The 26th Workshop on Combinatorial Mathematics and Computation Theory

Efficient Algorithm for Incrementally Deploying Content Objects
Over Networks

Lung-Pin Chen and Jhen-You Hong
Dept. Computer Science and Information Engineering,
Tunghai University, Taichung, Taiwan
{Ibchen,g96350040} Qthu.edu.tw

Abstract

Deploying and managing content objects effi-
ciently is critical for building a scalable and trans-
parent content delivery system. This paper investi-
gates the advanced incremental version of the con-
tent deployment problem of which the objects are
delivered in a successive manner. Recently, the
researchers show that the minimum-cost content
deployment can be obtained by reducing the prob-
lem to the well-known network flow problem. In
this paper, the mazximum flow problem for a sin-
gle graph is extended to an incremental growing
graph. We show that the time complezity of deriv-
ing k maximum flow values of incremental graphs
N1, Ny, ---, Ny is no more than that of the sin-
gle graph Ni. Based on this property, this work
develops an efficient algorithm for incrementally
deploying content objects over networks.

1 Introduction

In a content delivery system, the dynamic con-
tent object are constructed by running applica-
tion programs on base data which may change fre-
quently. When a new version of an object is gen-
erated, this object should be re-deployed to keep
the client’s data up-to-date. KEssentially, a new
version of object can be updated via a direct net-
work transmission. However, with this naive ap-
proach, the content object is entirely transmitted
even only a small change have been made on the
previous version. The transcoding [8] is an im-
portant technique to reduce the cost of deploying
objects. A transcoding operation is a client-side
computation process to construct an object from
the information of its predecessors. The cost of
deploying a set of content objects can be reduced
by taking the trade-off between direct transimis-
sion and client-side transcoding. Recently, the re-

115

searchers [8] showed that the object deployment
problem can be solved by using the existing net-
work flow algorithms [3, 4, 6, 5, 7].

Due to the diversity of Internet applications,
it would be desirable to provide an efficient way
of incrementally deploying the content objects be-
tween clients and servers over networks. For ex-
ample, in an e-learning system, usually a user ac-
cesses the course content in an incremental man-
ner, according to the learning progress, instead of
accessing the entire course content at one shot. In
this paper, we study the incrementl content ob-
ject deployment problem. We first introduce the
notion of incremental flow networks, which is a
sequence of incrementally growing flow networks
(N1, Na, -+, Ni). Then, we show that an incre-
mental content object deployment problem can
be efficiently solved by using our new incremen-
tal maximum flow algorithm.

The rest parts of this paper is organized as fol-
lows. In Section 2, we define the basic content de-
ployment problem. Also, the reduction from this
problem to the flow network problem is discussed.
In Section 3, the efficient incremental maximum
flow algorithm and content deployment algorithm
are discussed. Finally, conclusions are made in
Section 4.

2 Basic Content Deployment Algo-
rithm

2.1 Content Deployment Problem

In this paper, the digital content is modeled as
an ODG (object dependency graph) G = (U, F),
where each v € U refers to a content object (or,
simply, object); each edge (u,v) € F refers to the
dependency relation from object u to v. To model
the transcoding operation, when deploying, all the
objects in graph G are classeified into three types:

The 26th Workshop on Combinatorial Mathematics and Computation Theory

net(2)=8 net(4)=25 net(6)=30
comp(2)=3 comp(4)=1 comp(6)=4

0
net(1)=12 —’@—’. net(8)=20
comp(1)=! \fmp(S)z(

net(3)=10 net(5)=7 net(7)=15
comp(3)=6 comp(5)=14 comp(7)=10
Qu, @u, @u,

Figure 1: An object dependency graph G and tar-
get object sets Uy, Us, Uj.

O-node, N-node, and C-node. An object v is O-
node if v is not deployed to the client. Also, an
object v is N-node (or C-node) if v is deployed via
a direct network transmission (or via the client-
side transcoding). The sets of O-nodes, N-nodes,
and C-nodes in G are denoted by Up, Uy, and Ug
respectively.

Given a graph G = (U,F) and a set of tar-
get objects U' C U, a content object deployment
is a five tuple D = (G,U’,Up,Un,Uc) where
{Uo,Un,Uc} is a partition of vertices of G such
that the following properties hold:

e All the target objects must be deployed to the
client, i.e. U' C {Unx UU¢}, and

e If object v is a C-node (constructed via the
client-side transcoding) then all of its prede-
cessors must be deployed to the client. That
is, for all v € U and (u,v) € F, v € Us =
u e {UnyUUc}.

Let net(v) denote the cost of transmitting object
v from the server to the client, and comp(v) de-
note the cost of transcoding object v from all of
its predecessors. The cost of content deployment
D = (G, U,Up,Un,Uc) is defined as cost(D) =
Y very Met(v) + 3, cp, comp(v). The minimum
content deployment, with respect to ODG G and
target object set U’, is the one with the minimum
cost among all the feasible content deployments.
For example, for the ODG in Figure 2(a), a con-
tent object deployment with D = (G, {6,7},Up =
o, Uy = {6},Uc = {1,2,3,4,6,7}) is the mini-
mum content deployment for for the target objects

(6,7}.

116

2.2 Content Deployment Algorithm

Recently, the researchers [§] shown that a min-
imum content deployment problem can be solved
by reducing the problem to the minimum cut
of a flow network N. A flow network N =
(V,E, S, T,cap) is a five tuple in which (V, E) is a
directed graph where each edge (u,v) € E is asso-
ciated with the non-negative capacity cap(u,v). In
the flow network, S C V are designated as source
vertices and T C V are designated as sink ver-
tices. A source (or sink) vertex only has outgoing
(or incoming) edges.

A flow f of N is a function from edges to non-
negative values which represents the units of flow
been sent from the sources to the sinks without ex-
ceeding the edge capacities. That is, the following
properties are satisfied: (1) f(u,v) < cap(u,v),
and (2) IN(u) = OUT(u) for each vertex u €
VAA{S, T} where IN(u) = 3_, , wep f(v,u) and

OUT(u) = 3, (wver f(u,0).

A cut of flow network N is a partition (X,Y)
on the vertices of N such that all the source nodes
are in X-part and all the sink nodes are in Y-
part. The cost a cut C is cost(C) = {cap(u,v) |u €
X,v € Y}. Note that the only the edges from X to
Y contribute their capacities to the cut cost (ex-
cluding those edges from Y to X). Ford and Fulk-
erson prove the following maz-flow-min-cut theo-

rem [3].

Theorem 2.1 Given a flow network, its maxi-
mum flow value and minimum cut cost are equal.

|

The reduction of a content object deployment
problem to the flow network problem is illustrated
in Algorithm 1 and explained in Algorithm 1.

A reduction from G to N for Step 1 of Algo-
rithm 1 is illustrated in Figure 2. For the target
set U, = {6,7} in Figure 1, the minimum con-
tent object deployment is D = (G,{6,7},Uo
o, Uy = {6},Uc = {1,2,3,4,6,7}). Observing
Figure 1 and Figure 2, we can find that the min-
imum cut cost of the reduced network N is equal
to cap(bb, 5e) + cap(s, 1b) + cap(s, 2) + cap(s, 3) +
cap(s,4)+cap(s,6)+cap(s,7) = net(a)+comp(b),
a € Uy and b € Ug. Clearly, this cost is equal to
cost(D).

For convinient, a cut with cost not equal to
oo is caled a feasible cut. Also, given a cut C,
let D = Map(C) be the content deployment con-
structed in Step 3 in Algorithm 1. The Map func-
tion establishes the one-to-one mapping between

The 26th Workshop on Combinatorial Mathematics and Computation Theory

Algorithm 1 Basic CONTENT DEPLOYMENT
(G, U")
1. (Reduction) Perform the following vertex-

to-edge transformation from ODG G
(U, F,) to flow network N = (V, E, S, T, cap):

e For each vertex a in the graph G, add
two nodes Gpegin and aeng to N. Then,
add edge (abegin7 aend) and (aendv abegin)
to N. Let cap(apegin, @ena) = net(a) and
Cap(abegin7 aend) = 0.

e Add a source node s to N. Then,
add edge (s,Qpegin) to N and let
cap(s, apegin) = comp(a) for all objects
a.

o If an edge (a,b) exists in G then add an
oo-capacity edge (Gend; bbegin) in V.

e For all target objects a in U’, set aepnq as
a sink node of V.

2. After the flow network N is constructed, find
the minimum cut C = (X,Y) of N by using
the existing maximum flow algorithms [§].

3. (Mapping) Construct the minimum deploy-
ment D = (G,U',Up,Un,U¢) based on the
following mapping;:

e Object a € Up < Gpegin € X and Geng €
XinN

o Object a € Uy & apegin € X and Geng €
YinN

e Object a € Uc & apegin € Y and Gepg €
Yin N

4. return D

cuts of N and deployments of G. This mapping
confirms the correctness of Algorithm 1 as proved
in Lemma 2.1.

Lemma 2.1 For an ODG G = (U, F) and a set
of target objects U' C U. Let N be the flow network
constructed in Step 1 in Algorithm 1. The Map
function is an one-to-one mapping between feasible

cuts of N and content deployments of G. Also,
cost(C) = cost(Map(C)).

Proof. Note that the proof is simplified from
that in [8]. Since the non-feasible cut with cost
oo can not be a minimum cut, it is enough to
consider only feasible cuts. For each feasible cut

117

R

oo -capacity edges

Figure 2: An object dependency graph G and tar-
get object sets U1, U, Ul.

C = (X,Y) of N, assume that D = Map(C) =
(G,U'",Up,Ux,Uc) is constructed in Step 3 in the
algorithm.

First, we show that for each C, the cor-
responding Map(C) is a valid content deploy-
ment of G. Recall that N has nodes {s} U
{@begin, Gena | @ is an object in G}. In cut C =
(X,Y), if a node bpegin, € Y then aeng € Y for
all Genag With cap(@end; boegin) = 00. (Otherwise, C
has cost co and can not be a feasible cut.) From
the mapping rules in Step 3 in the algorithm, we
can derive that in D,

beUc = a€{UnxUUc},V¥(a,b) in G
Also, since aenqg € Y for all taget objects a. This
impies that in D,

ac{UyUUc},VaeU’

From above, D is a valid deployment of G and its
cost is equal to that of cut C.H

3 Incremental Content Deployment
Algorithms

Incremental Minimum Content
Deployment Problem

3.1

For two vertices u and v in an ODG G, de-
note it by w =< wv if there is a path from u to
v. Moreover, for two vertex sets S; and Ss,
S1 = S9 if and only if v X v for each u € S
and v € S5. A sequence of content deployments is
called the incremental content deployments if all
of them are defined on an same ODG but with in-
crementally growing target object sets. Formally,

The 26th Workshop on Combinatorial Mathematics and Computation Theory

let Di = (G,U{,UO”UN“UCi),i = 1,2,~-~ ,k,
then, (D1, D, -+, D) is an incremental content
deployment if U{ < Uy < --- = U;. Furthermore,
(D1, Da, -+, Dy) is said to be minimum if each
member D; is minimum with respect to the target
set U].

3.2 Abstraction of Network Flow Algo-
rithms

For example, consider the target set U] =
{2,3}, U) = {4,5}, and U; = {6,7} in Figure
1. Since U] = U} = Uj, these target sets define
an incremental content deployment problem. The
minimum deploment for U7, U}, and U} are labeled
as Dy, Dy, and D3 in Figure 2, respectively.

In this subsection, we provide a high-level ab-
straction for the flow network algorithms. The ab-
straction is helpful on extending the basic content
deploying algorithm to the incremental version.

3.2.1 Generic Preflow Algorithm

A preflow f on a flow network is a flow except
that the total flow into a non-source non-sink ver-
tex u can exceed that out of u. Namely, for all
ue€V\{SUT}, IN(u) > OUT(u) |6]. The dif-
ference between the total flow into and out of u
is called the ezcess flow and denoted by ex(u) =
IN(u)—OUT(u). A non-source non-sink vertex u
is called active if ex(u) > 0. Also, an edge (u,v)
with f(u,v) < cap(u,v) is called a residual edge.
Clearly, there is still at most cap(u,v) — f(u,v)
units of flow can be sent via edge (u,v) without
violating the capacity constraint. A path with all
residual edges is called a residual path. Herein af-
ter, let n and m denote the number of vertices and
edges of N, repsectively. Ford and Fulketson [3]
proved Theorem 3.1.

Theorem 3.1 ([3]) A preflow f is a mazimum
flow of network N if and only if there is no residual
path from sources to sinks on N.

The generic preflow algorithm [6] is a class of
maximum flow algorithms that maintain a preflow
and work by repeatedly choosing active vertices
and sending excess flows along residual paths to-
wards the sinks. Until no residual path can be
found in the flow network, based on Theorem 3.1,
the preflow becomes a maximum flow.

In order to maintain the preflow efficiently, a
labeling function d is used to estimate how close
the vertices are to the sinks. For a network N =
(V,E,S,T,cap), a valid labeling function d is a

118

V' — Z function, such that d(v) < d(w) + 1 for
each residual edge (v, w). Also, d(s) = n for each
source s € S, d(t) = 0 for each sink t € T'.

The algorithm basicly consists of a main loop
which repeatedly applies Push/Relabel operations
until the maximum flow is obtained. The algo-
rithm is described as follows:

Algorithm 2 GENERIC_ PREFLOW
(Ga U{vUév 7Ullc)

1. (In1T) Clear all the flow values and labels to
0. For all s € S, send cap(s,u) units of flow
from s to u for all (s,u) € E. Set d(s) =n
and d(v) = 0 for all sources s and non-sources
V.

2. Repeatedly select an active vertex u until no
active vertex exists:

e (PusHRELABEL) Choose and apply one
the following applicable operation on u:

(a) PusH(v,w)
Applicable: If v is active and some
adjacent edge (v,w) is a residual

edge.
Action: Send min(cap(v,w) —
f(v,w),ex(v)) units of flow from v
to w.

(b) RELABEL(v)

Applicable: If v is active and v has
no adjacent residual edge.
Action: Increase d(v) by one.

Figure 3 illustrates a valid labeling function on
the network. The height of vertex indicates the
label value of the vertex. Initially, every non-sink
vertice is placed on height 0. A vertex v (e.g. node
3, 5 or 7) is lifted if it is still active but no residual
edge (v,w) with d(v) = d(w) + 1 can be found.

3.2.2 Abstraction of Generic Preflow Al-
goroithm

After performing an operation, the state of the
related data structures of the generic preflow al-
gorithm is changed, as defined as follows.

Definition 3.1 A state ¢ with repect to
a flow network N is a three tuple q =
(N, f,d), where f is a preflow and d
is a labeling function. Two states q =
(N, f,d) and ¢ = (N, f',d’) are said to

The 26th Workshop on Combinatorial Mathematics and Computation Theory

1 Relabel
\\ Push

Figure 3: Tllustration of Push/Relabel operations.
These operations can be applied in an arbitrary
order. Note that all edges depicted are residual
edges.

be equal if N =N', f = f and d = d
except that the source/sink nodes in N
and N’ can be different. B

The execution of function PUSHRELABEL of
generic preflow algorithm can be represented as
a sequence

,(op",q")) (1)

, where ¢' is the state immediately after applying
i-th operation op’, and L is the total number of
operations performed. The first ¢° and last ¢
refer to the state before and after executing all
the L operations. Hereinafter, such sequence 7 is
called an instance of generic preflow algorithm,
and the set of all instances is denoted by II. An in-
stance Z = (q°, (op,q'), (0p%,¢?),--- , (op*,q"))
is called a prefix of another instance
T — (q/()7 (Opll,qll), (0p'2, q/2)’ e (Op’xl‘/, q/L’))
if ¢ = ¢'7 and op? = op'? for all j, 0 < j < L.
The generic preflow algorithm provides us with
a very useful guideline: Any instance Z € II can
find the maximum flow since PUSH and RELABEL
operations can be applied in an arbitrary order.

T= (q07 (Oplaql)a (0p27q2)7 e

Lemma 3.1 Assume that Z is an instance of the
generic preflow algorithm for the input flow net-
work N. If the first state ¢° is a valid state and
there is no active vertices in the last state q~,
then the execution of instance T obtains the cor-
rect mazimum flow value of N. Additionally, the
length of any instance T is O(n*m), where n and
m is the number of nodes and edges of the flow
network N, respectively.

119

Proof. The properties are discussed in [6] and are
omitted in this paper.ll

3.3 Incremental Maximum Flow Algo-
rithm
A sequence of flow networks (Ny, Na,- -, Ni)

is called a set of incremental flow networks if N;
and N;y; are the same execpt that some sink
nodes in N; turn to non-sink in N;;;. For-
mally, assume that N; = (V, E, S, T;, cap), then,
(N1, No, -+, Ni) is incremental if and ony if
Tiy1 CT; foreach i, 1 <i<k.

The incremental maximum flow alorithm com-
prises of a sequence of basic maximum flow func-
tions, as described in Algorithm 3.

Algorithm 3 INCREMENTAL _PREFLOW
(G’ V1/7V2/’ T 7Vk/)
1: Construct N = (V, E, S, T, cap) from graph G.
2: Let state ¢¥ = {1, f,d} be the state right
after invoking function INIT (in Algorithm 2)
: for stagei=1tok do
Let N; = (V,E, S, T;, cap) with T; = V.
if ¢ > 1 then
Let ¢? = ¢~'7" but with different sink
//see Step 4 and Definition 3.1
end if
8: Invoke function PUSHRELABEL() on state
ql. Let ¢/* = {N;, f,d} be the last state
after performing L; operations in the func-
tion.
9: end for
10: return the maximum flow values of the last
states qfi of all stages i =1,2,--- k.

ANl

V!

-l

Assume that in Algorithm 3, L; is the num-
ber of the operations performed by PUSHRELA-
BEL() in stage i. The sequence of operations
performed in stage ¢ is represented by Z;
(a2, (op},q}), (0p?.q2),--+ (opi,q")), which is
similiar to Equation 1 but plus an additional sub-
script <.

The correctness and time complexity of Algo-
rithm INCREMENTAL _PREFLOW are illustrated in
Figure 4 and discussed in Lemma 3.2.

Lemma 3.2 At the end of each stage i of Al-
gorithm INCREMENTAL _PREFLOW, the maximum
flow value of N; can be obtained from the last state
qlL Also, the total time complexity of Algorithm
INCREMENTAL _PREFLOW, from stages 1 to k, is
O(n?m), where n and m is the number of vertices
and edges of flow network Ny, respectively.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

@
d
] NS
b ~
® ‘35‘ ”@@@];/@*\
i I \;®;®@ h N
0 —Ge
d
17|®
16
© By g
C 7 N
S 13,
s @7@@5@\\7”
[g |1\ I2 ;@. :
1 v \
0

\
T ®
i \ o
|(1~3) |(1—2) |(1-1) / D

Figure 4: The sequence of operations performed in
stage 1,2,--- ,1¢ of the incremental flow network.

Proof. In Algorithm 3, each stage ¢ uses the last
state in previous stage i — 1 as its first state, i.e.
@ = qiijl but change N;_; to N;. The proof is
illustrated in Figure4. Next, we show that ¢) is
a valid state for stage i. Recall that a state is
valid if the condition d(v) < d(w) + 1 holds for
every residual edge (v, w). If qiszl ={N;_1, f,d}
is valid for stage ¢« — 1. Since N; = N;_; except
that some sink in N;_; changes to non-sink in N;.
This implies that ¢ = {N;, f,d} is a valid state
for N;.

For convinient, let Z(;~;) be the concatenience
of the operation sequences from stage 1 to ¢, that
is,

o~y = (Tw)

Zu~ey = (41, 1o)

Za~zy = (T, 12,15)
Tawy = (I, 1)

From above, each Z(;.;) is an instance for the
flow network N; and can derive the maximum flow
value of N; correctly. Furthermore, since Z(;.;) is
the prefix of Z(;.;y1), the total time to perform
all the instances Z(1v1),Z(1~2), "+, Z(1~k) is only
O(n?m) according to Lemma 3.1.1

120

3.4 Incremental Content Deployment

Algorithm

This subsection shows that the incremental
minimum content deployment can be derived by
reducing the problem to the incremental flow net-
work problem. Lemma 3.3 proves this property.

Lemma 3.3 Consider a sequence of incremental
target object sets (U7,Us,--- ,UL) of ODG G =
(U,F). Let (R(G,U7),R(G,U3),--- ,R(G,U}) be
the reduced flow networks in Step 1 in Aglorithm 1.
Then, (R(G,U7),R(G,Uj),--- ,R(G,U}) is a set
of incremental flow networks, and the mazimum
flow value of R(UY) is equal to the cost of minimum
content deployment of G with target object set U],
foreachi=1,2,--- k.

Proof. Assume that N;
(V,E,S,T;,cap), 1 < i < k. Since Uj =
U, = = Uy, the transformed flow net-
works (R(G,U7), R(G,U3),--- ,R(G,U})) are all
the same but with different sink nodes and the
following properties can be derived:

RU;) =

Ui 2 Ui
= pred(U;]) = pred(Uj,)
= V\pred(Uj,,) C V \pred(U;)

= Tyl CT;

, where pred(S) is the set of vertices v with path
to some node in S, and V' \ pred(S) refers to the
set of vertices with path from nodes in S. Recall
that in Algorithm 1, V'\ pred(U) is set as the sink
nodes.

From above, (R(G,U7), R(G,U;),--- ,R(G,Uy}))
are incremental flow networks. Furthermore, from
Lemma 2.1, the maximum flow value of network
R(G,U}) is equal to the cost of minimum deploy-
ment of ODG G with respect to target object set
U/. Thus, the lemma follows.ll

4 Discussion

In this paper, the maximum flow problem for a
single graph is extended to an incremental growing
graph. We show that the time complexity of deriv-
ing k maximum flow values of incremental graphs
Ny, Ny, ---, Ni is no more than that of the sin-
gle graph Nj. The extension can be used to solve
the incremental content object deployment prob-
lem, which is shown can be solved by reducing the
problem to the flow network problem.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

ACKNOWLEDGMENTS

The authors would like to thank the National
Science Council of the Republic of China for finan-

cially supporting this research under contract No
NSC 97-2221-E-029 -022

References

[1] L. Bouge. Repeated snapshots in distributed
systems with synchronous communication and
their implementation in CSP. Theoretical
Comput. Sci, 49:145-169, 1987.

[2] L.B. Chen and I.C. Wu. On the time complex-
ity of minimum and maximum global snap-
shot problems. Information Processing Letters,
67:151-156, 1998.

[3] L.R. Ford and D.R. Fulkerson. Maximal flow
through a network. Can. J. Math., 8:399-404,
1956.

[4] L.R. Ford and D.R. Fulkerson. Flows in Net-
works. Princeton Univ. Press, Princeton, NJ,
1962.

[5] A.V. Goldberg. Recent Developments in Mazi-
mum Flow Problems. Technical report 98-045,
NEC Research Institute, Inc., 1998.

[6] A.V. Goldberg and R.E. Tarjan. A new ap-
proach to the maximum-flow problem. Journal
of the ACM, 35(4):921-940, October 1988.

[7] R.K. Ahuja T.L. Magnanti and J.B. Orlin.
Network Flows: Theory, Algorithms, and Ap-
plications. Prentice-Hall, 1993.

[8] Xueyan Tang and Samuel T. Chanson. Mini-
mal cost replication of dynamic web contents
under flat update delivery. IEEE Transactions
on Parallel and Distributed Systems, 15:431—
441, May 2004.

121

