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Abstract

Motivated to approximating the maximum bal-
ance connected partition problem, we investigate
the minimum border problem. Given a biconnected
graph G = (V, E) with nonnegative vertex weight
w and two vertices y1, y2 ∈ V , the minimum bor-
der problem looks for the minimum weight vertex
subset T ⊃ {y1, y2} such that both the subgraphs
induced by T and V −T are connected. In this pa-
per, we show the approximability of the problem:
for any ε > 0, the problem cannot be approximated
with ratio |V |1−ε unless NP=P.

1 Introduction

There are many applications that can be mod-
eled as a problem of breaking a connected graph
into some “balanced” connected subgraphs. Let
G = (V,E, w) be a simple undirected graph, in
which w is a nonnegative vertex weight. For
U ⊂ V , by G[U ] we denote the subgraph in-
duced by U . The maximum balance connected q-
partition (BCPq) problem looks for a q-partition
(V1, V2, . . . Vq) as even as possible such that the
every induced subgraph G[Vi], 1 ≤ i ≤ q, is
connected. When q = 2, the balance of a bi-
partition (V1, V2) is defined by min{w(V1), w(V2)}
and we want to maximize the balance, in which
w(V1) =

∑
v∈V1

w(v) is the total weight of V1.
In [1], Chleb́ıková shows that BCP2 is NP-hard

in the strong sense and cannot be approximated
with an absolute error guarantee of |V |1−ε for any
ε > 0 unless NP=P. A 4

3 -approximation algorithm
is also given in the paper and it is currently best
result of the problem. For q = 3 and q = 4 there is
a 2-approximation proposed by Chataigner et al.
[2]. More references and results about the problem
can also be found in [2].

For BCP2, if the input graph, either weighted
or unweighted, has articulation vertices, the prob-
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lem can be reduced to the weighted version on the
blocks of the graph. Therefore the most important
thing is to solve the weighted problem on bicon-
nected graphs. Let G = (V,E) be a connected
graph and (V1, V2) a connected partition of G. A
vertex u is movable if it can be moved to the other
part with keeping the result also a connected par-
tition. Chleb́ıková’s 4/3-approximation algorithm
on a 2-connected graph is as follows. It starts with
choosing the maximum weight vertex into V1 and
leaving all other vertices to V2. It then repeatedly
moves the movable vertex of minimum weight in
V2 if the balance is increased by the moving, and it
stops otherwise. The worst case for Chleb́ıková’s
algorithm is as follows. There are three heavy ver-
tices and each has weight w(V )/4. The remaining
vertices have weight w(V )/4 in total. One of the
subset of the optimal solution contains two of the
heavy vertices and some very small weight ver-
tices. The algorithm may get stuck at V2 contains
two heavy vertices and a path between them of
total weight w(V )/8. In this case, the only two
movable vertices in V2 are the two heavy ones and
the result is a bipartition of balance (3/8)w(V ),
and the error ratio is roughly 4/3.

If we have a good method finding a small weight
vertex set which connects two given vertices and
keeps the remaining connected, we may improve
the approximation ratio of BCP2. By this moti-
vation, we study the following minimum border
problem.

Problem: Minimum Border (MinBor-
der) Problem on 2-connected graphs
Instance: A 2-connected graph G =
(V,E), vertex weight w : V → Z+0, two
vertices y1, y2 ∈ V and (y1, y2) /∈ E.
Goal: Find a connected partition
(V1, V2) of G such that {y1, y2} ⊂ V2 and
w(V2) is minimized. We call V2 a border
if (V1, V2) is feasible.

More precisely, if there are 1, 2, or 4 ver-
tices of weight larger than w(V )/5, we can easily
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Figure 1: The graph G = (V,E) transformed from
3-SAT problem.

get a 5/4-approximation of the BCP2 problem by
Chleb́ıková’s algorithm. But it can only ensure a
ratio of 4/3 when there are 3 such vertices. Good
results of the minimum border problem may be
helpful.

In this paper, we show the problem is NP-hard
and a bad news of its approximability: for any
ε > 0, the problem cannot be approximated with
ratio |V |1−ε unless NP=P.

2 NP-hardness and approximability

We show the NP-hardness by transforming
from the 3-SAT problem. Let Cj , 1 ≤ j ≤ m
be the clauses of the 3-SAT problem and xi,
1 ≤ i ≤ n, the variables. We construct a
2-connected graph G = (V,E, w) as follows. Let
V = {y1, y2} ∪ {xi, x̄i|1 ≤ i ≤ n} ∪ {Cj |1 ≤
j ≤ m}. Let E = E1 ∪ E2 ∪ E3, in which
E1 = {(y1, x1), (y1, x̄1, (y2, xn), (y2, x̄n}, E2 =
{(xi, xi+1), (xi, x̄i+1), (x̄i, xi+1), (x̄i, x̄i+1)|∀1 ≤
i < n}, and E3 = {(xi, Cj)|∀xi ∈
Cj} ∪ {(x̄i, Cj)|∀xi ∈ Cj}. The vertex weights are
assigned by w(xi) = w(x̄i) = 1 and w(Cj) = n− 1
for any 1 ≤ i ≤ n and any 1 ≤ j ≤ m. Let
X = {xi, x̄i|1 ≤ i ≤ n}. Figure 1 illustrates the
transformation.

Claim 1: If there is a truth assignment satisfying
all the clauses, there is a border of weight n.

Proof: For 1 ≤ i ≤ n, let si = xi if xi is assigned
False, and si = x̄i if xi is assigned True. Let
V ∗ = {si|1 ≤ i ≤ n} ∪ {y1, y2}. The weight of
S is n. We now check both S and V − S induce
connected subgraphs. Clearly S is a path between
y1 and y2, and therefore G[S] is connected. We
can see that X − S is a path. Since the truth
assign satisfies all clauses, each Cj is connected

to at least one vertex in X − S. Consequently
G[V − S] is also connected.

Claim 2: If there is a border of weight n, there is
a truth assignment satisfying all the clauses.

Proof: Suppose S is a border and w(S) = n.
Since any border contains at least n vertices
besides {y1, y2}, S must consists of n vertices in
X,i.e., xi and x̄i are definitely not in S simultane-
ously for any 1 ≤ i ≤ n and there is no any Cj in
S. For each 1 ≤ i ≤ n, we assign xi false if xi ∈ S
and assign true otherwise. Since S is feasible,
each Cj is connected to some xi or x̄i which is
true by the assignment. Consequentially, there is
a truth assignment satisfying all the clauses.

Theorem 3 : The minimum border problem is
NP-hard.

Proof: Clearly the transformation can be
done in polynomial time. By Claims 1 and 2,
if there is a polynomial time algorithm finding
the optimal solution of the minimum border
problem, the 3-SAT problem can also be solved
in polynomial time. Since 3-SAT is NP-complete
[3], the minimum border problem is NP-hard.

Corollary 4: The minimum border problem is
NP-hard in the strong sense.

Proof: In the proof of Theorem 3, the con-
structed graph is weighted. But only Cj has
weight larger than one, and all vertices in X have
unit weight. We transform the graph G into an
unweighted graph G′ as follows. For any v ∈ X
and Cj , if there is an edge (v, Cj), we subdivide
the edge by inserting n/2 internal vertices of
degree two. It can be verified that Claims 1 and
2 still hold for G′.

We then show the inapproximability.

Theorem 5: Unless NP=P, the Minimum Bor-
der problem cannot be approximated with ratio
|V |1−ε in polynomial time for any ε > 0.

Proof: In the proof of Theorem 3, we can see
that if there is a border contains no any Cj , there
is a true assignment satisfying all Cj . Similar to
the proof of Corollary 4, we transform the graph
G into an unweighted graph G′. But this time
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we replace each edge (Cj , v) with a path consist-
ing of nk/2 vertices, in which k > 1 is a constant.
Then we can claim that all Cj are satisfiable if and
only if there is a border of weight less than nk +2,
which implies the border contains no any Cj . That
is, if there is a polynomial time approximation al-
gorithm with ratio nk−1, the 3-SAT is polynomial
time solvable. Unless NP=P, the minimum border
problem cannot be approximated with ratio bet-
ter than nk−1. Since |V (G′)| = O(mnk) ≤ cnk+3

for some constant c, nk−1 ≥ |V (G′)| k−1
k+3 . For any

constant ε > 0, let k = 4/ε−3. The bound of pos-
sible approximation ratio of any polynomial time
algorithm is |V (G′)|1−ε.

3 Concluding remarks

In this paper, we show the in-approximability of
the minimum border problem. But the bad news
doesn’t imply there is no better approximation al-
gorithm for the balance connected partition prob-
lem. How to improve the ratio of BCP2 is still
interesting.
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