
The i-largest Number Domination Sequence and Its Application to
the Average Case Analysis of the Horspool Algorithm

S. C. Chen, G. S. Huang and R. C. T. Lee

Department of Department of Computer Science and Information Engineering,

National ChiNan University, Puli, Nantou Hsien, Taiwan, 54561

{s94321905, shieng, rctlee}@ncnu.edu.tw

Abstract

In this paper, we define the i-largest number

domination sequence and compute the number of

i-largest number domination sequence with

length L. We use this result to analyze the

average case analysis of the Horspool algorithm

when we are given a random pattern and a

random text.

1 Introduction

We define the i-largest number domination

sequence as follows:

An i-largest number domination sequence is a

sequence S consisting of integers 1, 2, …, i

satisfying the following conditions:

1 The integer i is the largest in the sequence,

appears at the last position and appears

only once and the integer at the first

position must be 1.

2 For every positive integer k smaller than i,

there exists a k-largest number domination

sequence as a prefix of S.

Because the number of i-largest number

domination sequence with L can be proved to be

equivalent to Stirling numbers of the second

kind (the number of ways of partitioning a set of

n elements into m nonempty sets), the recurrence

formula to compute the number of i-largest

number domination sequences with length L is

similar to the recurrence formula of Stirling

numbers of the second kind. This formula is

related to the average case analysis of the

Horspool algorithm [4].

The exact string matching problem is a

classical problem in computer science and can

be applied to many fields. For example, DNA

sequence analysis, searching engines, subcircuit

extraction problem, image processing and virus

scanning all apply this technique. There are

many algorithms to solve this problem. The

famous algorithms are KMP algorithm [2] and

BM algorithm [3]. Horspool algorithm is one

of the algorithms to solve the exact string

matching and this algorithm is the simplified

version of the Boyer-Moore algorithm.

The time complexity of the worst case for

KMP Algorithm and BM Algorithm is also O(n)

where n is the length of the text. The time

complexity of the worst case for Horspool

Algorithm is O(mn) where m is the length of the

pattern. In [1], Yao showed that the

average-case complexity of exact string

matching problem is ⎟
⎠
⎞

⎜
⎝
⎛Ω m

m
n

log . In [5],

The 26th Workshop on Combinatorial Mathematics and Computation Theory

259

they showed that the expect number of

comparison for Horspool Algorithm is related to

the average shift where shift is the distance to

move P, hence we want to compute the average

shift in our paper.

The organization of this paper is as follows.

Section 2 presents a recurrence formula to

compute the number of i-largest number

domination sequences with length L. Section 3

presents the string matching problem and the

Horspool algorithm. Section 4 presents the

relation between the i-largest number

domination sequence and the average case

analysis of the Horspool algorithm. Section 5

presents the detail of the average case analysis of

the Horspool algorithm. Section 6 is the

experiment to verify our theorem. The last

section is our conclusion.

2 A Recurrence Formula to
Compute the Number of i-largest
Number Domination Sequences with
Length L

According to the definition given in Section 1,

we give several examples of the i-largest number

domination sequences. The following

sequences are all i-largest number domination

sequences for some i:

{1,12,123,1234,112,11112,1111112,1223,1213,1

2223,12221334}

The following sequences are not i-largest

number domination sequences:

{11,121,1122344,1233,213,2213}

The i-largest number domination sequence

problem is to determine the total number of

i-largest number domination sequences with

length L for a given i and a given L. For

instance, let i=3 and L=3. Then there is only

one 3-largest number domination sequences with

length 3, namely 123. If i=2 and L=3, there is

also one 2-largest number domination sequences

with length 3, namely 112. For i=3 and L=4,

there are three 3-largest number domination

sequences with length 4, namely 1123, 1213 and

1223.

How do we compute the total number of

i-largest number of domination sequences with

length L? Let D(i, L) be the number of all

i-largest number domination sequences with

length L. That is, i is the largest number and

the length of the sequences are all L. Then we

have the following recurrence formula:

D(i, L) = D(i-1, L-1) + (i-1) D(i, L-1)

 for i≧2 and L≧i

with boundary conditions D(1, L)=0 for L>1 and

D(i, i)=1 for i≧1. This recurrence formula can

be derived from the following reasoning. Let

a1 a2 …aL be a i-largest number domination

sequence with length L. Clearly, aL must be i.

Now consider the position of the first occurrence

of i-1 in a1 a2 …aL-1. There are two

possibilities: it can be at position L-1 or prior to

position L-1. As for the first case, a1 a2 …aL-1

is an (i-1)-largest number domination sequence

with length L-1. Hence there are D(i-1, L-1)

such sequences. As for the second case, aL-1

must be one of 1, 2,…, i-1. It follows that a1

a2 …aL-2 i (note that aL-1 is replaced by the

number i) is an i-largest number domination

sequence with length L-1. Since there are D(i,

L-1) i-largest number domination sequences with

length L-1 and each one further contributes (i-1)

sequences to a1 a2 …aL-1, the term (i-1) D(i, L-1)

follows. The boundary condition D(i, i)=1

The 26th Workshop on Combinatorial Mathematics and Computation Theory

260

because there is only one i-largest number

domination sequence with length i for all i and

D(1, L)=0 for L>1 because there is no 1-largest

number domination sequence whose length is

larger than 1.

For instance,

D(4, 6)

=D(3, 5)+3D(4, 5)= ... = 25.

We list D(i, L) for 1≦i≦7 and 1≦L≦7 in

Table 1.

Table 1. The number of i-largest number

domination sequence with length L for 1≦i≦7

and 1≦L≦7.

L

i
1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 1 1 1 1 1 1

3 1 3 7 15 31

4 1 6 25 90

5 1 10 65

6 1 15

7 1

3 The Exact String Matching
Problem and the Horspool
Algorithm

For the exact string matching problem, we are

given a text T=t1t2…tn and a pattern P=p1p2…pm

for n≧m. Our job is to find all occurrences of

P in T. The Horspool algorithm is one of the

algorithms to solve the exact string matching

problem and it can be considered as a simplified

version of the Boyer-Moore algorithm. The

idea of the Horspool algorithm is follows.

Let W be a substring of T with length m, the

last character of W be x and P(i, j) be the

substring of P with length j-i+1 whose first

character is pi and the last character is pj. If we

have to move P in order to find an occurrence of

P after W in T, we must align the rightmost x in

P(1, m-1) to the last character x in W as shown in

Figure 2. Let shift be the distance to move P.

If x does not occur in P(1, m-1), we move P to

the next position of x of W as shown in Figure 3.

If x occurs in P(1, m-1) and the location of x in

P(1, m-1) is m-L, the shift=m-(m-L)=L,

otherwise shift = m.

Figure 1

Figure 2

Figure 3

The pseudo code of the Horspool algorithm [4]

is extremely simple and is presented in the

following.

Program The Horspool Algorithm

Input: A text string T and a pattern string

 with lengths and respectively P n m
Output: All occurrences of in P T .

bmsearch(text, n, pattern, m) /* Search

The 26th Workshop on Combinatorial Mathematics and Computation Theory

261

pattern[1…m] in text[1…n]*/

char text[], pattern[];

int n, m;

{

 /*Preprocessing*/

int d[alphabet_size], i, j, k;

 for (j=0; j<alphabet_size; j=j+1) d[j]=m;

 for (j=1; j<m; j=j+1) d[pattern[j]]=m-j;

 /*Search*/

 for (i=m; i<=n; i=i+d[text[i]])

 {

k=i;

for (j=m; j>0&&text[k]= =

pattern[j]; j=j-1) k=k-1;

if (j = = 0)

Report_match_at_position(k

+1);

}

}

As can be seen, the Horspool Algorithm is

actually a window sliding algorithm. The

average number of steps of the shifting of the

window is therefore very important. If, in

average, the number of steps of the window

being shifted is large, the algorithm is efficient.

For the Horspool Algorithm, the number of steps

of shifting is determined by how distinct

characters are arranged in the pattern P. Let us

consider

P=TCAACGTTTTTTTTTT.

We can easily see that if the last character of

the window W is not T, the number of steps of

this pattern shifting is quite large. On the other

hand, suppose that

 P=ACCGTGTACCCACGTT

In this case, no matter what the last character

of the window W is, the number of steps of the

pattern shifting is relatively small.

4 Relations of the i-largest Number
Domination Sequences to Average
Case Analysis of the Horspool
Algorithm

We are facing an interesting problem.

Suppose that the alphabet is

{ }cxxx ,,, 21 L=Σ . Without losing

generality, we may assume that when we scan

from right to the left in the P, starting from

, the distinct characters we encounter are

ordered as . That is, .

Then the second distinct character we encounter

is . For example, let

1−mp
xx ,, 21 L

2x

cx, 11 xpm =−

 P1 = ACCGTTGTAC.

Then,

 x1=A, located at p9;

 x2=T, located at p8;

 x3=G, located at p7;

 x4=C, located at p3.

For each , we want to know the location of

the rightmost in P(1, m-1) if it does exist,

counted from location

ix
xi

1−m . Let us denote

this number as shifti. For the same example P1

= ACCGTTGTAC, we have

 shift1 = 1;

 shift2 = 2;

 shift3 = 3;

The 26th Workshop on Combinatorial Mathematics and Computation Theory

262

 shift4=7.

:1S 1 (the first 1 appears at location 1.) In order to find the average case

performance of the Horspool Algorithm, we

have to find the average values of shifti’s,

“average shift” for short. It will be informative

for us to code the string P(1, m-1) into a string

consisting of positive integers only. Let us

code by For P1=ACCGTTGTAC, the

coding is as follows:

ix .i

:2S 112 (the first 2 appears at location 3.)

:3S 112123 (the first 3 appears at location 6.)

:4S 11212134 (the first 4 appears at location 8.)

 The physical meaning of each sequence

listed above is as follows:

S1: The first distinct character appears in P2 at

location m-1;

 x1 = A →1;

 x2 = T →2;

S2: The second distinct character appears in P2 at

location m-3;

 x3 = G →3;

 x4 = C →4.

S3: The third distinct character appears in P2 at

location m-6;

Thus the original pattern P1(1, m-1) becomes:

144322321. Let us now reverse it and we have

123223441. We use the notation N(P) to

denote the inverted sequence of P.

S4: The third distinct character appears in P2 at

location m-8.

 Scanning from the left on the inverted

sequence, let us single out four prefix sequences:

the prefix sequence where the first 1 appears and

1 is the largest, the sequence where the first 2

appears and 2 is the largest and so on. We have

the following sequences:

Hence, shift1=1, shift2=3, shift3=6 and shift4=8.

In other words, that the sequence S1 for the

first distinct character appears at location m-1 in

P is equal to 1-largest number domination

sequence with length 1. That the sequence S2

for the second distinct character appears at

location m-3 in P is equal to 2-largest number

domination sequence with length 3. In general,

that the sequence for the ith distinct character

appears at location m-L in P is equal to the

i-largest number domination sequence with

length L.

S1: 1 (the first 1 appears at location 1.)

S2: 12 (the first 2 appears at location 2.)

S3: 123 (The first 3 appears at location 3.)

S4: 1232234 (The first 4 appears at location 7.)

 We shall point out that these sequences

have a common property. Before doing that, let

us consider another example. Let P2 =

ACTGGGATCAGAGAAT. It can be seen that

P2(1, m-1) becomes 132422143121211. We

reverse the above sequence into

 N(P2)=112121341224231 under the coding

{A→1, G→2, C→3, T→4,}. Then we have

the following sequences:

5 On the Average Case Analysis of
the Horspool Algorithm

From the above discussion, we can see that

the first distinct character in P(1, m-1), counted

from the right, must be located at m-1 in P with

The 26th Workshop on Combinatorial Mathematics and Computation Theory

263

shift = 1 as shown in Figure 4. But the second

distinct character may appear at anywhere. To

analyze the average case performance of the

Horspool Algorithm, we must know the average

shift of the i-th distinct character for a random

pattern and a random text. It turns out that this

problem can be formulated as the i-largest

number domination problem.

The first
distinct symbol

W

P

T

m-1

Figure 4

If we are given random numeral sequences

with length L, the probability that an i-largest

number domination sequence with length L

occurs is

Lc
LiD),(

 (3)

 When the ith distinct character is equal to x,

the last character of W, its shift is equal to L,

which is also the length of the i-largest number

domination sequence with length L where L<m.

The average shift for the ith distinct symbol in a

random pattern with length m is

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛1),(m

iL
Lc
LiDL (4)

If x does not occur in P(1, m-1), then shift = m.

For example, the last symbol of W in T is 4 and

P(1, m-1)=33211. Thus shift =5. However,

33211 does not conform to the definition of

i-largest number domination sequence. How

do we conquer this difficulty?

From the above example, we can insert 4 in

front of 33211. Thus, P(1, m-1) is extended to

433211 and this sequence conforms to the

definition of i-largest number domination

sequence. For the above method, the number

of ith distinct symbol which does not occurs at

P(1, m-1) is D(i, m). The probability that the

ith distinct symbol does not appear in P(1, m-1)

for a random pattern is

1

),(
−mc
miD

 (5)

Thus, the average shift for ith distinct symbol

is

1

1),(),(
−

−

=

+⎟
⎠
⎞

⎜
⎝
⎛∑ m

m

iL
L c

miDm
c

LiDL (6)

Because alphabet size is c and the average

shift of the first distinct symbol is 1, the average

shift is

∑ ∑
=

−

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛c

i
m

m

iL
L c

miDm
c

LiDL
c 1

1

1),(),(1
 (7)

The alphabet contains c distinct symbols.

Hence there are c choices for the first distinct

symbol, c-1 choices for the second distinct

symbol,… , and there are c-i choices for the ith

distinct symbol. Hence, there are

),(),(icPLiD (8)

choices for each i-largest number domination

sequence where () ()!
!

,
ic

cicP
−

=

In other words, if we are given a general

pattern, the average shift is

()icP
c

miDm
c

LiDL
c

c

i
m

m

iL
L ,

),(),(1

1
1

1

∑ ∑
=

−

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

 (9)

If the length of P is 7 and c=4, the average

shift is 3.303711. If the length of P is 11 and

c=4, the average shift is 3.814956665.

6 Experiments

We do an experiment to get the average shift

The 26th Workshop on Combinatorial Mathematics and Computation Theory

264

using DNA sequences. The input is a random

text with length 10000 and all combinations of

pattern with length 6, 7 and 11. Totally, we do

this experiment for each length 10 times. The

results are in the following Table 2.

Average shift

The length of pattern

Experiment

value

Theoretical

value

m=6 3.287554 3.012695

m=7 3.466941 3.303711

m=11 3.836701 3.814986

7 Conclusion

In this paper, we define the i-largest number

domination sequences and compute the number

of the i-largest number domination sequences

with length L. We use this result to analyze the

average shift of the Horspool algorithm. In the

future, we will investigate on how to simplify

the formula (9) and to discover more

applications of the i-largest domination

sequences.

Reference

[1] A. C. Yao, The Complexity of Pattern

Matching for a Random String, SIAM

Journal on Computing, Vol. 8, No. 3, pp.

368-387, 1979.

[2] D. E. Knuth, J. H. Morris and V. R. Pratt,

Fast Pattern Matching in Strings, SIAM

Journal on Computing, Vol. 6, pp. 323-350,

1977.

[3] R. Boyer and S. Moore, A Fast String

Searching Algorithm, Communications of

the ACM, Vol. 20, pp762-772, 1977.

[4] R. N. Horspool, Practical Fast Searching in

Strings, Software Practice and Experience,

Vol. 10, pp. 501-506, 1980.

[5] Ricardo A. Baeza-Yates and Mireille Ré

gnier, Average Running Time of the

Boyer Moore Horspool Algorithm,

Theoretical Computer Science, Vol.

92 , Issue 1 pp.19-31, 1992.

The 26th Workshop on Combinatorial Mathematics and Computation Theory

265

