
E�cient Algorithm for Incrementally Deploying Content Objects

Over Networks

Lung-Pin Chen and Jhen-You Hong
Dept. Computer Science and Information Engineering,

Tunghai University, Taichung, Taiwan
{lbchen,g96350040}@thu.edu.tw

Abstract

Deploying and managing content objects e�-
ciently is critical for building a scalable and trans-
parent content delivery system. This paper investi-
gates the advanced incremental version of the con-
tent deployment problem of which the objects are
delivered in a successive manner. Recently, the
researchers show that the minimum-cost content
deployment can be obtained by reducing the prob-
lem to the well-known network �ow problem. In
this paper, the maximum �ow problem for a sin-
gle graph is extended to an incremental growing
graph. We show that the time complexity of deriv-
ing k maximum �ow values of incremental graphs
N1, N2, · · · , Nk is no more than that of the sin-
gle graph Nk. Based on this property, this work
develops an e�cient algorithm for incrementally
deploying content objects over networks.

1 Introduction

In a content delivery system, the dynamic con-
tent object are constructed by running applica-
tion programs on base data which may change fre-
quently. When a new version of an object is gen-
erated, this object should be re-deployed to keep
the client's data up-to-date. Essentially, a new
version of object can be updated via a direct net-
work transmission. However, with this naive ap-
proach, the content object is entirely transmitted
even only a small change have been made on the
previous version. The transcoding [8] is an im-
portant technique to reduce the cost of deploying
objects. A transcoding operation is a client-side
computation process to construct an object from
the information of its predecessors. The cost of
deploying a set of content objects can be reduced
by taking the trade-o� between direct transimis-
sion and client-side transcoding. Recently, the re-

searchers [8] showed that the object deployment
problem can be solved by using the existing net-
work �ow algorithms [3, 4, 6, 5, 7].

Due to the diversity of Internet applications,
it would be desirable to provide an e�cient way
of incrementally deploying the content objects be-
tween clients and servers over networks. For ex-
ample, in an e-learning system, usually a user ac-
cesses the course content in an incremental man-
ner, according to the learning progress, instead of
accessing the entire course content at one shot. In
this paper, we study the incrementl content ob-
ject deployment problem. We �rst introduce the
notion of incremental �ow networks, which is a
sequence of incrementally growing �ow networks
(N1, N2, · · · , Nk). Then, we show that an incre-
mental content object deployment problem can
be e�ciently solved by using our new incremen-
tal maximum �ow algorithm.

The rest parts of this paper is organized as fol-
lows. In Section 2, we de�ne the basic content de-
ployment problem. Also, the reduction from this
problem to the �ow network problem is discussed.
In Section 3, the e�cient incremental maximum
�ow algorithm and content deployment algorithm
are discussed. Finally, conclusions are made in
Section 4.

2 Basic Content Deployment Algo-

rithm

2.1 Content Deployment Problem

In this paper, the digital content is modeled as
an ODG (object dependency graph) G = (U,F ),
where each v ∈ U refers to a content object (or,
simply, object); each edge (u, v) ∈ F refers to the
dependency relation from object u to v. To model
the transcoding operation, when deploying, all the
objects in graph G are classei�ed into three types:

The 26th Workshop on Combinatorial Mathematics and Computation Theory

115



1

2

3

4

5

6

7

8

net(1)=12
comp(1)=5

net(2)=8
comp(2)=3

net(4)=25
comp(4)=1
0

net(6)=30
comp(6)=4

net(3)=10
comp(3)=6

net(5)=7
comp(5)=14

net(7)=15
comp(7)=10

net(8)=20
comp(8)=6

'
1U '

2U '
2U

Figure 1: An object dependency graph G and tar-
get object sets U ′

1, U
′
2, U

′
3.

O-node, N-node, and C-node. An object v is O-
node if v is not deployed to the client. Also, an
object v is N-node (or C-node) if v is deployed via
a direct network transmission (or via the client-
side transcoding). The sets of O-nodes, N-nodes,
and C-nodes in G are denoted by UO, UN , and UC

respectively.

Given a graph G = (U,F ) and a set of tar-
get objects U ′ ⊆ U , a content object deployment
is a �ve tuple D = (G,U ′, UO, UN , UC) where
{UO, UN , UC} is a partition of vertices of G such
that the following properties hold:

• All the target objects must be deployed to the
client, i.e. U ′ ⊆ {UN ∪ UC}, and

• If object v is a C-node (constructed via the
client-side transcoding) then all of its prede-
cessors must be deployed to the client. That
is, for all v ∈ U and (u, v) ∈ F , v ∈ UC ⇒
u ∈ {UN ∪ UC}.

Let net(v) denote the cost of transmitting object
v from the server to the client, and comp(v) de-
note the cost of transcoding object v from all of
its predecessors. The cost of content deployment
D = (G,U ′, UO, UN , UC) is de�ned as cost(D) =∑

v∈UN
net(v) +

∑
v∈UC

comp(v). The minimum
content deployment, with respect to ODG G and
target object set U ′, is the one with the minimum
cost among all the feasible content deployments.
For example, for the ODG in Figure 2(a), a con-
tent object deployment with D = (G, {6, 7}, UO =
ϕ,UN = {5}, UC = {1, 2, 3, 4, 6, 7}) is the mini-
mum content deployment for for the target objects
{6, 7}.

2.2 Content Deployment Algorithm

Recently, the researchers [8] shown that a min-
imum content deployment problem can be solved
by reducing the problem to the minimum cut
of a �ow network N . A �ow network N =
(V,E, S, T, cap) is a �ve tuple in which (V,E) is a
directed graph where each edge (u, v) ∈ E is asso-
ciated with the non-negative capacity cap(u, v). In
the �ow network, S ⊂ V are designated as source
vertices and T ⊂ V are designated as sink ver-
tices. A source (or sink) vertex only has outgoing
(or incoming) edges.

A �ow f of N is a function from edges to non-
negative values which represents the units of �ow
been sent from the sources to the sinks without ex-
ceeding the edge capacities. That is, the following
properties are satis�ed: (1) f(u, v) ≤ cap(u, v),
and (2) IN(u) = OUT (u) for each vertex u ∈
V \ {S, T} where IN(u) =

∑
v,(v,u)∈E f(v, u) and

OUT (u) =
∑

v,(u,v)∈E f(u, v).
A cut of �ow network N is a partition (X, Y )

on the vertices of N such that all the source nodes
are in X-part and all the sink nodes are in Y -
part. The cost a cut C is cost(C) = {cap(u, v) |u ∈
X, v ∈ Y }. Note that the only the edges from X to
Y contribute their capacities to the cut cost (ex-
cluding those edges from Y to X). Ford and Fulk-
erson prove the following max-�ow-min-cut theo-
rem [3].

Theorem 2.1 Given a �ow network, its maxi-
mum �ow value and minimum cut cost are equal.

The reduction of a content object deployment
problem to the �ow network problem is illustrated
in Algorithm 1 and explained in Algorithm 1.

A reduction from G to N for Step 1 of Algo-
rithm 1 is illustrated in Figure 2. For the target
set U ′

3 = {6, 7} in Figure 1, the minimum con-
tent object deployment is D = (G, {6, 7}, UO =
ϕ,UN = {5}, UC = {1, 2, 3, 4, 6, 7}). Observing
Figure 1 and Figure 2, we can �nd that the min-
imum cut cost of the reduced network N is equal
to cap(5b, 5e) + cap(s, 1b) + cap(s, 2) + cap(s, 3) +
cap(s, 4)+cap(s, 6)+cap(s, 7) = net(a)+comp(b),
a ∈ UN and b ∈ UC . Clearly, this cost is equal to
cost(D).

For convinient, a cut with cost not equal to
∞ is caled a feasible cut. Also, given a cut C,
let D = Map(C) be the content deployment con-
structed in Step 3 in Algorithm 1. The Map func-
tion establishes the one-to-one mapping between

The 26th Workshop on Combinatorial Mathematics and Computation Theory

116



Algorithm 1 Basic_Content_Deployment
(G, U ′)

1. (Reduction) Perform the following vertex-
to-edge transformation from ODG G =
(U,F, ) to �ow network N = (V, E, S, T, cap):

• For each vertex a in the graph G, add
two nodes abegin and aend to N . Then,
add edge (abegin, aend) and (aend, abegin)
to N . Let cap(abegin, aend) = net(a) and
cap(abegin, aend) = ∞.

• Add a source node s to N . Then,
add edge (s, abegin) to N and let
cap(s, abegin) = comp(a) for all objects
a.

• If an edge (a, b) exists in G then add an
∞-capacity edge (aend, bbegin) in N .

• For all target objects a in U ′, set aend as
a sink node of N .

2. After the �ow network N is constructed, �nd
the minimum cut C = (X, Y ) of N by using
the existing maximum �ow algorithms [8].

3. (Mapping) Construct the minimum deploy-
ment D = (G,U ′, UO, UN , UC) based on the
following mapping:

• Object a ∈ UO ⇔ abegin ∈ X and aend ∈
X in N

• Object a ∈ UN ⇔ abegin ∈ X and aend ∈
Y in N

• Object a ∈ UC ⇔ abegin ∈ Y and aend ∈
Y in N

4. return D

cuts of N and deployments of G. This mapping
con�rms the correctness of Algorithm 1 as proved
in Lemma 2.1.

Lemma 2.1 For an ODG G = (U,F ) and a set
of target objects U ′ ⊂ U. Let N be the �ow network
constructed in Step 1 in Algorithm 1. The Map
function is an one-to-one mapping between feasible
cuts of N and content deployments of G. Also,
cost(C) = cost(Map(C)).

Proof. Note that the proof is simpli�ed from
that in [8]. Since the non-feasible cut with cost
∞ can not be a minimum cut, it is enough to
consider only feasible cuts. For each feasible cut

12

10 7 15

30

20

8 25

1bs 1e

2b 2e

3b 3e

4b 4e 6b 6e

5b 5e 7b 7e

8b 8e
6

4

3

10

5

6

14
10

∞ -capacity edges

1D

2D

3D

Figure 2: An object dependency graph G and tar-
get object sets U ′

1, U
′
2, U

′
3.

C = (X, Y ) of N , assume that D = Map(C) =
(G, U ′, UO, UX , UC) is constructed in Step 3 in the
algorithm.

First, we show that for each C, the cor-
responding Map(C) is a valid content deploy-
ment of G. Recall that N has nodes {s} ∪
{abegin, aend | a is an object in G}. In cut C =
(X, Y ), if a node bbegin ∈ Y then aend ∈ Y for
all aend with cap(aend, bbegin) = ∞. (Otherwise, C
has cost ∞ and can not be a feasible cut.) From
the mapping rules in Step 3 in the algorithm, we
can derive that in D,

b ∈ UC =⇒ a ∈ {UN ∪ UC},∀(a, b) in G

Also, since aend ∈ Y for all taget objects a. This
impies that in D,

a ∈ {UN ∪ UC},∀a ∈ U ′

From above, D is a valid deployment of G and its
cost is equal to that of cut C.

3 Incremental Content Deployment

Algorithms

3.1 Incremental Minimum Content
Deployment Problem

For two vertices u and v in an ODG G, de-
note it by u ≼ v if there is a path from u to
v. Moreover, for two vertex sets S1 and S2,
S1 ≼ S2 if and only if u ≼ v for each u ∈ S1

and v ∈ S2. A sequence of content deployments is
called the incremental content deployments if all
of them are de�ned on an same ODG but with in-
crementally growing target object sets. Formally,

The 26th Workshop on Combinatorial Mathematics and Computation Theory

117



let Di = (G,U ′
i , UOi , UNi , UCi), i = 1, 2, · · · , k,

then, (D1, D2, · · · , Dk) is an incremental content
deployment if U ′

1 ≼ U ′
2 ≼ · · · ≼ U ′

k. Furthermore,
(D1, D2, · · · , Dk) is said to be minimum if each
member Di is minimum with respect to the target
set U ′

i .

3.2 Abstraction of Network Flow Algo-
rithms

For example, consider the target set U ′
1 =

{2, 3}, U ′
2 = {4, 5}, and U ′

3 = {6, 7} in Figure
1. Since U ′

1 ≼ U ′
2 ≼ U ′

3, these target sets de�ne
an incremental content deployment problem. The
minimum deploment for U ′

1, U
′
2, and U ′

3 are labeled
as D1, D2, and D3 in Figure 2, respectively.

In this subsection, we provide a high-level ab-
straction for the �ow network algorithms. The ab-
straction is helpful on extending the basic content
deploying algorithm to the incremental version.

3.2.1 Generic Pre�ow Algorithm

A pre�ow f on a �ow network is a �ow except
that the total �ow into a non-source non-sink ver-
tex u can exceed that out of u. Namely, for all
u ∈ V \ {S ∪ T}, IN(u) ≥ OUT (u) [6]. The dif-
ference between the total �ow into and out of u
is called the excess �ow and denoted by ex(u) =
IN(u)−OUT (u). A non-source non-sink vertex u
is called active if ex(u) > 0. Also, an edge (u, v)
with f(u, v) < cap(u, v) is called a residual edge.
Clearly, there is still at most cap(u, v) − f(u, v)
units of �ow can be sent via edge (u, v) without
violating the capacity constraint. A path with all
residual edges is called a residual path. Herein af-
ter, let n and m denote the number of vertices and
edges of N , repsectively. Ford and Fulketson [3]
proved Theorem 3.1.

Theorem 3.1 ([3]) A pre�ow f is a maximum
�ow of network N if and only if there is no residual
path from sources to sinks on N .

The generic pre�ow algorithm [6] is a class of
maximum �ow algorithms that maintain a pre�ow
and work by repeatedly choosing active vertices
and sending excess �ows along residual paths to-
wards the sinks. Until no residual path can be
found in the �ow network, based on Theorem 3.1,
the pre�ow becomes a maximum �ow.

In order to maintain the pre�ow e�ciently, a
labeling function d is used to estimate how close
the vertices are to the sinks. For a network N =
(V,E, S, T, cap), a valid labeling function d is a

V → Z function, such that d(v) ≤ d(w) + 1 for
each residual edge (v, w). Also, d(s) = n for each
source s ∈ S, d(t) = 0 for each sink t ∈ T .

The algorithm basicly consists of a main loop
which repeatedly applies Push/Relabel operations
until the maximum �ow is obtained. The algo-
rithm is described as follows:

Algorithm 2 Generic_Preflow
(G, U ′

1, U
′
2, · · · , U ′

k)

1. (Init) Clear all the �ow values and labels to
0. For all s ∈ S, send cap(s, u) units of �ow
from s to u for all (s, u) ∈ E. Set d(s) = n
and d(v) = 0 for all sources s and non-sources
v.

2. Repeatedly select an active vertex u until no
active vertex exists:

• (PushRelabel) Choose and apply one
the following applicable operation on u:

(a) Push(v, w)
Applicable: If v is active and some
adjacent edge (v, w) is a residual
edge.
Action: Send min(cap(v, w) −
f(v, w), ex(v)) units of �ow from v
to w.

(b) Relabel(v)
Applicable: If v is active and v has
no adjacent residual edge.
Action: Increase d(v) by one.

Figure 3 illustrates a valid labeling function on
the network. The height of vertex indicates the
label value of the vertex. Initially, every non-sink
vertice is placed on height 0. A vertex v (e.g. node
3, 5 or 7) is lifted if it is still active but no residual
edge (v, w) with d(v) = d(w) + 1 can be found.

3.2.2 Abstraction of Generic Pre�ow Al-
goroithm

After performing an operation, the state of the
related data structures of the generic pre�ow al-
gorithm is changed, as de�ned as follows.

De�nition 3.1 A state q with repect to
a �ow network N is a three tuple q =
(N, f, d), where f is a pre�ow and d
is a labeling function. Two states q =
(N, f, d) and q′ = (N ′, f ′, d′) are said to

The 26th Workshop on Combinatorial Mathematics and Computation Theory

118



S=1

5

2

3

4

7

6

t=80

1

2

3

4

8

Relabel

Push

d

Figure 3: Illustration of Push/Relabel operations.
These operations can be applied in an arbitrary
order. Note that all edges depicted are residual
edges.

be equal if N = N ′, f = f ′ and d = d′

except that the source/sink nodes in N
and N ′ can be di�erent.

The execution of function PushRelabel of
generic pre�ow algorithm can be represented as
a sequence

I = (q0, (op1, q1), (op2, q2), · · · , (opL, qL)) (1)

, where qi is the state immediately after applying
i-th operation opi, and L is the total number of
operations performed. The �rst q0 and last qL

refer to the state before and after executing all
the L operations. Hereinafter, such sequence I is
called an instance of generic pre�ow algorithm,
and the set of all instances is denoted by Π. An in-
stance I = (q0, (op1, q1), (op2, q2), · · · , (opL, qL))
is called a pre�x of another instance
I ′ = (q′0, (op′1, q′1), (op′2, q′2), · · · , (op′xL′

, q′L
′
))

if qj = q′j and opj = op′j for all j, 0 ≤ j ≤ L.
The generic pre�ow algorithm provides us with

a very useful guideline: Any instance I ∈ Π can
�nd the maximum �ow since Push and Relabel
operations can be applied in an arbitrary order.

Lemma 3.1 Assume that I is an instance of the
generic pre�ow algorithm for the input �ow net-
work N . If the �rst state q0 is a valid state and
there is no active vertices in the last state qL,
then the execution of instance I obtains the cor-
rect maximum �ow value of N . Additionally, the
length of any instance I is O(n2m), where n and
m is the number of nodes and edges of the �ow
network N , respectively.

Proof. The properties are discussed in [6] and are
omitted in this paper.

3.3 Incremental Maximum Flow Algo-
rithm

A sequence of �ow networks (N1, N2, · · · , Nk)
is called a set of incremental �ow networks if Ni

and Ni+1 are the same execpt that some sink
nodes in Ni turn to non-sink in Ni+1. For-
mally, assume that Ni = (V,E, S, Ti, cap), then,
(N1, N2, · · · , Nk) is incremental if and ony if
Ti+1 ⊆ Ti for each i, 1 ≤ i < k.

The incremental maximum �ow alorithm com-
prises of a sequence of basic maximum �ow func-
tions, as described in Algorithm 3.

Algorithm 3 Incremental_Preflow
(G, V ′

1 , V ′
2 , · · · , V ′

k)

1: Construct N = (V, E, S, T, cap) from graph G.
2: Let state q0

1 = {N1, f, d} be the state right
after invoking function Init (in Algorithm 2)

3: for stage i = 1 to k do
4: Let Ni = (V,E, S, Ti, cap) with Ti = V ′

i .
5: if i > 1 then
6: Let q0

i = q
Li−1
i−1 but with di�erent sink V ′

i

//see Step 4 and De�nition 3.1
7: end if
8: Invoke function PushRelabel() on state

q1
i . Let qLi

i = {Ni, f, d} be the last state
after performing Li operations in the func-
tion.

9: end for
10: return the maximum �ow values of the last

states qLi
i of all stages i = 1, 2, · · · , k.

Assume that in Algorithm 3, Li is the num-
ber of the operations performed by PushRela-
bel() in stage i. The sequence of operations
performed in stage i is represented by Ii =
(q0

i , (op1
i , q

1
i ), (op2

i , q
2
i ), · · · , (opLi

i , qLi
i )), which is

similiar to Equation 1 but plus an additional sub-
script i.

The correctness and time complexity of Algo-
rithm Incremental_Preflow are illustrated in
Figure 4 and discussed in Lemma 3.2.

Lemma 3.2 At the end of each stage i of Al-
gorithm Incremental_Preflow, the maximum
�ow value of Ni can be obtained from the last state
qLi
i . Also, the total time complexity of Algorithm
Incremental_Preflow, from stages 1 to k, is
O(n2m), where n and m is the number of vertices
and edges of �ow network Nk, respectively.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

119



0

1b
1e

2b
2e

3b
3e

4b
4e 6b 6e5e 7b 7e 8b 8e

6

1
2
3
4
5

d

0

1b

s

1e
2b

2e
3b

3e
4b

4e
6b

6e

5e
7b

7e 8b 8e

6
7

17
16

1
2
3
4
5

8
9

d

0

1b
1e

2b
2e

3b
3e 4b 4e 6b 6e5b 5e 7b 7e 8b 8e

1
2
3
4

1I

2I

1I

(a)

(b)

(c)

)1~1(I)2~1(I)3~1(I

d

~~

~~

1I
2I

3I

Figure 4: The sequence of operations performed in
stage 1, 2, · · · , i of the incremental �ow network.

Proof. In Algorithm 3, each stage i uses the last
state in previous stage i − 1 as its �rst state, i.e.

q0
i = q

Li−1
i−1 but change Ni−1 to Ni. The proof is

illustrated in Figure4. Next, we show that q0
i is

a valid state for stage i. Recall that a state is
valid if the condition d(v) ≤ d(w) + 1 holds for

every residual edge (v, w). If q
Li−1
i−1 = {Ni−1, f, d}

is valid for stage i − 1. Since Ni = Ni−1 except
that some sink in Ni−1 changes to non-sink in Ni.
This implies that q0

i = {Ni, f, d} is a valid state
for Ni.

For convinient, let I(1∼i) be the concatenience
of the operation sequences from stage 1 to i, that
is,

I(1∼1) = (I1)
I(1∼2) = (I1, I2)
I(1∼3) = (I1, I2, I3)

· · ·
I(1∼k) = (I1, I2, · · · , Ik)

From above, each I(1∼i) is an instance for the
�ow network Ni and can derive the maximum �ow
value of Ni correctly. Furthermore, since I(1∼i) is
the pre�x of I(1∼i+1), the total time to perform
all the instances I(1∼1), I(1∼2), · · · , I(1∼k) is only
O(n2m) according to Lemma 3.1.

3.4 Incremental Content Deployment
Algorithm

This subsection shows that the incremental
minimum content deployment can be derived by
reducing the problem to the incremental �ow net-
work problem. Lemma 3.3 proves this property.

Lemma 3.3 Consider a sequence of incremental
target object sets (U ′

1, U
′
2, · · · , U ′

k) of ODG G =
(U,F ). Let (R(G,U ′

1), R(G,U ′
2), · · · , R(G,U ′

k) be
the reduced �ow networks in Step 1 in Aglorithm 1.
Then, (R(G, U ′

1), R(G, U ′
2), · · · , R(G,U ′

k) is a set
of incremental �ow networks, and the maximum
�ow value of R(U ′

i) is equal to the cost of minimum
content deployment of G with target object set U ′

i ,
for each i = 1, 2, · · · , k.

Proof. Assume that Ni = R(U ′
i) =

(V,E, S, Ti, cap), 1 ≤ i ≤ k. Since U ′
1 ≼

U ′
2 ≼ · · · ≼ U ′

k, the transformed �ow net-
works (R(G,U ′

1), R(G,U ′
2), · · · , R(G,U ′

k)) are all
the same but with di�erent sink nodes and the
following properties can be derived:

U ′
i ≼ U ′

i+1

⇒ pred(U ′
i) ≼ pred(U ′

i+1)
⇒ V \ pred(U ′

i+1) ⊂ V \ pred(U ′
i)

⇒ Ti+1 ⊆ Ti

, where pred(S) is the set of vertices u with path
to some node in S, and V \ pred(S) refers to the
set of vertices with path from nodes in S. Recall
that in Algorithm 1, V \pred(U ′

i) is set as the sink
nodes.

From above, (R(G, U ′
1), R(G, U ′

2), · · · , R(G,U ′
k))

are incremental �ow networks. Furthermore, from
Lemma 2.1, the maximum �ow value of network
R(G,U ′

i) is equal to the cost of minimum deploy-
ment of ODG G with respect to target object set
U ′

i . Thus, the lemma follows.

4 Discussion

In this paper, the maximum �ow problem for a
single graph is extended to an incremental growing
graph. We show that the time complexity of deriv-
ing k maximum �ow values of incremental graphs
N1, N2, · · · , Nk is no more than that of the sin-
gle graph Nk. The extension can be used to solve
the incremental content object deployment prob-
lem, which is shown can be solved by reducing the
problem to the �ow network problem.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

120



ACKNOWLEDGMENTS

The authors would like to thank the National
Science Council of the Republic of China for �nan-
cially supporting this research under contract No
NSC 97-2221-E-029 -022

References

[1] L. Bouge. Repeated snapshots in distributed
systems with synchronous communication and
their implementation in CSP. Theoretical
Comput. Sci, 49:145�169, 1987.

[2] L.B. Chen and I.C. Wu. On the time complex-
ity of minimum and maximum global snap-
shot problems. Information Processing Letters,
67:151�156, 1998.

[3] L.R. Ford and D.R. Fulkerson. Maximal �ow
through a network. Can. J. Math., 8:399�404,
1956.

[4] L.R. Ford and D.R. Fulkerson. Flows in Net-
works. Princeton Univ. Press, Princeton, NJ,
1962.

[5] A.V. Goldberg. Recent Developments in Maxi-
mum Flow Problems. Technical report 98-045,
NEC Research Institute, Inc., 1998.

[6] A.V. Goldberg and R.E. Tarjan. A new ap-
proach to the maximum-�ow problem. Journal
of the ACM, 35(4):921�940, October 1988.

[7] R.K. Ahuja T.L. Magnanti and J.B. Orlin.
Network Flows: Theory, Algorithms, and Ap-
plications. Prentice-Hall, 1993.

[8] Xueyan Tang and Samuel T. Chanson. Mini-
mal cost replication of dynamic web contents
under �at update delivery. IEEE Transactions
on Parallel and Distributed Systems, 15:431�
441, May 2004.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

121




