some colour f3.

A colour « is called a permissible colour for an
uncoloured vertex v if

e « is a legal colour for v.
e « is not used by any vertex in N*(v).

Alice will colour a vertex with a permissible colour
only. However, Bob can colour a vertex with any
legal colour.

Assume z is a vertex of T' (either coloured or
uncoloured) and f(x) € C. Let P = pg---p, be
the longest 2-coloured path such that pp = = and
pj+1 = f(p;) forall 0 < j < r—1. We call the path
P the bi-coloured path above z, call the vertex z,
the bi-father of x and denote by f,(x), and call the
colour ¢(p,—1) of p._1 the safe colour of x. Note
that the bi-coloured path of z and the safe colour
of x changes during the play of the game. When
we use this terms, we are referring to the particular
moment of the game of our consideration. Also
note that if f(f(z)) is uncoloured, then P contains
two vertices only, and if moreover, x is uncoloured
then the safe colour of x does not exists and hence
is not defined.

During the play of the game, Alice will keep
record of a set A of active vertices. When an vertex
v is put into A, we say that v is activated. Once
a vertex is activated, it will remain active forever.
Initially Alice activates and colours u and colours
U.

Suppose Bob has just coloured a vertex x with
colour «. Alice’s response is divided into two
stages.

Initial Stage

Alice first activates vertex x if it is not active

yet, i.e., let A:= AU {z}.

o If f(x) ¢ A, then go to the Recursive Stage.

o If f(x) € ANU, then colour f(x) with a per-
missible colour.

e Otherwise,

1. If f(fo(z)) ¢ C, colour f(fy(x)) with a
permissible colour.

2. If f(fp(x)) € C and fp(x) has an un-
coloured son v such that the safe colour
of x is permissible to v, then colour v
with the the safe colour of x.
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3. Otherwise, let v be an uncoloured ver-
tex all whose ancestors are coloured, and
colour v with a permissible colour.

Recursive Stage

Assume we arrive at a vertex wv.
vate v.

First, acti-

e If f(v) is not active, then set v = f(z) and
repeat the Recursive Stage.

o If f(v) € ANU, then colour f(v) with a per-
missible colour.

o If f(v) € C and f(f(v)) € U, then colour
f(f(v)) with a permissible colour.

e Otherwise,

1. If f(fo(v)) ¢ C, colour f(fy(v)) with a

permissible colour.

2. If f(fp(v)) € C, then colour v with a
permissible colour.

This completes the description of Alice’s strat-
egy. Now we show that this is a winning strategy
for Alice. For this purpose, it suffices to show that
at any moment, any uncoloured vertex has a per-
missible colour.

Lemma 2 Suppose Alice has finished a move and
z 1s an uncoloured vertex. Then z has at most 1
active sons.

Proof. When the first son of z is activated, z
is activated. If z has two active sons, then when
the second son of z is activated, Alice should have
coloured z. |

Lemma 3 Suppose Alice has finished a move, z
is an uncoloured vertex and y is a son of z. Then
y has at most 2 active sons.

Proof. When the second son of y is activated, y
is coloured. If y has three active sons, then when
the third son of y is activated, Alice should have
coloured z. |

Lemma 4 Assume Alice has just finished a mowve.
If z, f(2) and f(fb(2)) are not all coloured, then
z has at most 3 active sons.

Proof. Assume to the contrary that z has 4 ac-
tive sons. When the third son is activated, Alice
colours f(z). When the fourth son is activated,
Alice should have coloured f(fy(z)). |
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Lemma 5 At any moment of the game, any un-
coloured vertex x has a permissible colour.

Proof. Assume at a certain moment of the
game, z is an uncoloured vertex. Let z = f(z).
We denote by N?(z) the set of vertices that
have distance at most 2 from z, ie., N?(z) =
{v,dr(x,v) < 2}. Thus

N2(z) = {2, f(2)}US(2)US(2)US?(x) = N*(z)US(2).

First we consider the case that at least one of
z, f(2), f(fo(2)) is not coloured. We assume that
Alice has just finished a move. By Lemma 4, z has
at most 3 coloured sons, because every coloured
vertex is active. By Lemma 2, x has at most
one coloured son. By Lemma 3, S?(z) contains at
most 2 coloured vertices. This implies that N?(z)
contains at most 8 coloured vertices. If Bob has
just finished a move, then the number of coloured
vertices in N?(z) increases by at most 1. Thus in
any case (i.e., either Alice has just finished a move
or Bob has just finished a move) there is a colour
3 not used by any vertices in N2(x). It is obvious
(B is a permissible colour for x.

Next we assume that all the vertices z, f(z) and
f(fo(z)) are coloured. Let Y C S(z) be the set
of sons of z that were activated before the last
vertex of z, f(2), f(fs(2)) was coloured. It follows
from Lemma 4 that |Y| < 4 (note that Lemma
4 assumed that it is after Alice has just finished
a move. In Bob’s next move, he can colored a
descendent of z, so Alice may activate one more
son of z before colouring f(fy(2))).

Assume that Alice has just finished a move. If
x ¢ Y, then S(z)sup S?(z) contains no coloured
vertices, because when a descendent of z is
coloured, Alice should have coloured x by follow-
ing the strategy. In this case Y U N*(x) contains
at most 6 coloured vertices. If z € Y, then by
Lemma 3, S(x)US?(z) contains at most 3 coloured
vertices and hence Y U N*(z) contains at most 8
coloured vertices. In Bob’s next move, the num-
ber of coloured vertices in Y U N*(z) increases by
at most 1. So in any case (i.e., either x € Y or
x ¢ Y, and either Alice has just finished a move or
Bob has just finished a move), Y N N*(z) contains
at most 9 coloured vertices. Let 3 be a colour not
used by any vertex in Y N N*(z). We shall prove
that (§ is a legal colour for z, which implies that §
is a permissible colour for x. Assume to the con-
trary that  is not a legal colour for z. Then there
is a 2-coloured path P = (wy, ws, w3, wy, ws) such
that = ~ wy, and ws, wy are coloured by colour 3.
Since we ¢ N*(x), we conclude that ws € S(z),
and w; = z. Let a be the colour of z = wy, w3, ws.
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Observe that z has no other sons coloured with
0, for otherwise before we colour z, the partial
coloring is already illegal.

We divide the discussion into a few cases.

Case 1 wy is coloured by Bob. Since we ¢ Y,
when any descendent of wy is activated, Alice will
colour ws, provided that it is not coloured. There-
fore wo has no active sons when Bob colour ws.
After Bob colours ws, the bi-path above ws ends
at z, and G is the safe colour of ws. By Alice’s
strategy, she colours a son of z with colour 8 (ob-
serve that at that time, 3 is certainly a legal colour
for =, because ws has no coloured sons). This is
in contrary to our conclusion that z has no other
sons coloured with colour (.
Case 2 ws is coloured by Alice. By the same ar-
gument as in Case 1, wy has at most 1 active son
when Alice colours ws. Note that ws is coloured
before wy, for otherwise § is not a permissible
colour for we. Moreover, wy is coloured by Bob,
because 3 is not a permissible colour for wy. Since
z is coloured before ws, a is not a permissible
colour for ws. Thus ws is also coloured by Bob.

Assume ws is coloured after wy. Then ws is
coloured before w,, for otherwise after Bob colours
wy, Alice would have coloured ws. At the time w3
is coloured, the bi-path above ws ends at z, and
the safe colour of ws is 5. By Alice’s strategy,
she should have coloured a son of z with colour 3,
because at that moment, wy is not coloured yet,
and 8 must be a legal colour for x and hence a
permissible colour for z. (Note that if § is not a
legal colour for x at that moment, then it must be
the case that ws has a son w) # w4 coloured with
colour 3 and w) has a son wf coloured with colour
a. Then before we colour z, the partial colouring
is already illegal, because (wf, w}, ws, wq,ws) is a
2-coloured Ps.)

Assume ws is coloured before wy. Then w3 has
no active sons before ws is coloured. In particular,
ws and wy are activated after wy is coloured. This
implies that ws is coloured by Bob, because « is
not a permissible colour for ws. At the time wy
is coloured, w4 has no active sons, for otherwise
w4 would have been coloured by Alice. In par-
ticular, ws is coloured after w4. At the moment
Bob colours wy, the bi-path above w4 ends at z,
and the safe colour of wy is 4. By Alice’s strategy,
she should have coloured a son of z other than wsy
by colour 3, because at that moment, ws is not
coloured yet, and ( is a legal colour for z. This
is again in contrary to our conclusion that z has
no other son coloured with colour §. This com-
pletes the proof of Lemma 5, as well as the proof
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of Theorem 3 for the case i = 6. |

If F is a forest, it is easy to see that the argu-
ment presented in this section also apply. Thus we
have the following result.

Theorem 4 If F is a forest and i > 6, then

4 Some open questions

In this section, we first prove that for any in-
teger n, for any 3 < i < 5, there is a tree T with
Xg(¢:,T) > n. We shall only prove this for the
case that ¢ = 5. The cases i = 3,4 can be proved
in the same way.

Theorem 5 For any positive integer n, there is a
tree T,, for which x4(¢s5,Tn) > n.

Proof. Let T, be the rooted tree with root vertex
u which has 2n + 1 sons, uq, -, u2,+1, and each
of u; has one son v; for i =1,---,2n + 1. We will
show that if Alice and Bob play the ¢s5-coloring
game on T,, with n — 1 colours, then Bob has a
winning strategy.

Suppose Alice colours u with colour « in her
first move. Then Bob chooses an uncoloured ver-
tex v; such that u; is uncoloured and colours v;
with the colour o. Then at least n + 1 vertices of
{v;} are coloured with a.

Suppose Alice colours a vertex y # u with the
colour 3 in her first move. Then Bob colours u
with the colour o # § in his first move. Then Bob
chooses an uncoloured vertex wv; such that w; is
uncoloured and colours v; with the colour . Thus
at least n vertices of {v;} are coloured with a. Let
A ={i:c(v;) = a}. In both cases, |A| > n. If all
the vertices of T,, are coloured, then since there
are only n— 1 colours, there are two vertices u;, u;
coloured the same colour and v;,v; € A. Then
(vi, uiyu, uj,v;) is a 2-coloured path. |

In this paper, we have only studied some very
special graph functions f, and the classes of
graphs are also very restricted: outerplanar graphs
or forests. Many fundamental questions remain
open. We call a graph function f a game bounded
graph function if each proper minor closed class
KC of graphs, there is a constant C' such that
Xq(f,G) < C for any G € K.

Question 1 Which graph functions are game
bounded?
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We know that for any proper minor closed class
KC of graphs, the acyclic chromatic number y,(G)
is bounded by a constant for all G € K. As
Xg(G) < Xa(G)(Xa(G) + 1) [3], this implies that
X¢(G) is bounded by a constant for all G € K. In
other words, if f(K2) = 2 and f(H) = 1 other-
wise, then f is a game bounded graph function.
It is also easy to show that for any d > 0, if
f(Ki1,4+1) = 2 and f(H) = 1 otherwise, then f
is a game bounded graph function. If f(C,) = 2
for any n > 3 and f(H) = 1 otherwise, then f is
a game bounded graph function.

Let ¢; be the graph function defined as in Sec-
tion 3.

Question 2 Does there exist an integer i and a
constant C such that for any outerplanar graph
G, x4(¢:,G) < C? Does there exist an integer
i and a constant C such that such that for any
planar graph G, x4(¢:, G) < C? Does there exist
an integer i such that ¢; is a game bounded graph
function?
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