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Abstract

A graph G is 2-stratified if its vertex set is col-
ored into two nonempty classes, where one class
of vertices colored red and the other color class
blue. Let F be a 2-stratified graph rooted at one
fixed blue vertex v. The F -domination number of
G is the minimum number of red vertices of G in a
red-blue coloring of the vertices of G such that for
every blue vertex v of G, there is a copy of F in
G rooted at v. In this paper, we explore an upper
bound on the F -domination number for a specified
2-stratified graphs F in grids, where F is a path
P3 rooted at a blue vertex that is adjacent to a
blue vertex and with the remaining vertex colored
red. As far as we know, no such an F -domination
number was known for grids.

1 Introduction

A graph is 2-stratified if its vertex set is col-
ored into two nonempty classes, where one class
of vertices colored red and the other color class
blue. Let F be a 2-stratified graph rooted at one
fixed blue vertex v. An F -coloring of a graph G
is defined to be a red-blue coloring of the vertices
of G such that every blue vertex v of G belongs to
a copy of F rooted at v. Each blue vertex in an
F -coloring is F -dominated by a red vertex. The
F-domination number γF (G) of G is the minimum
number of red vertices of G in a red-blue coloring
of the vertices of G such that for every blue ver-
tex v of G, there is a copy of F in G rooted at v
and the set of red vertices is called F -dominating
set. In [3], an F -coloring of G that colors γF (G)
vertices red is called a γF -coloring of G and the
F -dominating set is called γF -dominating set. If
G has order n and G has no copy of F , then each
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Figure 1: (a) A 2-stratified graph F (b) A γF -
coloring of a graph G with γF (G) = 6.

vertex is certainly red and γF (G) = n. Figure 1
depicts a 2-stratified graph F and a γF -coloring
of a graph G that colors γF (G) = 6 vertices red,
where the red vertices are darkened.

If F is a path P2 rooted at a blue vertex that is
adjacent to a red vertex, then the F -dominating
set of G is indeed a minimum dominating set of
G. A dominating set of G is a set S ⊆ V (G),
where every vertex not in S is adjacent to a ver-
tex in S. When F is a 2-stratified path P3 on three
vertices rooted at a blue vertex, the five possible
choices, Fi, for i = 1, 2, . . . , 5, for the graph F are
shown in Figure 2, where F3 is a 2-stratified path
P3 rooted at a blue vertex that is adjacent to a
red vertex and with the remaining vertex colored
red. The red vertices in Figure 2 are darkened.
Chartrand et al. showed that for i ∈ {1, 2, 4, 5},
the parameters γFi(G) are well known domination
type parameters [3]. In [7], Henning and Martiz
showed the results for paths and trees. In this pa-
per, we discuss γF3(G) for grids. For convenience,
we use γF (G) to represent γF3(G) in the remaining
discussion.

Stratified domination was first introduced by
Chartrand et al. in 2003 [3]. In [8], Rashidi
studied a number of problems involving stratified
graphs; while distance in stratified graphs was in-
vestigated in [1, 2, 4]. The most studied types of
domination in graphs can be defined in terms of
an appropriately chosen rooted 2-stratified graph.
The study of stratified domination as a graph-
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Figure 2: The five 2-stratified graphs P3.

theoretic concept has recently attracted a great
deal of attention [6]. By definition, stratified
domination intuitively combines stratification and
domination.

We consider the problem for k-dimensional
grid networks. The topological structure of a k-
dimensional grid Gm1,m2,...,mk

is defined as the
Cartesian product Pm1×Pm2×· · ·×Pmk

of k paths.
A 2-dimensional grid is also called a mesh. The
grid networks are an important class of topologi-
cal structures of interconnection networks which
suited for parallel processing of data. In this
paper, we first present an upper bound for F -
domination number on meshes, where F is a 2-
stratified graph path P3 and actually the algo-
rithm is also applicable to solve the problem on
k-dimensional grids, where k ≥ 3.

The remaining part of this paper is organized
as follows. In Section 2, we give the definition of
grids and introduce some basic terminology and
notation. We also demonstrate previous results
which are helpful to determine the F -domination
number on grids. In Section 3, an upper bound on
the F -domination number for n-dimensional grids
is proposed. Finally, some concluding remarks and
future research are given in the last section.

2 Preliminaries and Previous Re-
sults

All graphs considered in this paper are fi-
nite and simple (i.e., without loops and multiple
edges). Let G = (V,E) be a graph with vertex set
V and edge set E, where E ⊆ V × V . For any
set S ⊆ V , the induced subgraph of < S > is the
maximal subgraph with vertices set S.

A k-dimensional grid Gm1,m2,...,mk
has vertex

set V (Gm1,m2,...,mk
) = { (a1, a2, . . . , ak) | 0 ≤ ai ≤

mi − 1, 1 ≤ i ≤ k} and vertices (a1, a2, . . . , ak)
and (b1, b2, . . . , bk) are connected by an edge if

Figure 3: Grids G2,1, G2,2, G2,3, G2,4 and G2,5.
The red vertices are darkened.

and only if
∑

1≤i≤k |ai − bi| = 1. We label the
vertex v of a mesh as (xv, yv), where xv and yv is
the row number and column number, respectively.
The set of vertices with the same row number x
(respectively, column number y) is called row x
(respectively, column y).

The following previous results are helpful to
clarify our proofs.

Lemma 1. [5] γF (G) = 1 if and only if G con-
tains a vertex u such that N(u) is a total domi-
nating set of G.

Lemma 2. [7] For n ≥ 1, γF (Pn) = bn+7
3 c +

bn
3 c − d

n
3 e.

3 Our Results

In a k-dimensional grid G, each vertex of G
has an open neighborhood consisting of pairwisely
nonadjacent vertices. So, by Lemma 1, γF (G) ≥ 2.
In the following discussion, we assume γF (G) ≥ 2
for a grid G.

Theorem 3. γF (G2,n) = dn
5 e · 2, for n ≥ 1.

Proof . Figure 3 shows F -colorings for G2,n,
where 1 ≤ i ≤ 5, that colors two vertices red.
Consider G2,n, where i ≥ 6. Every vertex in
G2,n has at most four neighbors of distance ex-
actly two. This implies that each red vertex be-
longs to at most four copies of F in G2,n. So,
γF (G2,n) ≥ d2n

5 e. We next proceed by induction
on the order n of a mesh G2,n. The theorem holds
for n ≤ 5. Assume then that the result is true for
n < k and k ≥ 6. When n = k. We show first
that there exists a γF -coloring of G2,k, denoted
F , that colors vertices (0, 2) and (1, 2) red, while
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the columns 0,1,3 and 4 be colored blue. The re-
gion R1 induced by columns 0,1 and 2 is indeed a
G2,3 and then, by basis, we need at least 2 vertices
of R1 to be colored red. Let S be the subgraph
induced by columns 0 to 4. S is indeed a G2,5.
Furthermore, since γF (G2,5) = 2, we assume that
there are exactly two red vertices in S. It is clear
that each of the two red vertices of S must be on
four copies of F in S. Therefore F is the desire
γF -coloring of G2,k.

Let G′ be the subgraph induced by columns 5
to k and F ′ be a γF -coloring of S′. Note that
G′ is indeed a grid G2,k−5. Then the restric-
tion of F ′ to the grid G′ is an γF -coloring of
G′ that colors γF (G2,k) − 2 vertices red. Hence,
γF (G′) ≤ γF (G2,k) − 2. On the other hand,
any γF -coloring of G′ can be extended to an γF -
coloring of G2,k. Thus, γF (G2,k) ≤ γF (G′) + 2.
Consequently, γF (G2,k) = γF (G′) + 2. The result
follows by applying the inductive hypothesis to G′.
�

For meshes G3,n, where 3 ≤ n ≤ 5, we use
Figure 4 to indicate a F -dominating set of G3,n

and get the following result.

Lemma 4. γF (G3,n) = 3, for each n = 1, 2, . . . , 5.

Proof . Figure 4 gives F -colorings of G3,n, where
1 ≤ n ≤ 5, that colors three vertices red. Thus, an
upper bound γF (G3,n) ≤ 3 is established. We only
need to find lower bounds to γF (G3,n). The result
follows from Lemma 2 and Theorem 3 for n = 1
and 2, respectively. We immediately consider
n ≥ 3. We first show that γF (G3,3) ≥ 3. Suppose
that γF (G3,3) ≤ 2. Consider the vertex (1, 1).
If we color (1, 1) red in any γF -coloring of G3,3,
where γF (G3,3) = 2, then let, by vertex symmetry
of G3,3, (1, 0) be colored blue as γF (G3,3) ≤ 2
and (1, 1) has four open neighbors. Then, ei-
ther (0, 1) or (2, 1) is colored red to F -dominate
(1, 0). By vertex symmetry property of G3,3, we
let (0, 1) be such a vertex that F -dominate (1, 0).
It can be seen that (2, 1) is then colored blue
and not F -dominated by any red vertex. There-
fore, (1, 1) should be colored blue and hence each
red vertex belongs to at most three copies of
F . It means γF (G3,3) ≥ d 94e = 3. Further-
more, γF (G3,3) = 3 because {(0, 1), (1, 1), (2, 1)} is
clearly a γF -dominating set ofG3,3. Next, we show
γF (G3,n) = 3 for n = 4, 5. Since the subgraph in-
duced by columns 0,1 and 2 of G3,n, where n = 4
or 5 is indeed a G3,3, γF (G3,n) ≥ 3. Actually,

γF (G3,n) = 3 because we have a γF -dominating
set {(0, 2), (1, 2), (2, 2)}. �

Lemma 5. γF (G4,n) = 4, for each n = 4, 5.

Proof . Suppose, to the contrary, that
γF (G4,n) ≤ 3. Let region R1 =
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. We
first claim that any γF -coloring colors at least
one vertex in R1 red. If all vertices of R1 are
colored blue, then (2, 0) must be colored red to
F -dominate (0, 0). Furthermore, (2, 1) is the only
one red vertex to F -dominate (1, 0). We now
consider the vertices (0, n − 1) and (1, n − 1).
The two vertices are both not on any copy of
F containing the red vertices (2, 0) or (2, 1).
Thus, we need another red vertex to F -dominate
(0, n − 1) and (1, n − 1). In fact, there is no red
vertex belongs to both a copy of F rooted at
(0, n − 1) and a copy of F rooted at (1, n − 1).
So, R1 contains at least one red vertex. Actually,
R1 contains exactly one red vertex. Otherwise,
γF (G4,n) ≥ 4, a contradiction. Moreover, we now
show that the region R2 consisting of rows 0 and
1 has at least two red vertices. When n = 4.
Suppose R2 has exactly one red vertex v. The
four possible choices of v are (0, 1), (0, 2), (1, 1)
and (1, 2) to reveal the fact that R1 has exactly
one red vertex.

Case 1: v = (0, 1).

Clearly, vertices (0, 0) and (0, 2) can only be F -
dominated by (2, 0) and (2, 2), respectively. And
we now have three red vertices. However, vertex
(3, 0) is not F -dominated by any red vertex. This
contradicts the fact that γF (G4,n) ≤ 3.

Case 2: v = (0, 2).

By vertex symmetry property of grids, the case is
similar to Case 1 and we omit it.

Case 3: v = (1, 1).

Vertex (0, 1) can not be F -dominated by any red
vertex of G4,n, a contradiction.

Case 4: v = (1, 2).

The proof of this case is similar to Case 3.

Therefore, we get γF (G4,n) ≥ 4. Since
{(0, 2), (1, 2), (2, 2), (3, 2} is a γF -dominating set
of G4,4, γF (G4,4) = 4. To determine γF (G4,5), we
find that the subgraph induced by the columns
0,1,2 and 3 is indeed a G4,4. So, γF (G4,5) ≥
4. Moreover, γF (G4,n) = 4 by the reason that
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{(0, 2), (1, 2), (2, 2), (3, 2} is a γF -dominating set
of G4,5. �

Lemma 6. γF (G5,5) = 4.

Proof . Suppose, to the contrary, that
γF (G5,5) ≤ 3. Let region R1 =
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. We
first claim that any γF -coloring colors at least
one vertex in R1 red. If all vertices of R1 are
colored blue, then (2, 0) must be colored red to
F -dominate (0, 0). Furthermore, (2, 1) is then
the only one red vertex to F -dominate (1, 0).
However, the vertices of column n − 1 are not on
any copy of F containing the red vertices (2, 0)
or (2, 1). Thus, we need another red vertex to
F -dominate (0, n − 1) and (1, n − 1). In fact,
there is no red vertex belongs to both a copy of
F rooted at (0, n − 1) and a copy of F rooted
at (1, n − 1). So, R1 contains at least one red
vertex. Actually, R1 contains exactly one red
vertex. Otherwise, γF (G5,5) ≥ 4, a contradiction.
Moreover, we now show that the region R2

consisting of rows 0 and 1 has at least two red
vertices. Suppose R2 has exactly one red vertex
v. Then v is either (0, 2) or (1, 2) to reveal the
fact that R1 has exactly one red vertex.

Case 1: v = (0, 2).

Clearly, vertices (0, 1) and (0, 3) can only be F -
dominated by (2, 1) and (2, 3), respectively. And
we now have three red vertices. However, vertices
(3, 1) and (3, 3) are not F -dominated by any red
vertex. This contradicts the fact that γF (G5,5) ≤
3.

Case 2: v = (1, 2).

Vertex (0, 2) can not be F -dominated by any ver-
tex of G5,5, a contradiction.

We conclude that γF (G5,5) = 4 by the fact that
{(0, 2), (1, 2), (2, 2), (3, 2)} is a γF -dominating set
of G5,5. �

Theorem 7. Let mi = 5 · qi + ri, where 0 ≤
ri ≤ 4. γF (Gm1,m2,...,mn

) ≤
∏n−1

i=1 mi · qn +∑n−1
i=2 (

∏n−i
j=1 mj · qn−i+1 ·

∏n
j=n−i+2 rj ) + q1 ·∏n

j=2 rj + γF (Gr1,r2,...,rn
).

Proof . If we regard Gm1,m2,...,mn as a tiling
of subgrids with possibly different size, then
Gm1,m2,...,mn

is a tiling of (5 · qi + ri) grids
Gm1,m2,...,mi−1,1,mi+1,...,mn

. So, we get

γF (Gm1,m2,...,mn
) ≤ qn ·γF (Gm1,m2,...,mn−1,5)+

γF (Gm1,m2,...,mn−1,rn
).

Since, by Theorem 3 and Lemmas 4-6, we have
γF (Gm1,m2,...,mn−1,5) ≤ m1 · m2 · · ·mn−1. Then
γF (Gm1,m2,...,mn

) ≤ qn · m1 · m2 · · ·mn−1 +
γF (Gm1,m2,...,mn−1,rn). By the same way, we can
find a tiling of Gm1,m2,...,mn−1,rn and get

γF (Gm1,m2,...,mn−1,rn
)

≤ qn−1 · γF (Gm1,m2,...,mn−2,5,rn
)+

γF (Gm1,m2,...,mn−2,rn−1,rn)

≤ qn−1 ·m1 ·m2 · · ·mn−2 · rn+
γF (Gm1,m2,...,mn−2,rn,rn−1).

Finally, the theorem follows. �

4 Concluding Remarks

This paper considers F -dominating sets on a
grid G and gives an upper bound on γF (G). We
believe that the upper bound value is probably the
exact one. So, we naturally proceed to try show
it. Future research directions could be solving the
problem on another interconnection networks.
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