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Abstract

Prediction of protein structure is a problem
of great interest in bioinformatics. Many stud-
ies have been devoted to this issue, such as Ad-
cock’s method, MaxSprout, SABBAC and Chang’s
method. In this paper, we combine the power
of two outstanding tools, SABBAC and Chang’s
method. Based on SVM, we propose a tool pref-
erence classification method for determining which
tool is potentially the better one used to predict the
structure of a target protein. We design a heuris-
tic method to select the better feature set combina-
tion for SVM. We test our method on the proteins
with standard amino acids in CASP7 dataset,
which contains 30 protein sequences. The experi-
ment results show that our method has 9.19% and
5.37% RMSD improvement against SABBAC and
Chang’s result, respectively. Our method can also
be applied to other effective prediction methods de-
veloped in the future.

1 Introduction

A protein consists of a linear chain of amino
acids which include 20 standard amino acids and
some nonstandard amino acids. Each protein has
its own functions, and its linear chain has to be
folded correctly to reveal its corresponding func-
tions. This is why the analysis of the 3D conforma-
tions of proteins is so important. People usually
use X-ray crystallography and NMR (nuclear mag-
netic resonance) [10] to determine the structures
of proteins, but both of them are time-consuming
and costly. To make structure analysis easier, re-
searchers try to determine the 3D-structures from
protein sequences with computers, and then only
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use X-ray crystallography or NMR to reveal the
details which they are really interested in.

There are two main methods to predict the po-
sitions of atoms in a protein sequence, homology
modeling and ab initio. The homology modeling
method uses the known structures to construct a
template database, and use the geometry similar-
ity of protein fragments to determine the positions
of atoms. On the other hand, ab initio does not
need to collect the existing information of proteins.
Some ab initio methods base on the force field be-
tween molecules, which consider the energy be-
tween atoms in the amino acid, such as hydrogen
bonds, van der Waals force, electrostatic force, etc.
The conformation with minimum energy is consid-
ered as the proper positions of atoms, because the
structure is the most stable when the energy is
minimized.

In this paper, we consider the all-atom protein
backbone reconstruction problem (PBRP). Given
the 3D coordinates of the α-carbons (Cα) in pro-
tein and its sequence, the PBRP is to rebuild
the 3D coordinates of all major atoms, includ-
ing N, C and O, on the backbone. Wang [11]
proposed an algorithm to reconstruct the atoms
of protein backbone with the homology model-
ing method. However, the prediction accuracy
of oxygen (O) atoms in amino acid is obviously
lower other atoms. Later, Chang [2] proposed a
method to further refine the O atoms based on
Wang’s result. SABBAC [9] is another software
tool for predicting the all-atom position. Chang’s
method and SABBAC utilize different template
knowledge, so neither one of them dominates the
other in all protein sequence prediction.

In this paper, we propose a preference classi-
fication strategy to determine which tool, either
Chang’s method or SABBAC, is a better predictor
for the given protein sequence. For a given pro-
tein sequence, if we can choose the most suitable
tool for predicting, we can reduce the RMSD (root
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mean square deviation) of the predicted structure.
The rest of this paper is organized as follows. In
Section 2, we review some results of the previous
works. Our method which uses SVM (support vec-
tor machine) to choose the suitable software tool
is given in Section 3. In Section 4, we will illus-
trate the experiment results. Finally, we will give
a conclusion in Section 5.

2 Previous Results

SABBAC [9] is one of famous methods for solv-
ing the all-atom PBRP, and it provides online ser-
vice on the Internet. They used hidden Markov
model (HMM) to derive structure alphabet. The
experimental result shows that SABBAC is more
accurate than the other previous research. How-
ever, if the protein size (protein length) is large,
the required calculation time may increase up to
more than ten minutes.

Wang et al. [11] proposed another method
which is based on the homology modeling to solve
all-atom PBRP. They use the protein information
in PDB to build the fragment library. All consec-
utive four-residue fragments from the structures
of all proteins in PDB are extracted. Each frag-
ment is identified by its second, third and fourth
residues. Therefore, the fragments are classified
into 8000 residue groups. The fragments of a
residue are further clustered into several clusters
based on their structures, including the six inner
distances between Cα atoms of the four amino
acids. This clustering strategy can greatly reduce
the required time of prediction. Even for a large
protein with length several hundreds, the calcula-
tion can be done in about ten or fewer seconds.

Chang et al. [2] considered the potential en-
ergy to improve Wang’s method. They analyzed
Wang’s results and found that the RMSD of O
atoms is much higher than the other two atoms, N
and C. Based on the AMBER force field [3], Chang
et al. defined a simplified potential energy func-
tion and proposed a method to refine the O atoms’
positions from Wang’s results. Besides, to reduce
the required time for searching the best position,
they proposed a two-phase refinement method. In
the first phase, the searching domain is divided
into coarse grid points. After some better candi-
dates have been found, these coarse grid points are
further divided into finer grid points. As a result,
the accuracy of the prediction on O atoms can be
improved. And the time used is in the same order
as Wang’s method even if the protein size is large.

3 The Preference Classification

Method

For a given protein sequence and its coordi-
nates of α-carbon atoms, we propose a prefer-
ence classification method to determine whether
Chang’s method or SABBAC is better for solving
the PBRP. Our classification method is based on
the SVM method. Figure 1 illustrates the flow
chart of our method. The input of our method
is the 3D coordinates of Cα in proteins and the
sequences composed by 20 amino acids, and the
output is the 3D coordinates of all main backbone
atoms (N, C, O), predicted by either SABBAC or
Chang’s method.

Stage 1: Picking Six 

Winner Feature Sets

Choosing the Software

SABBAC v1.2 Chang's Method

Stage 2: Testing All 

Possible 

Combinations of 

Winner Feature Sets 

Stage 3: Expanding 

the Feature Sets 

Combination

Protein 

Sequences

3D Cα

Coordinates

Loser Feature Sets

Winner Feature Sets

The Base for Expanding 

The Lowest RMSD Feature Set

All Atoms 3D 

Coordinates

Figure 1: The flow chart of the preference classi-
fication method.

3.1 The Features of SVM

SVM is a powerful and high-performance tool
for classification problems. Many packages have
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been developed, and LIBSVM [1] is one of the
packages with high classification accuracy. We use
the grid search for tuning the parameters of SVM
which achieve the best performance and avoid
over-fitting or under-fitting. And then we import
the test dataset to compute the accuracy.

Several feature sets, C,H, V, P and Z, are usu-
ally used to solve proteins classification problems
[5, 6, 7]. C represents the composition of 20 amino
acids, H represents the Hydrophobicibility , V rep-
resents the Normalized van der Walls volume, P
represents the Polarity, and Z represents the Po-
larizability. In previous studies, these feature sets
benefit the protein fold recognition. However, ob-
tained from our primitive experiments, these fea-
ture sets cannot work well in the preference clas-
sification.

Each feature in C is composition percentage of
one amino acid, so there are 20 features in C. In
each of the other feature sets (HVPZ), 20 amino
acids are divided into three groups by their prop-
erties, as shown in the first four rows of Table 1.

To improve accuracy of preference classifica-
tion, we add three feature sets E,N and A [8],
which represent size, charge, and aliphaticity or
aromaticity. Besides, in the feature selection pro-
cess, the features in one set are considered to be
independent. We separate one original feature set
into three parts with coding rules except C, be-
cause there is only one coding rule in C. The fea-
tures in one original set are regrouped according
to the rule of composition, transition, and distribu-
tion. For example, H is separated into three parts:
H, I, J; P is separated into P, Q, R. Finally, we
have 22 feature sets. Table 2 shows all new feature
sets and the number of features in each set.

Here is an example, shown in Figure 2, to ex-
plain the coding scheme of 3, 3 and 15 features in

Table 1: Three groups of 20 amino acids in each
coding scheme.
Coding Scheme Group 1 Group 2 Group 3

Hydrophobi- R, K, E, D, G, A, S, T, C, V, L, I,
city (H) Q, N P, H, Y M, F, W
Polarity L, I, F, W, P, A, T, G, H, Q, R, K,

(P ) C, M, V, Y S N, E, D
Normalized G, A, S, C, N, V, E, Q, M, H, K, F,

van der Waals T, P, D I, L R, Y, W
volume (V )
Polarizability G, A, S, D, C, P, N, V, K, M, H, F,

(Z) T E, Q, I, L R, Y, W
Size A, G, C, S P, N, D, T, the others
(E) V

Charge D, E K, R, H the others
(N)

Aliphatic or V, I, L Y, H, W, F the others
Aromatic (A)

Table 2: 22 feature sets with their sizes.

Original Set Composition Transition Distribution

C (20) C(20)
H (21) H (3) I (3) J (15)
V (21) T (3) U (3) V (15)
P (21) P (3) Q (3) R (15)
Z (21) X (3) Y (3) Z (15)

E (21) E (3) F (3) G (15)
N (21) L (3) M (3) N (15)
A (21) A (3) B (3) D (15)

                                5        10       15       20       25

Sequnce:            VSLNF KDPEA VRALT CTLLR EDFGL      

Group  :            12131 33232 13212 12113 33121

Number of Group 1:  1 2 3       4  5  6 78    9 10

Number of Group 2:   1      2 3   4 5  6       7

Number of Group 3:     1  23 4   5        6 78

                    12131 33232 13212 12113 33121
1-2/2-1 transitions:^^        ^   ^^^ ^^      ^^   

2-3/3-2 transitions:       ^^^   ^  

1-3/3-1 transitions:  ^^^       ^        ^   ^

Figure 2: A coding example of a sequence.

P, Q and R, respectively. The 3 feature values in
P are 0.4, 0.28 and 0.32. The first is 0.4 (10/25)
because 10 amino acids are contained in Group 1
and the sequence length is 25. Similarly, we get
0.28 (7/25) and 0.32 (8/25) for Group 2 and Group
3, respectively. The set Q includes 0.42, 0.16 and
0.25. 10 ”1-to-2” or ”2-to-1” transitions are repre-
sented by 0.42 (10/24) and there are 24 transitions
in a sequence consisting of 25 amino acids. So the
next 2 values are 0.17 (4/24) for Group 2 and 0.25
(6/24) for Group 3. In the set R, the first five
values are derived from the locations of the first,
1/4, 1/2, 3/4, and the last amino acid in Group
1 over the length of the protein sequence. Thus,
we get 0.04 (1/25), 0.12 (3/25), 0.56 (14/25), 0.76
(19/25), 1 (25/25) for Group 1, 0.08, 0.32, 0.52,
0.6, 0.96 for Group 2, and 0.16, 0.24, 0.36, 0.8,
0.88 for Group 3.

3.2 Our Classification Method

We propose a three-stage method to search for
the effective feature sets for solving the preference
classification problem. In Stage 1, we pick ρ win-
ner feature sets by checking the accuracy of each
combination in jackknife test, where the feature
set combinations are the elements of the power
set of the 3 sets derived from the same original
feature set. For example, we divide P into P, Q
and R, so 7 combinations P, Q, R, PQ, QR, PQ
and PQR are tested in Stage 1. Totally 50 combi-
nations, as shown in Table 3, are examined. Since
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Table 3: 50 feature set combinations examined in
Stage 1.

C (20)

HIJ (21)
HI (6) IJ (18) HJ (18)
H (3) I (3) J (15)

TUV (21)
TU (6) UV (18) TV (18)
T (3) U (3) V (15)

PQR (21)
PQ (6) QR (18) PQ (18)
P (3) Q (3) R (15)

XYZ (21)
XY (6) YZ (18) XZ (18)
X (3) Y (3) Z (15)

EFG (21)
EF (6) FG (18) EG (18)
E (3) F (3) G (15)

LMN (21)
LM (6) MN (18) LN (18)
L (3) M (3) N (15)

ABD (21)
AB (6) BD (18) AD (18)
A (3) B (3) D (15)

these 50 combinations are from 22 feature sets, if
one combination has high rank in the accuracy,
the feature sets composed in the combination are
also with high rank. For example, if the accuracies
of the combinations are PQ, C, AB, BD, HI, · · ·,
we will keep the top ρ winner feature sets P, Q,
C, A, B, D, H, I · · · as the result of Stage 1. And
the other 22 − ρ feature sets, called loser feature
sets, will be used in Stage 3. In our experiments,
we set ρ = 6.

Then, we test all possible combinations of the
ρ winner feature sets in Stage 2. 2ρ − 1 combi-
nations are examined in this stage. Improving ac-
curacy is usually the main goal in classification
problems; however, the aim of our preference clas-
sification is to decrease the RMSD of the predicted
results with respect to real protein structures. So
the classification accuracy is not the only criterion
that we have to consider. The high accuracy does
not always lead to the low average RMSD because
the differences of RMSD in the two software tools
for different proteins are not the same. Table 4
shows the RMSD of two software tools. Some-
time, we correctly choose the software for several
proteins but miss the proteins with large RMSD
difference, the average RMSD will increase by the
missed ones. High accuracy might result in low
average RMSD, so we find the combinations with
accuracy higher than 70% as candidates in Stage
2. We calculate the average RMSD of each candi-
date, and then rank these combinations by average
RMSD. The combination with the lowest average

RMSD is the base for Stage 3.

Table 4: The RMSD comparison of SABBAC and
Chang’s method on the proteins with standard
amino acids in CASP7. µ denotes the average of
RMSD. A value marked with “•” means the better
result.
CASP7 ID PDB ID SABBAC v1.2 Chang’s method

T0288 2GZV 0.621 0.383 •

T0293 2H00 0.520 • 0.529
T0295 2H1R 0.481 0.374 •

T0305 2H4V 0.578 0.377 •

T0308 2H57 0.383 0.359 •

T0313 2H58 0.479 0.354 •

T0307 2H5N 0.450 0.383 •

T0332 2HA8 0.330 • 0.390
T0318 2HB6 0.397 0.377 •

T0350 2HC5 0.402 • 0.468
T0317 2HCM 0.511 0.439 •

T0345 2HE3 0.408 • 0.445
T0340 2HE4 0.343 • 0.443
T0346 2HE9 0.457 0.381 •

T0335 2HEP 0.636 • 0.657
T0353 2HFQ 0.423 • 0.538
T0349 2HFV 0.603 • 0.684
T0314 2HG6 0.432 0.407 •

T0351 2HG7 0.373 • 0.465
T0327 2HGC 0.611 0.494 •

T0357 2HI6 0.451 • 0.476
T0363 2HJ1 0.604 0.423 •

T0358 2HJJ 0.534 • 0.564
T0372 2HQY 0.377 • 0.378
T0385 2IB0 0.252 • 0.305
T0338 2IVX 0.231 • 0.305
T0377 2IVY 0.415 0.375 •

T0319 2J6A 0.293 • 0.405
T0302 2JM5 0.450 0.391 •

T0334 2OAL 0.351 0.275 •

µ 0.446 0.428

In Stage 3, called the greedy expansion stage,
we give the loser feature sets the second chance.
Suppose the base from Stage 2 is XY and the
loser feature sets are ABCD. We check the com-
binations XYA, XYB, XYC and XYD in the first
round. The feature set combination with the low-
est average RMSD will be the base for the next
round. Suppose XYC results in the lowest aver-
age RMSD, it will become the new base. Then,
we check XYCA, XYCB and XYCD in the second
round. 22 − ρ rounds are executed in this stage,
since there are 22−ρ loser feature sets. When one
loser feature set is added into the base, we test the
new combination for the average RMSD, instead of
the accuracy. It is time-consuming for calculating
the average RMSD after jackknife test, but look-
ing for the combination with the lowest RMSD is
the only goal in this stage because we have found
the combination with relatively high accuracy in
Stage 2.
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Table 5: The classification accuracies of the top
10 feature set combinations in Stage 1.

Combination Accuracy log(c) log(γ)

N 80.00 8 -6
LN 76.67 8 -6
AB 73.33 6 -4
I 70.00 8 -2
P 70.00 2 6
D 70.00 2 -2
H 66.67 8 -2
Q 66.67 4 2
PQ 66.67 8 -8
Z 66.67 6 -6

4 Experimental Results

We test our preference classification method on
CASP7. There are 30 protein sequences consist-
ing of only standard amino acids. Table 4 shows
the ID in CASP7, PDB and the RMSD in two
prediction tools.

In Stage 1, 50 combinations, including C, and
powers sets of HIJ, TUV, PQR, XYZ, EFG, LMN,
and ABD are tested. N, LN, AB, I, P, D, H, Q,
PQ, Z are the top 10 combinations with respect
to accuracy, as shown in Table 5. In our exper-
iments, we set ρ = 6. So we pick N, L, A, B,
I, and P as the 6 winner feature sets, and the
other 16 feature sets are the losers. The power
sets of these 6 feature sets are tested in Stage 2.
The combination with the lowest average RMSD
is NB (0.410 Å), as listed in Table 6. And then
NB is chosen as the initial base of Stage 3. In the
first round of Stage 3, we add the 16 loser feature
sets into NB: NBC, NBH, NBJ, NBT, NBU, NBV,
NBQ, NBR, NBX, NBY, NBZ, NBE, NBF, NBG,
NBM and NBD. We get that the lowest average
RMSD appears in NBT (0.405Å). NBT becomes
the new base for the next round, and then we
test NBTC, NBTH, NBTJ, NBTU, NBTV, · · ·.
The best RMSD of each round is shown in Ta-
ble 7. In the table, we conclude that the best
feature set combination found by our method is
NBT, which improves RMSD to 0.405Å. For a
perfect classifier (100% classification), the average
RMSD could be reduced to 0.399Å, which is the
upper bound of performance improvement of our
method. The conclusion of our method and perfor-
mance improvement are shown in Table 8. The av-
erage RMSD of our method is reduced to 0.405Å,
which is 9.19% and 5.37% improvement against
SABBAC and Chang’s result, respectively.

Table 6: The average RMSD and classification ac-
curacies of the top 10 feature set combinations in
Stage 2. log(c) and log(γ) denote the best param-
eter values for SVM.

Combination Average RMSD Accuracy log(c) log(γ)

NB 0.410 83.33 8 -8
NBP 0.414 80.00 8 -8
NBI 0.415 76.67 8 -6
AB 0.415 76.67 6 -4
NAB 0.416 80.00 8 -6
NLA 0.416 76.67 8 -8
N 0.416 80.00 8 -6
NL 0.418 73.33 8 -6
NLB 0.421 73.33 8 -6
NABI 0.422 76.67 8 -6

Table 7: The best RMSD in each round of Stage
3.

Round Combination Average RMSD

Round 0 NB 0.410
Round 1 NBT 0.405
Round 2 NBTE 0.406
Round 3 NBTEU 0.409
Round 4 NBTEUX 0.410
Round 5 NBTEUXG 0.412
Round 6 NBTEUXGF 0.415
Round 7 NBTEUXGFH 0.417
Round 8 NBTEUXGFHY 0.417
Round 9 NBTEUXGFHYZ 0.421
Round 10 NBTEUXGFHYZR 0.419
Round 11 NBTEUXGFHYZRV 0.417
Round 12 NBTEUXGFHYZRVM 0.421
Round 13 NBTEUXGFHYZRVMQ 0.427
Round 14 NBTEUXGFHYZRVMQD 0.428
Round 15 NBTEUXGFHYZRVMQDJ 0.427
Round 16 NBTEUXGFHYZRVMQDJC 0.428

5 Conclusions

SVM is an effective classifier used widely. If
we want to get high classification accuracy, ex-
tracting more effective features for the classifier
is necessary. Therefore, many studies, such as fea-
ture filter [4], and feature wrapper, are in progress.
People try to find better features to improve the
accuracy, but our goal is a little different. We want
not only to improve the accuracy but also to de-
crease the average RMSD. For this reason, we pro-
pose a three-stage method to search the effective
feature set combination for decreasing the RMSD
in protein structure prediction. Our aim is to get
the lowest RMSD for each protein in the dataset.
We propose a new feature extraction scheme to
get 22 new feature sets and then build the best
feature combination with a heuristic method.

Most of time, SVM is faster than NN (Neural
Network), but sometime it is still not fast enough.
In our case, we have to check 222 − 1 combina-
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Table 8: The performance improvement in per-
centage of average RMSD against Chang’s method
and SABBAC.

Average Against Against
Dataset RMSD SABBAC Chang’s method

/ Perfect / Perfect
CASP7
standard 0.405 9.19% / 10.54% 5.37% / 6.78%

tions of feature sets if the real best combination
is desired. But it is not easy to finish the all-
combination job in limited time. Therefore, we
design this heuristic method to solve the prob-
lem in acceptable time. When we set ρ = 6, in
the worst case, our method need to check only
1+(23−1)×7+(26−1)+ 16×15

2 combinations, which
is only 0.0056% of the original combinations we
have to test. By our method, the RMSD is reduced
to 0.405Å, which is 9.19% and 5.37% improvement
against SABBAC and Chang’s result, respectively.
Thus, we believe our method is an efficient and ef-
fective method to reduce the RMSD of protein 3D
structure prediction. If, in the future, some other
prediction tools with lower RMSD are proposed,
we can still apply our method to improve the per-
formance a little.
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