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Abstract 

   

In this paper, we define the i-largest number 

domination sequence and compute the number of 

i-largest number domination sequence with 

length L.  We use this result to analyze the 

average case analysis of the Horspool algorithm 

when we are given a random pattern and a 

random text.    

 

 

1  Introduction 

   

We define the i-largest number domination 

sequence as follows: 

An i-largest number domination sequence is a 

sequence S consisting of integers 1, 2, …, i 

satisfying the following conditions: 

 

1 The integer i is the largest in the sequence, 

appears at the last position and appears 

only once and the integer at the first 

position must be 1. 

2 For every positive integer k smaller than i, 

there exists a k-largest number domination 

sequence as a prefix of S. 

Because the number of i-largest number 

domination sequence with L can be proved to be 

equivalent to Stirling numbers of the second 

kind (the number of ways of partitioning a set of 

n elements into m nonempty sets), the recurrence 

formula to compute the number of i-largest 

number domination sequences with length L is 

similar to the recurrence formula of Stirling 

numbers of the second kind.  This formula is 

related to the average case analysis of the 

Horspool algorithm [4].  

The exact string matching problem is a 

classical problem in computer science and can 

be applied to many fields.  For example, DNA 

sequence analysis, searching engines, subcircuit 

extraction problem, image processing and virus 

scanning all apply this technique.  There are 

many algorithms to solve this problem.  The 

famous algorithms are KMP algorithm [2] and 

BM algorithm [3].  Horspool algorithm is one 

of the algorithms to solve the exact string 

matching and this algorithm is the simplified 

version of the Boyer-Moore algorithm.   

The time complexity of the worst case for 

KMP Algorithm and BM Algorithm is also O(n) 

where n is the length of the text.  The time 

complexity of the worst case for Horspool 

Algorithm is O(mn) where m is the length of the 

pattern.  In [1], Yao showed that the 

average-case complexity of exact string 

matching problem is ⎟
⎠
⎞

⎜
⎝
⎛Ω m

m
n

log  .  In [5], 

The 26th Workshop on Combinatorial Mathematics and Computation Theory

259



they showed that the expect number of 

comparison for Horspool Algorithm is related to 

the average shift where shift is the distance to 

move P, hence we want to compute the average 

shift in our paper. 

The organization of this paper is as follows.  

Section 2 presents a recurrence formula to 

compute the number of i-largest number 

domination sequences with length L.  Section 3 

presents the string matching problem and the 

Horspool algorithm.  Section 4 presents the 

relation between the i-largest number 

domination sequence and the average case 

analysis of the Horspool algorithm.  Section 5 

presents the detail of the average case analysis of 

the Horspool algorithm.  Section 6 is the 

experiment to verify our theorem.  The last 

section is our conclusion. 

 

 

2  A Recurrence Formula to 
Compute the Number of i-largest 
Number Domination Sequences with 
Length L 

 

According to the definition given in Section 1, 

we give several examples of the i-largest number 

domination sequences.  The following 

sequences are all i-largest number domination 

sequences for some i:  

{1,12,123,1234,112,11112,1111112,1223,1213,1

2223,12221334} 

The following sequences are not i-largest 

number domination sequences: 

{11,121,1122344,1233,213,2213} 

The i-largest number domination sequence 

problem is to determine the total number of 

i-largest number domination sequences with 

length L for a given i and a given L.  For 

instance, let i=3 and L=3.  Then there is only 

one 3-largest number domination sequences with 

length 3, namely 123.  If i=2 and L=3, there is 

also one 2-largest number domination sequences 

with length 3, namely 112.  For i=3 and L=4, 

there are three 3-largest number domination 

sequences with length 4, namely 1123, 1213 and 

1223.   

How do we compute the total number of 

i-largest number of domination sequences with 

length L?  Let D(i, L) be the number of all 

i-largest number domination sequences with 

length L.  That is, i is the largest number and 

the length of the sequences are all L.  Then we 

have the following recurrence formula: 

D(i, L) = D(i-1, L-1) + (i-1) D(i, L-1) 

 for i≧2 and L≧i 

with boundary conditions D(1, L)=0 for L>1 and 

D(i, i)=1 for i≧1.  This recurrence formula can 

be derived from the following reasoning.  Let 

a1 a2 …aL be a i-largest number domination 

sequence with length L.  Clearly, aL must be i. 

Now consider the position of the first occurrence 

of i-1 in a1 a2 …aL-1.  There are two 

possibilities: it can be at position L-1 or prior to 

position L-1.  As for the first case, a1 a2 …aL-1 

is an (i-1)-largest number domination sequence 

with length L-1.  Hence there are D(i-1, L-1) 

such sequences.  As for the second case, aL-1 

must be one of 1, 2,…, i-1.  It follows that a1 

a2 …aL-2 i (note that aL-1 is replaced by the 

number i) is an i-largest number domination 

sequence with length L-1.  Since there are D(i, 

L-1) i-largest number domination sequences with 

length L-1 and each one further contributes (i-1) 

sequences to a1 a2 …aL-1, the term (i-1) D(i, L-1) 

follows.  The boundary condition D(i, i)=1 
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because there is only one i-largest number 

domination sequence with length i for all i and 

D(1, L)=0 for L>1 because there is no 1-largest 

number domination sequence whose length is 

larger than 1.   

For instance,  

D(4, 6) 

=D(3, 5)+3D(4, 5)= ... = 25. 

We list D(i, L) for 1≦i≦7 and 1≦L≦7 in 

Table 1. 

Table 1.  The number of i-largest number 

domination sequence with length L for 1≦i≦7 

and 1≦L≦7. 

L 

i 
1 2 3 4 5 6 7 

1 1 0 0 0 0 0 0 

2  1 1 1 1 1 1 

3   1 3 7 15 31 

4    1 6 25 90 

5     1 10 65 

6      1 15 

7       1 

 

 

3 The Exact String Matching 
Problem and the Horspool 
Algorithm 

 

For the exact string matching problem, we are 

given a text T=t1t2…tn and a pattern P=p1p2…pm 

for n≧m.  Our job is to find all occurrences of 

P in T.  The Horspool algorithm is one of the 

algorithms to solve the exact string matching 

problem and it can be considered as a simplified 

version of the Boyer-Moore algorithm.  The 

idea of the Horspool algorithm is follows. 

Let W be a substring of T with length m, the 

last character of W be x and P(i, j) be the 

substring of P with length j-i+1 whose first 

character is pi and the last character is pj.  If we 

have to move P in order to find an occurrence of 

P after W in T, we must align the rightmost x in 

P(1, m-1) to the last character x in W as shown in 

Figure 2.  Let shift be the distance to move P.  

If x does not occur in P(1, m-1), we move P to 

the next position of x of W as shown in Figure 3.  

If x occurs in P(1, m-1) and the location of x in 

P(1, m-1) is m-L, the shift=m-(m-L)=L, 

otherwise shift = m. 

Figure 1 

 

Figure 2 

 

Figure 3 

 

The pseudo code of the Horspool algorithm [4] 

is extremely simple and is presented in the 

following. 

 

Program  The Horspool Algorithm  

Input:  A text string T  and a pattern string 

 with lengths  and  respectively  P n m
Output:  All occurrences of  in P T . 

bmsearch( text, n, pattern, m)  /* Search 
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pattern[1…m] in text[1…n]*/ 

char text[], pattern[]; 

int n, m; 

{ 

 /*Preprocessing*/ 

int d[alphabet_size], i, j, k; 

 for (j=0; j<alphabet_size; j=j+1) d[j]=m; 

 for (j=1; j<m; j=j+1) d[pattern[j]]=m-j; 

 

 /*Search*/ 

 for (i=m; i<=n; i=i+d[text[i]]) 

  { 

k=i; 

for (j=m; j>0&&text[k]= = 

pattern[j]; j=j-1) k=k-1; 

if ( j = = 0) 

Report_match_at_position(k

+1); 

} 

} 

 

 

As can be seen, the Horspool Algorithm is 

actually a window sliding algorithm.  The 

average number of steps of the shifting of the 

window is therefore very important.  If, in 

average, the number of steps of the window 

being shifted is large, the algorithm is efficient.  

For the Horspool Algorithm, the number of steps 

of shifting is determined by how distinct 

characters are arranged in the pattern P.  Let us 

consider  

 

P=TCAACGTTTTTTTTTT. 

 

We can easily see that if the last character of 

the window W is not T, the number of steps of 

this pattern shifting is quite large.  On the other 

hand, suppose that  

 

  P=ACCGTGTACCCACGTT 

 

In this case, no matter what the last character 

of the window W is, the number of steps of the 

pattern shifting is relatively small. 

 

 

4 Relations of the i-largest Number 
Domination Sequences to Average 
Case Analysis of the Horspool 
Algorithm 

 

 

We are facing an interesting problem.  

Suppose that the alphabet is 

{ }cxxx ,,, 21 L=Σ .  Without losing 

generality, we may assume that when we scan 

from right to the left in the P, starting from 

, the distinct characters we encounter are 

ordered as .  That is, .  

Then the second distinct character we encounter 

is . For example, let  

1−mp
xx ,, 21 L

2x

cx, 11 xpm =−

 P1 = ACCGTTGTAC. 

Then,  

 x1=A, located at p9; 

 x2=T, located at p8; 

 x3=G, located at p7; 

 x4=C, located at p3. 

For each , we want to know the location of 

the rightmost  in P(1, m-1) if it does exist, 

counted from location 

ix
xi

1−m .  Let us denote 

this number as shifti.  For the same example P1 

= ACCGTTGTAC, we have 

 shift1 = 1; 

 shift2 = 2; 

 shift3 = 3; 
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 shift4=7.  

:1S 1 (the first 1 appears at location 1.)  In order to find the average case 

performance of the Horspool Algorithm, we 

have to find the average values of shifti’s, 

“average shift” for short.  It will be informative 

for us to code the string P(1, m-1) into a string 

consisting of positive integers only.  Let us 

code  by   For P1=ACCGTTGTAC, the 

coding is as follows: 

ix .i

:2S 112 (the first 2 appears at location 3.) 

:3S 112123 (the first 3 appears at location 6.) 

:4S 11212134 (the first 4 appears at location 8.) 

 

 The physical meaning of each sequence 

listed above is as follows: 

 

S1: The first distinct character appears in P2 at 

location m-1; 

 x1 = A →1; 

 x2 = T →2; 

S2: The second distinct character appears in P2 at 

location m-3; 

 x3 = G →3; 

 x4 = C →4.   

S3: The third distinct character appears in P2 at 

location m-6; 

Thus the original pattern P1(1, m-1) becomes: 

144322321.  Let us now reverse it and we have 

123223441.  We use the notation N(P) to 

denote the inverted sequence of P. 

S4: The third distinct character appears in P2 at 

location m-8. 

 Scanning from the left on the inverted 

sequence, let us single out four prefix sequences: 

the prefix sequence where the first 1 appears and 

1 is the largest, the sequence where the first 2 

appears and 2 is the largest and so on.  We have 

the following sequences: 

  

Hence, shift1=1, shift2=3, shift3=6 and shift4=8. 

In other words, that the sequence S1 for the 

first distinct character appears at location m-1 in 

P is equal to 1-largest number domination 

sequence with length 1.  That the sequence S2 

for the second distinct character appears at 

location m-3 in P is equal to 2-largest number 

domination sequence with length 3.  In general, 

that the sequence for the ith distinct character 

appears at location m-L in P is equal to the 

i-largest number domination sequence with 

length L.   

 

S1: 1 (the first 1 appears at location 1.) 

S2: 12 (the first 2 appears at location 2.) 

S3: 123 (The first 3 appears at location 3.) 

S4: 1232234 (The first 4 appears at location 7.) 

 

 We shall point out that these sequences 

have a common property.  Before doing that, let 

us consider another example.  Let P2 = 

ACTGGGATCAGAGAAT.  It can be seen that 

P2(1, m-1) becomes 132422143121211.  We 

reverse the above sequence into

 N(P2)=112121341224231 under the coding 

{A→1, G→2, C→3, T→4,}.  Then we have 

the following sequences: 

 

5 On the Average Case Analysis of 
the Horspool Algorithm 

 

 

From the above discussion, we can see that 

the first distinct character in P(1, m-1), counted 

from the right, must be located at m-1 in P with 
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shift = 1 as shown in Figure 4.  But the second 

distinct character may appear at anywhere.  To 

analyze the average case performance of the 

Horspool Algorithm, we must know the average 

shift of the i-th distinct character for a random 

pattern and a random text.  It turns out that this 

problem can be formulated as the i-largest 

number domination problem. 

The first 
distinct symbol

W

P

T

m-1

Figure 4 

 

If we are given random numeral sequences 

with length L, the probability that an i-largest 

number domination sequence with length L 

occurs is  

Lc
LiD ),(

             (3) 

  When the ith distinct character is equal to x, 

the last character of W, its shift is equal to L, 

which is also the length of the i-largest number 

domination sequence with length L where L<m.  

The average shift for the ith distinct symbol in a 

random pattern with length m is  

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛1 ),(m

iL
Lc
LiDL          (4)  

If x does not occur in P(1, m-1), then shift = m.  

For example, the last symbol of W in T is 4 and 

P(1, m-1)=33211.  Thus shift =5.  However, 

33211 does not conform to the definition of 

i-largest number domination sequence.  How 

do we conquer this difficulty?   

From the above example, we can insert 4 in 

front of 33211.  Thus, P(1, m-1) is extended to 

433211 and this sequence conforms to the 

definition of i-largest number domination 

sequence.  For the above method, the number 

of ith distinct symbol which does not occurs at 

P(1, m-1) is D(i, m).  The probability that the 

ith distinct symbol does not appear in P(1, m-1) 

for a random pattern is  

1

),(
−mc
miD

               (5) 

Thus, the average shift for ith distinct symbol 

is  

1

1 ),(),(
−

−

=

+⎟
⎠
⎞

⎜
⎝
⎛∑ m

m

iL
L c

miDm
c

LiDL         (6) 

Because alphabet size is c and the average 

shift of the first distinct symbol is 1, the average 

shift is 

∑ ∑
=

−

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛c

i
m

m

iL
L c

miDm
c

LiDL
c 1

1

1 ),(),(1
   (7) 

The alphabet contains c distinct symbols.  

Hence there are c choices for the first distinct 

symbol, c-1 choices for the second distinct 

symbol,… , and there are c-i choices for the ith 

distinct symbol.  Hence, there are 

),(),( icPLiD           (8) 

choices for each i-largest number domination 

sequence where ( ) ( )!
!

,
ic

cicP
−

=   

In other words, if we are given a general 

pattern, the average shift is  

( )icP
c

miDm
c

LiDL
c

c

i
m

m

iL
L ,

),(),(1

1
1

1

∑ ∑
=

−

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

       (9) 

If the length of P is 7 and c=4, the average 

shift is 3.303711.  If the length of P is 11 and 

c=4, the average shift is 3.814956665. 

 

 

6 Experiments 
 

We do an experiment to get the average shift 
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using DNA sequences.  The input is a random 

text with length 10000 and all combinations of 

pattern with length 6, 7 and 11.  Totally, we do 

this experiment for each length 10 times.  The 

results are in the following Table 2. 

 

Average shift 

 

The length of pattern 

Experiment 

value 

Theoretical 

value 

m=6 3.287554 3.012695

m=7 3.466941 3.303711

m=11 3.836701 3.814986

 

 

7 Conclusion 
 

In this paper, we define the i-largest number 

domination sequences and compute the number 

of the i-largest number domination sequences 

with length L.  We use this result to analyze the 

average shift of the Horspool algorithm.  In the 

future, we will investigate on how to simplify 

the formula (9) and to discover more 

applications of the i-largest domination 

sequences. 
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